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Abstract

Myeloid cells are a vital component of innate immunity and comprise of monocytes, macrophages, 

dendritic cells and granulocytes. How myeloid cell lineage affects activation states in response to 

cytokines remains poorly understood. The cytokine environment and cellular infiltrate during an 

inflammatory response may contain prognostic features that predict disease outcome. Here we 

analyzed the transcriptional responses of human monocytes, macrophages, dendritic cells and 

neutrophils in response to stimulation by IFN-γ, IFN-β, IFN-λ, IL-4, IL-13 and IL-10 cytokines, 

to better understand the heterogeneity of activation states in inflammatory conditions. This 

generated a myeloid cell cytokine specific response matrix that can infer representation of myeloid 

cells and the cytokine environment they encounter during infection, in tumors and in whole blood. 

Neutrophils were highly responsive to type 1 and type 2 cytokine stimulation but did not respond 

to IL-10. We identified transcripts specific to IFN-β stimulation, whereas other interferon 

signature genes were upregulated by both IFN-γ and IFN-β. When we used our matrix to 
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deconvolute blood profiles from tuberculosis patients, the IFN-β specific neutrophil signature was 

reduced in TB patients with active disease whereas the shared response to IFN-γ and IFN-β in 

neutrophils was increased. When applied to glioma patients, transcripts of neutrophils exposed to 

IL-4/IL-13 and monocyte responses to IFN-γ or IFN-β emerged as opposing predictors of patient 

survival. Hence, by dissecting how different myeloid cells respond to cytokine activation, we can 

delineate biological roles for myeloid cells in different cytokine environments during disease 

processes, especially during infection and tumor progression.

INTRODUCTION

While there has been rapid recent progress in understanding the ontogeny of myeloid cells, 

including monocytes, macrophages, dendritic cells and granulocytes in recent years, the 

heterogeneity of activation states between these different cell types remains poorly 

understood. Single cell RNA-Seq technologies of inflamed tissues has begun to provide an 

appreciation for the heterogeneity of activation states for different myeloid cells, however 

these cells typically encounter a complex mixture of cytokines in their tissue 

microenvironment. The overall status of immune cells in a particular tissue or in blood 

circulation in disease conditions is an important indicator of disease state. Transcriptional 

profiles of immune cells have thus been used to define gene expression signatures that could 

potentially guide personalized clinical decision-making through patient stratification and 

evaluation of disease-associated gene expression changes. However, in most cases, 

transcriptional profiles are generated from bulk tissues or whole blood, masking changes in 

the transcriptomic composition of specific cell types. Recently, computational approaches 

have been developed to infer leukocyte compositions in bulk tissue transcriptomes based on 

cell-type specific reference gene expression signatures (1). One such study found that the 

ratio of tumor-associated neutrophils and plasma cell signatures was predictive of survival 

for various solid tumors (2). Inferring cell types from bulk transcriptomic data has also been 

applied in the context of tuberculosis to classify disease states into active and latent stages 

(3). Additional studies in cancer, infection and sepsis have used similar approaches of meta-

analysis from multiple cohorts to identify gene patterns for patient stratification and survival 

predictions (4–6). While this strategy enables the deconvolution of immune cell types 

infiltrating different tissues, the environmental conditions they encounter as they infiltrate is 

not yet known.

Identifying specific transcriptional programs in myeloid cells may facilitate the discovery of 

biomarkers and targets for therapies for a variety of diseases. Both granulocytic myeloid 

cells (e.g. neutrophils, eosinophils and basophils) and monocytic myeloid cells are important 

innate immune components of the inflammatory infiltrate, being almost universally present 

in any disease condition. They are all critical not just for protection against pathogens but 

also for tissue remodeling and maintenance of tissue homeostasis. The same differentiation 

processes that guide the physiologically necessary function of these cells are also 

responsible for the pathological accumulation of these cells under certain inflammatory 

conditions. For example, myeloid derived suppressor cells (MDSCs) can play pathological 

roles in cancer, as well as other inflammatory settings where they accumulate and 

differentiate (7).
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The cytokine environment is a critical determinant of immune cell activation phenotypes and 

the response of diverse immune cells to the different cytokines is not well understood. 

Further, cell types respond differentially to various cytokine stimulation conditions to 

express distinct transcriptional signatures. This may be due to differences in chromatin state 

and cytokine receptor expression levels that determine, for example, how macrophages and 

dendritic cells respond to IL-10 stimulation as compared to IFN-γ stimulation (8, 9). While 

there have been experimental studies whereby transcriptional response has been assessed in 

specific immune cell types following exposure to assorted cytokines, we are not aware of a 

systematic comparison of diverse myeloid cell types in response to a wide variety of 

different cytokine stimulation conditions. Here, we compare the transcriptional response of 

primary human macrophages, dendritic cells, monocytes and neutrophils to stimulation with 

a cytokine panel consisting of IL-4, IL-10, IL-13, IFN-γ, IFN-β, and IFN-λ. These 

signatures were then used to infer the signature of specific immune cell types responding to 

specific cytokine environments from bulk transcriptomic data. This method allows us to 

infer not only the type of immune cells present in a bulk tissue or blood but also the cytokine 

environment which they are likely encountering. We have successfully identified 12 myeloid 

cell-cytokine stimulation signatures and correlated both Mycobacterium tuberculosis 
infection status and glioma cancer outcome with these specific signatures.

MATERIALS AND METHODS

Cell Isolation and Differentiation Protocol

Primary human polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear 

cells (PBMCs) from anonymous, healthy donors (New York Blood Center) were isolated by 

Ficoll gradient separation as previously described (10). CD14+ monocytes were then isolated 

from the PBMC fraction by positive selection. In brief: PBMCs were resuspended in MACS 

buffer (PBS + 0.05% BSA + 2 mM EDTA) at a concentration of 1×108 PBMCs per 950 μL. 

50 μL of CD14+ microbeads (Miltenyi Biotec) were added for every 1×108 PBMCs. Cells 

were incubated for 20 minutes at 4°C, washed, and filtered through a cell strainer. The cells 

were run on an AutoMACS Pro (Miltenyi Biotec) using the ‘Posselds’ program. Monocytes 

(Monos) were used directly after sorting. Monocyte-derived dendritic cells (DCs), and 

Monocyte-derived macrophages (Macs) were differentiated from CD14+ monocytes by 

culturing the cells for 4 days at 37°C and 5% CO2 in RPMI medium supplemented with 10% 

FBS, 10 mM HEPES, 100 U/mL penicillin, 100 μg/mL streptomycin with either 110 U/mL 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine; Sanofi) and 282 

U/mL interleukin-4 (IL-4) (Affymetrix, eBioscience) for DCs or 280 U/mL GM-CSF for 

macrophages. Media was replenished with fresh cytokine on day 2. PMNs, monocytes, DCs, 

and Macs were confirmed by flow cytometry by staining with anti-CD14-FITC monoclonal 

antibody (MAb), anti-CD11c-PerCPcy5.5 MAb, and anti-HLA-DR-APCCy7 MAb 

(BioLegend). After washing, samples were fixed with PBS supplemented with 2% FBS, 2% 

paraformaldehyde, and 0.05% sodium azide and analyzed by flow cytometry (Cytoflex; 

Beckman Coulter). Data were analyzed using FlowJo software.
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Cell Stimulation Protocol

Differentiated cells were resuspended in clear RPMI + 10% FBS. 1×105 cells were added to 

each stimulation well. Stimulations comprised of buffer control (PBS + 0.01% Glycerol), 

500 U/mL IFN-β1a (referred to as IFN-β) (Carrier Free; R&D Systems), 10 ng/mL IFN-γ 
(Carrier Free, R&D Systems), 100 ng/mL IFN-λ2 (referred to as IFN-λ) (Carrier Free, 

R&D Systems), 1000 IU/mL (78.125 ng/mL) IL-4 (Carrier Free, Life Technologies), 100 

IU/mL IL-10 (Carrier Free, Life Technologies), and 100 IU/mL IL-13 (Carrier Free, R&D 

Systems). Plates were spun for 5 minutes at 1200 rpm and incubated for 4 hours at 37°C and 

5% CO2. Cells were then washed with PBS. Cells were resuspended in RLT buffer (Qiagen) 

and vortexed for 1 minute before being placed at −80°C. RNA for each donor was then 

isolated with the RNeasy Plus Mini Kit (Qiagen) following the protocol with on column 

DNAse Digestion (Qiagen).

Whole Blood Simulation Protocol

Healthy donors were recruited and consented, and are part of an IRB approved study 

(protocol # S14–02129 title: Immunomodulatory Virulence Factors and Bacterial 

Pathogenesis) by the NYU Langone Health. Blood was drawn from healthy human donors 

according to our IRB protocol. 1 mL of blood per tube was then added to TruCulture tubes 

and inverted gently to mix. Stimulations were added to appropriate tubes at the following 

final concentrations: buffer control (PBS), 500 U/mL IFN-β1a (referred to as IFN-β) 

(Carrier Free; R&D Systems), 10 ng/mL IFN-γ (Carrier Free, R&D Systems), 100 ng/mL 

IFN-λ2 (referred to as IFN-λ) (Carrier Free, R&D Systems), 78.125 ng/mL IL-4 (Carrier 

Free, R&D Systems), 100 IU/mL IL-10 (Carrier Free, R&D Systems), and 100 IU/mL IL-13 

(Carrier Free, R&D Systems). Tubes were inverted gently to mix. Tubes were incubated for 

4 hours at 37°C with gentle rotation. Tubes were spun for 10 minutes at 450 × g without 

break. Supernatants were removed, and the pellets were resuspended in 2 mL of PAXGENE 

reagent. Tubes were incubated at room temperature for 2 hours and placed at 4°C overnight. 

RNA was then isolated using the PAXGene protocol.

Gene Expression Analysis

Libraries were generated for each donor using the CelSeq2 protocol (11) and were 

sequenced on Illumina Hi-Seq (cell stimulation) and Illumina NovaSeq (whole blood). 

Reads were mapped by Bowtie2.3.1 (12) to the hg38 reference genome and uniquely 

mapped indices (UMI) determined by HTSeq-counts (13). Differential expression analysis 

was performed in R (v3.5.1) using DESeq2 (14). Compared to buffer controls, differentially 

expressed genes were considered significant with Log2 fold change greater than 2 and 

adjusted p-value less than 0.05.

Self-Organizing Map and Outlier Analysis

Self-organizing map (SOM) analysis (15) was performed on the list of 571 differentially 

expressed genes using the R statistical programming language (v3.5.1). SOM analysis was 

performed individually for each cell type with the package Kohonen (16) at default 

parameters. According to 16 identified SOM clusters outlier analysis was performed to 

identify specific gene expression patterns. A gene was considered an outlier with an 
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expression level 1.5 times greater than the median expression level across all conditions in at 

least two out of the three donors (17). 131 of 571 genes were found to meet these criteria in 

12 of the possible 16 cell type and stimulation conditions.

Cell type deconvolution through CIBERSORT

Source code for the CIBERSORT (Cell-type Identification By Estimating Relative Subsets 

Of RNA Transcripts) deconvolution algorithm, https://cibersort.stanford.edu/, was obtained 

from the developers and implemented in the R statistical programming language (18). All 

input bulk datasets were obtained as normalized count tables when available. If not 

normalized datasets were scaled and quantile normalized according to the default 

CIBERSORT functions. Our myeloid cell cytokine specific (MCCS) signature basis matrix 

was supplied as the average normalized expression level across the three donors for our 131-

gene set. The basis matrices for immunoStates (19) and LM22 (default CIBERSORT 

immune cell signature matrix) (1) were obtained from the respective publications. 

CIBERSORT was run according to default parameters in all cases with 100 permutations.

M. tuberculosis sample collection and normalization

Conducting a literature search for all available M. tuberculosis (TB) infection studies with 

publicly available data yielded 8 microarray and 5 RNA-Seq studies, with the following 

accession numbers; GSE19491, GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, 

GSE41055, GSE56153, GSE101705, GSE107995, GSE79362, GSE89403, GSE94438 (20–

32). See Table S2 for full sample details. Microarray studies were obtained as scaled 

expression values as downloaded from GEO. RNA-Seq studies were obtained as edgeR (33) 

normalized count tables.

LASSO modeling and feature selection for patient survival in primary gliomas

RSEM normalized count tables for all primary glioma samples available in The Cancer 

Genome Atlas (TCGA) database were obtained through the TCGA2STAT R package (34). 

Additional sample metadata was also obtained from Ceccarelli et al. (35). Samples were 

randomly split into a training set and a test set with an 80/20 split depending on the vital 

status at the 2-year or 5-year model. Additionally, survival status was balanced as much as 

possible between the test and train sets to improve model predictions. In the 2-year model 

there were 264 samples (133 alive, 131 deceased) in the training set and 66 (32 alive, 34 

deceased) samples in the test set. And in the 5-year model there were 358 samples (168 

alive, 190 deceased) in the training set and 90 (56 alive, 34 deceased) samples in the test set. 

Prior to modeling the samples were scaled with min-max normalization by normalizing the 

gene expression levels for each sample between 0 and 1. The sample breakdowns were 

subject to a logistic least absolute shrinkage and selection operator (LASSO) model with 7-

fold cross validation repeated 10 times using the R package caret (36). Area under the 

receiver operator curve (AUC) and precision recall curves were used to assess model 

performance by the default functions in caret (36). Additionally, feature importance was 

assessed by the caret importance function, varImp, which measures the regression 

coefficients for each gene supplied to the model.
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Availability of data and material

Gene expression data from myeloid cells and whole blood is deposited in GEO under the 

accession number SuperSeries GSE145648 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE145648). The TB infection studies of publicly available data includes 8 

microarray and 5 RNA-Seq studies, with the following GEO accession numbers; GSE19491, 

GSE28623, GSE37250, GSE39939, GSE39940, GSE40553, GSE41055, GSE56153, 

GSE101705, GSE107995, GSE79362, GSE89403, GSE94438 (20–32). RSEM normalized 

count tables for all primary glioma samples are available in the TCGA database (https://

portal.gdc.cancer.gov/) and were obtained through the TCGA2STAT R package (34). 

Additional sample metadata was also obtained from Ceccarelli et al. (35). Source code and 

analysis can be found on Github (https://github.com/ruggleslab/MCCS).

RESULTS

Myeloid cells respond to cytokine stimulation with cell type specific transcriptional 
profiles

In order to better understand how different human myeloid cells respond to activation by 

different types of cytokines, we set out to compare the transcriptional profiles attained 

through RNA-Seq of monocytes, neutrophils, macrophages and dendritic cells from the 

same healthy donors in response to stimulation. We chose to stimulate with the 3 different 

types of interferon (IFN-γ, IFN-β and IFN-λ) because they are important signals for both 

bacterial and viral responses in the blood and blood-derived myeloid subsets and we were 

interested in similar and distinct features of each interferon (37, 38). We also chose to 

stimulate with type 2 cytokines (IL-4 and IL-13) and the regulatory cytokine IL-10. 

Neutrophils and monocytes were stimulated directly after isolation from blood leukopaks 

whereas macrophages and dendritic cells were stimulated after a 4-day differentiation period 

from the isolated monocytes (Fig. 1A). RNA was isolated 4 hours after stimulation for each 

of the four different cell types and stimulation conditions including an unstimulated buffer 

control for each cell type. Donor to donor differences had a much smaller effect on 

transcriptional profiles than differences between cell types (Fig. S1A). To assess the purity 

of our monocyte-derived macrophage and dendritic cell populations we performed flow 

cytometry with known macrophage, dendritic cell and monocyte lineage markers (CD11c, 

HLA-DR and CD14) (Fig. S1C). Additionally, we carefully assessed the transcriptional 

profiles of the unstimulated buffer controls from the four myeloid subsets. Highly expressed 

transcripts in the DC compartment included CD1 surface markers which are important for 

antigen presentation (39) as well as CLEC10A and CCL17. Macrophage subsets were 

enriched for IL24 and CXCL5. Monocytes were enriched for IL6 and CCL20 while 

neutrophils expressed FCGR3B, CXCR2 and ADGRG3 (Fig S1B).

We next identified genes that were significantly upregulated in individual cytokine 

stimulations relative to the unstimulated buffer for each cell type. For example, with 

macrophages, we identified a total set of 341 genes that were significantly upregulated, log2 

fold change greater than 2 and FDR less than 0.05, by at least one cytokine relative to the 

unstimulated control samples. Monocytes upregulated 197 genes; dendritic cells upregulated 

199 genes; and neutrophils upregulated 274 genes in response to cytokine stimulation (Fig. 
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1C). We then combined all of these lists for a total of 571 individual genes that are 

upregulated by at least one cytokine in at least one myeloid cell type. Principle component 

analysis (PCA) based on these genes indicated that each cell type engages a distinct 

transcriptional programming for each cytokine stimulation (Fig. 1B). 35% of the explained 

variation along the first principle component was strongly associated with cell type identity. 

Within each myeloid cell type, it is clear that type 2 cytokines IL-4 and IL-13 triggered 

shared transcriptional programs, whereas the type 1 cytokines IFN-β and IFN-γ triggered a 

similar set of upregulated genes (Fig. 1C). An IL-10 induced signature was observed in 

macrophages, dendritic cells and monocytes but completely absent in neutrophils. 

Interestingly, neutrophils had a robust response to other cytokines including a small subset 

of genes induced by IFN-λ, which was not observed in the other cell types (Fig. 1C).

With this set of 571 cytokine upregulated genes on myeloid cells, we considered if shared 

cytokine specific responses would dominate over cell-type specific responses to stimulation. 

Unsupervised clustering and correlation analysis of transcriptional responses showed a clear 

distinction between stimulations of different cell types. Macrophages and dendritic cells had 

a more closely correlated response while neutrophils and monocytes were more closely 

correlated in their response signature (Fig. 2A). Although type 1 (especially IFN-γ and IFN-

β) and type 2 (IL-4 and IL-13) cytokine specific responses mainly clustered together within 

each cell type, this was not sufficient to override the correlation between cell type specific 

responses. These results indicated that for the most part, the cell type is a larger determinant 

of whether a gene is upregulated after stimulation than the cytokine. The only exception was 

a strong correlation between macrophages and dendritic cells stimulated by IFN-β (Fig. 2A).

To obtain finer resolution on how the different cell types share responses to cytokine 

stimulation, we looked for overlaps in differentially expressed genes between cell types. 

This revealed that 81 of the 571 genes were upregulated in all four cell types (Fig. 2B), 

which was primarily driven by a shared response to IFN-β stimulation (Fig. 2C). However, 

342 of the other upregulated genes were specific to a single cell type (Fig. 2B), and further 

segregation by cytokine stimulation confirmed that the major transcriptional response to 

each cytokine was unique to a particular cell type (Fig. 2C–H). For example, IL-10 induced 

47 genes that were specific to monocytes, 9 to macrophages and 8 to dendritic cells while 

having almost no effect on neutrophils (Fig. 2H). Alternatively, neutrophils induced 49 and 

50 genes uniquely after IL-4 (Fig. 2F) and IL-13 (Fig. 2G) stimulation while the other cell 

types were generally less responsive. Neutrophils also had a robust cell type specific 

response to IFN-γ (31 genes, Fig. 2D) and IFN-β stimulation (56 genes, Fig. 2C). Overall, 

these results indicated that the cytokine driven transcriptional responses in different myeloid 

cell types are highly cell type specific, apart from a core response to IFN-β stimulation (and 

to a lesser extent IFN-γ) that is shared by all cell types.

Identification of a myeloid cell cytokine specific transcriptional signature

We next identified specific transcriptional signatures that define a particular cell type and 

stimulation pair. Through self-organizing map (SOM) analysis (15) we identified clusters of 

similar gene expression between cytokines in an unbiased manner. For each cell type the full 

list of differentially expressed genes were sub-clustered into stimulation specific signatures. 
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This analysis divided the gene expression pattern of neutrophils into four sub-clusters 

corresponding to genes induced only by IFN-β (cluster 1), by both IFN-β and IFN-γ (cluster 

2), by both IL-13 and IL-4 (cluster 4) and by IFN-λ (cluster 3) (Fig. 3A, B). For 

macrophages, five clusters were identified corresponding to genes upregulated by only IFN-

β (cluster 2), both IFN-β and IFN-γ (cluster 1), both IL-13 and IL-4 (cluster 5), IL-10 

(cluster 3) and one cluster which could not be clearly assigned (Fig. S2A, B). In dendritic 

cells, four clusters were identified corresponding to genes upregulated under IFN-β alone 

(cluster 1), IFN-β and IFN-γ combined (cluster 4), IL10 (cluster 2) and one cluster could 

not be assigned because two few genes were present (Fig. S2C, D). For monocytes, four 

clusters were identified corresponding to genes upregulated only by IFN-β (cluster 1), both 

IFN-β and IFN-γ (cluster 3), IL-13 and IL-4 (cluster 4) and IL-10 (cluster 2) (Fig. S2E, F). 

Altogether, 12 cell type and stimulation specific expression patterns could be identified by 

SOM analysis. Importantly, not all cell types and stimulation signatures were robust enough 

to be clearly isolated.

Following identification of these 12 unique expression clusters, we performed outlier 

analysis (17) to further filter the expression cluster gene list to only include genes highly 

specific for the cell type and cytokine stimulation conditions identified by SOM analysis. 

Genes such as RBBP6 and ASF1B were considered outliers for monocytes responding to 

IFN-β and IFN-γ and neutrophils responding to IL-4 and IL-13 respectively (Fig. S3), due 

to their highly specific and consistent expression pattern in these cell type stimulation 

conditions across all three donors. This evaluation method identified 131 genes that reflected 

the 12 myeloid cell cytokine stimulation conditions that were clearly distinguishable (Fig. 

3C, S4 and Table S1). These genes represent a high confidence marker gene set for myeloid 

cells under stimulation of various cytokines. We refer to this as a myeloid cell cytokine 

specific (MCCS) signature.

We next sought to confirm that the MCCS signature identified in cultured cells could be 

detected in a more biologically relevant sample such as whole blood. In particular, the robust 

gene expression signature of stimulated neutrophils should be detectable since these are the 

most abundant leukocytes in circulating blood (40). We stimulated whole blood from three 

additional healthy donors with IFN-γ, IFN-β, IFN-λ, IL-4, IL-13 and IL-10 for 4 hours 

using truCulture tubes (41) before isolating RNA for transcriptional profiling, with an 

unstimulated control for each donor. We found the neutrophil gene expression profile within 

the MCCS signature was readily detected in freshly isolated whole blood stimulated with 

cytokines (Fig. 4A). Additionally, the cytokine-mediated gene expression signatures of 

macrophages, dendritic cells and monocytes could also be detected in whole blood (Fig. 

4A). We also identified a dataset whereby a similar experiment was performed on the whole 

blood of 25 donors with a smaller range of cytokines and transcriptional changes quantified 

by NanoString nCounter analysis (41). Examination of the overlapping gene sets confirmed 

that the selected genes from our signature of in vitro interferon activated neutrophils could 

be detected in the whole blood from a larger number of donors (Fig. 4B). These results 

indicate that the MCCS signature that we generated from in vitro cell culture stimulation of 

different myeloid cells could also be detected when leukocytes in whole blood are exposed 

to the same cytokines. Hence, we could use this signature to deconvolute whole blood 

transcriptomes from publicly available datasets.
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Deconvolution of transcriptional signatures from M. tuberculosis Infection

To determine the utility of our MCCS signature matrix, we first examined whole-blood 

transcriptomes from 13 clinical cohorts with M. tuberculosis infections, which were publicly 

available (Table S2). Previous studies have described a neutrophil driven type 1 interferon-

inducible signature increased in patients with active disease compared to healthy and latently 

infected individuals (20). Therefore, we were interested in the role of neutrophil specific 

cytokine responses in this context. More recently, circulating natural killer cells were also 

reported to increase in abundance during tuberculosis latency but decreased back to baseline 

during active disease (42). We compiled 8 available human whole blood microarray and 5 

RNA-Seq datasets relevant to active tuberculosis infections in GEO and analyzed the two 

sets independently. We focused our analyses on the differences between healthy (microarray 

n = 88, RNA-Seq n = 365), latently infected (microarray n = 376, RNA-Seq n = 117) and 

active disease individuals (microarray n = 547, RNA-Seq n = 306) as described in Table S2. 

We first utilized the original LM22 basis matrix from CIBERSORT (https://

cibersort.stanford.edu)(1) and the more recent ‘immunoStates’ matrix (19) to infer leukocyte 

representation by support vector regression through CIBERSORT. The original 

CIBERSORT LM22 basis matrix identifies 22 human hematopoietic cell phenotypes from 

peripheral blood and in vitro culture conditions while immunoStates identifies 20 immune 

cell types from over 6,000 samples during different disease states. Using these matrices, we 

were able to confirm that CD56bright NK cells (immunoStates) were increased in 

abundance for latently infected individuals both in the microarray and RNA-Seq datasets 

(Fig. 5A). While the signature of resting NK cells (LM22) also showed this response (Fig. 

S5E) in the microarray dataset, the RNA-Seq dataset showed a slightly different pattern (Fig. 

S5F). This finding is consistent with immunoStates being an improved basis matrix 

compared to LM22 and confirmed that our compiled datasets could reproduce previously 

published findings (42).

When we examined the inferred abundance of neutrophils, we found that the LM22 matrix 

indicated an increased abundance of neutrophils in actively infected individuals from the 

microarray dataset (Fig. S5E), but also suggested that neutrophils were more abundant in 

latently infected individuals compared to healthy individuals from the RNA-Seq dataset 

(Fig. S5F). In contrast, the immunoStates matrix inferred greater abundance of neutrophils 

during active disease from the RNA-Seq dataset (Fig. S5D) with decreased abundance of 

neutrophils during latent infection in the microarray dataset (Fig. S5C). When we applied 

our MCCS matrix on these datasets, we found that there was a clear increase in actively 

infected individuals for neutrophil response genes that were inducible by both IFN- γ and 

IFN- β (Fig. 5C). Surprisingly, genes that were only inducible by IFN- β in neutrophils were 

reduced in expression during active infection compared to latent infection (Fig. 5B). This 

was consistent for both microarray and RNA-Seq datasets. Although a role for IFN-β during 

active tuberculosis infection has now been well established (20), these results were 

surprising in that they point to a requirement for both IFN-γ and IFN-β in driving the IFN-

inducible signature of neutrophils during active tuberculosis. Alternatively, it is perhaps 

impossible to truly determine if the interferon-inducible signature of neutrophils is the result 

of type 1 or type 2 interferons since they induce a similar set of genes (43). Notably, when 

we examined other myeloid cell responses, we found that there was a consistent reduction of 
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the IL-4/IL-13 signatures from both monocytes (Fig. 5D) and macrophages (Fig. S5A,B) 

during active infection, relative to healthy and latently infected individuals. Hence, in 

addition to providing further insights into the IFN-inducible neutrophil signature during 

human tuberculosis, our MCCS matrix implicates a suppression of type-2 cytokine (IL-4 and 

IL-13) responses in monocytes and macrophages during active infection. Additionally, there 

was an increased abundance of dendritic cells (DCs) expressing IFN- γ and IFN-β inducible 

genes during active infection (Fig. S5A,B). From these results, we were able to gain 

additional biological insight into the cytokine responses of myeloid cells during different 

stages of tuberculosis infection.

IL-4/IL-13-stimulated Neutrophil Signature Indicates Poor Survival in Glioma

Recently, infiltrating and circulating myeloid cells have been tied to survival and likelihood 

of response to immunotherapy in the context of human gliomas (44, 45). A significant 

portion of the cellular mass in primary glioma samples is infiltrating immune cells such as 

tumor-associated macrophages (TAMs), whose levels correlate with tumor grade and 

severity, and other myeloid subsets (46). Additionally, over 600 primary glioma tumors have 

been profiled by the Cancer Genome Atlas (TCGA) (35) by a variety of sequencing methods 

including RNA-Seq with detailed clinical outcome information. Applying statistical 

deconvolution based on our curated MCCS signature, we found a strong but reciprocal 

relationship to survival for neutrophils responding to IL-4 and IL-13 stimulation, and 

monocytes responding to IFN-β and IFN-γ stimulation. Monocyte interferon responses were 

predictive of favorable survival, whereas tumors with high neutrophil IL-4/IL-13 responses 

exhibited reduced patient survival (Fig. 6A and S6).

We next considered a more direct approach to assess the utility of our MCCS signature to 

predict survival of patients with glioma. We trained least absolute shrinkage and selection 

operator (LASSO) models on our 131-gene MCCS signature, the original CIBERSORT 

LM22 (1) basis matrix and the immunoStates (19) basis matrix separately to classify 2 and 

5-year survival predictions. Our model demonstrated robust survival prediction with an area 

under the ROC curve (AUC) between 0.85 (5-year) and 0.89 (2-year) on our test set while 

the LM22 and immunoStates signatures were lower (immunoStates AUC = 0.868 at 2 years 

and 0.763 at 5 years, LM22 AUC = 0.828 at 2 years and 0.788 at 5 years) (Fig. 6B and S7). 

Evaluation of the gene importance for survival predictions in our MCCS matrix at 5 years 

indicates that the top genes were derived from the IL-4/IL-13-stimulated neutrophils and 

IFN-β and IFN-γ-stimulated monocytes (Fig. 6C), confirming the CIBERSORT proportion 

estimates and survival curves shown in Figure 6A. In addition to the cell type and 

stimulation condition we were also interested in the relationships between the genes most 

predictive of long-term survival. Correlation analysis of the top features with strong 

predictive power, as measured by feature importance (See methods) indicated two distinct 

expression clusters (Fig. 6D). Furthermore, primary glioma samples from TCGA have been 

previously profiled to identify somatic mutations and molecular markers (35) indicative of 

survival. One such marker is the gene encoding isocitrate dehydrogenase (IDH), which when 

mutated is known to be associated with increased patient survival in both low and high-grade 

gliomas (47). Based on pairwise gene expression correlation analysis of the 40 most 

predictive gene features from our model, we identified two clusters which were found to 
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significantly differ in their gene expression between glioma samples with a mutated or wild 

type IDH gene (Fig. 6D). Specifically, on average cluster 1 genes had higher expression in 

samples with wild-type IDH status while cluster 2 genes have significantly higher 

expression in samples with a mutated IDH gene. This indicated that our set of genes were 

not only predictive of survival but also strongly associated with known molecular markers 

for primary gliomas.

Given the strength of the importance measures for several of the top features we also 

measured survival outcomes based on gene expression levels with a cox regression for 

ASF1B, PLSCR1, SLC1A4 and GRIN3A and found significant associations between these 

expression-based models and survival (Fig. 6E). ASF1B and PLSCR1 gene expression were 

indicative of poorer survival outcomes while SLC1A4 and GRIN3A expression were 

indicative of more favorable outcomes (Fig. 6D, E). Further, ASF1B, a strong indicator of 

glioma prognosis, was derived from the neutrophil signature in response to IL-13 and IL-4 

suggesting a more complex role for neutrophils in the tumor microenvironment. 

Interestingly, expression of SLC1A4, identified as part of the IL-4 and IL-13 stimulated 

macrophage signature, was indicative of better survival (Fig. 6E) raising additional questions 

about the role of TAMs in primary glioma samples. Altogether, our MCCS signature matrix 

was able successfully predict patient survival from gene expression in primary glioma 

samples corresponding to specific neutrophil-associated gene signatures and other myeloid 

cell signatures.

DISCUSSION

In this study, we first assessed the transcriptional response of 4 different human myeloid cell 

types to stimulation with a panel of cytokines. This enabled us to assemble a set of gene 

signatures for myeloid cell type–cytokine specific response genes (MCCS signature), which 

we could then assess for biological and clinical relevance. Although limited to neutrophils, 

monocytes, macrophages and dendritic cells, the MCCS signature matrix provides the 

cellular context these cells experience during cytokine stimulation. Remarkably, the 

identified MCCS signature was also observed in whole blood stimulated with cytokines. 

This approach could be expanded to include additional cell types as well as additional 

stimulation conditions to provide even more granular context. Hence, controlled in-vitro 
assays could enable the interpretation of expression profiles in vivo from primary human 

blood and tissue samples. This approach can thus be applied towards existing bulk 

transcriptomics data available in GEO, for example from GTeX and TCGA.

In the context of M. tuberculosis infection the importance of an interferon-inducible gene 

signature is well documented (48). The first seminal study, which also profiled purified cell 

populations, had indicated that this signature was driven by neutrophils and both IFN-γ and 

type I interferon signaling (20). Our findings here are consistent with that initial report, since 

actively infected individuals were enriched for neutrophil response genes that are inducible 

by both IFN- γ and IFN-β (Fig. 5C). However, we found that neutrophil genes induced by 

IFN-β alone are reduced in actively infected individuals indicating that IFN-γ may be more 

dominant than type 1 interferons in driving the interferon-inducible signature of neutrophils 

during active tuberculosis. This is in contrast to a recent report showing that IFNG (which 
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encodes IFN-γ) and TBX21 (which encodes the transcription factor T-bet) are 

downregulated in patients with active TB (21). Hence, the ratio of type 1 interferon vs IFN-γ 
inducible genes in neutrophils needs to be better clarified in future studies. Since the goal of 

our study was to explore the biological context of myeloid cells responding to cytokine 

stimulation, rather than to identify the ideal gene signature for discriminating active TB from 

latent TB, we have not performed deeper characterization of heterogeneity in the multiple 

datasets that we compiled from TB patients.

The relationship between neutrophil responses to IL-4 and IL-13 stimulation with glioma 

survival was of particular interest. Previous reports from helminth infected mice have 

described a distinct transcriptional response to type 2 cytokines in neutrophils (49) and the 

concept of N2 neutrophils in the tumor microenvironment has also been proposed (50, 51). 

However, the transcriptional responses of human neutrophils to stimulation by IL-4 and 

IL-13 has not been well established. Instead, TGF-β has been implicated in N2 polarization 

(52), which was not examined as part of our analysis. Our results demonstrate not only that 

human neutrophils respond to IL-4 and IL-13 stimulation with a very distinct transcriptional 

signature but also that this signature can be detected in tumor samples and is associated with 

survival outcomes for glioma in particular. Therefore, we provide some of the best evidence 

thus far that type-2 cytokine associated neutrophil activation may play an important role in 

tumor progression.

An important limitation of our study is that transcripts that were found to be associated with 

specific myeloid cell type-cytokine stimulation combinations could also be expressed by 

other immune or non-immune cells. While we are inferring or interpreting some of these 

results in the context of myeloid cell responses, the same transcripts could be induced by 

other cell types in response to other cytokines we have not examined. Future studies should 

expand upon this preliminary assessment of 4 myeloid cell types and 6 cytokine 

combinations, to include multiple immune and non-immune cell types and additional 

cytokines or other micro environmental stimuli. Moreover, the major differences in 

transcriptional profiles between macrophages and DCs with monocytes and neutrophils 

could be also driven by differentiation during cell culture. It is currently impossible to 

determine if cell culture differentiated macrophages and dendritic cells reflect the in vivo 
response of tissue DCs and macrophages. Clearly more cytokines (e.g. TNF, IL-1β) could 

have been investigated, but technical (number of cells) and financial considerations (cost of 

RNA-Seq) limited us to this current set of parameters. Additionally, we have not assessed 

combinations of cytokines at varying concentrations. In an inflamed environment, a 

combination of different cytokines at different concentrations will have synergistic or 

inhibitory effects on different cell populations.

Recently, approaches have been developed to utilize single-cell transcriptomics data for 

deconvolution of bulk transcriptomic data. While this approach could in principle assess 

hundreds or thousands of cell states in bulk transcriptomic data, the reference collection 

sample set for the scRNA-Seq profiles may not provide easily interpretable data on the 

cytokine environment of the bulk tissue. We are currently working towards combining 

specific cytokine stimulation conditions and scRNA-Seq to determine if we can assemble a 

cytokine specific matrix for hundreds or thousands of single cell states.
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We present here the concept of combining transcriptional profiles from in vitro stimulated 

immune cells with different cytokines, together with algorithms such as CIBERSORT (1) to 

infer the cytokine and immune cell environment within an inflamed tissue. We also provide 

a myeloid cell cytokine signature matrix that can be used by the community to help assess 

immune cell composition in complex samples. This approach has the potential to provide 

additional biological insights into the ever-expanding collections of transcriptional profiling 

datasets associated with different diseases, potentially leading to improvements in diagnosis 

and therapeutic strategies during infection and tumor progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS

• Neutrophils express robust transcriptional profiles following cytokine 

stimulation.

• Myeloid cell gene signatures can stratify patients and predict disease 

outcomes.
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Figure 1. Transcriptional profiling indicates myeloid cell lineages respond strongly to cytokine 
stimulation.
(A) Schematic of experimental workflow. Four different lineages of myeloid cells were 

isolated (PMNs and Monocytes) and differentiated (Macrophages and Dendritic Cells) from 

the same leukopaks from 3 healthy human donors. The cells were stimulated with a panel of 

six cytokines, as listed, and profiled for gene expression. (B) Principle component analysis 

of 571 genes determined by differential expression analysis compared to buffer condition. 

(C) Heatmaps of log2 fold change of differentially expressed genes in each cell type. Genes 
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were considered significant with Log2 fold change greater than 2 and adjusted p-value less 

than 0.05 in at least stimulation.
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Figure 2. Myeloid cell lineages respond to cytokine stimulation in a cell-type specific manner.
(A) Hierarchical clustering of pairwise spearman correlation analysis for the 571 

differentially expressed genes. (B) Venn diagrams of 571 genes determined by differential 

expression in each cell type. 81 of 571 differential genes are shared between all four cell 

types while 139 (macrophages, red), 64 (monocytes, green), 108 (neutrophils, purple) and 31 

(dendritic cells, blue) genes are found to be differentially expressed in only one cell type. 

(C-H) Venn diagrams for the number of genes significant in each individual cytokine 

stimulation determined by differential expression in each cell type. The genes listed next to 
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each Venn diagram are the top two differentially expressed genes for each cell type (B), cell 

type and stimulation (C-H) or the top genes conserved across all four cell types, circled (B-

D).
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Figure 3. Signature gene expression patterns can be identified in many of the cell types and 
stimulation conditions.
(A) Principle component analysis from self-organizing map (SOM) assignments of gene 

expression patterns in neutrophils (B). Mapping of SOM clusters by cytokine stimulation. 

(C) Heatmap indicating the scaled expression levels of selected genes generated from outlier 

analysis between the three donor samples and between the group assignments derived from 

SOM analysis. The top gene for each signature is listed.
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Figure 4. Myeloid cell cytokine specific gene signatures are present and detectable in human 
whole blood.
(A) Heatmaps of whole blood scaled expression values from 3 separate healthy donors 

subjected to stimulation with IFN-β, IFN-γ, IFN-λ, IL-10, IL-13 and IL-4. The selected 

genes are color coded according to the gene expression patterns identified in our MCCS 

signature as shown in Figure 3. (B) Gene expression by Nanostring of myeloid cell signature 

genes from whole blood stimulated with IFN-γ, IFN-β or null (no stimulation) in 25 donors 
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from the Milieu Interieur Consortium cohort (41). Significance was determined by Wilcox 

test with p-value < 0.001 = *.
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Figure 5. Statistical deconvolution of bulk expression profiles indicates role of interferon-induced 
neutrophil response in M. tuberculosis infection.
(A-D) Proportion estimates for neutrophils, Monocytes and natural killer (NK) cells from 

CIBERSORT with our MCCS signature matrix (B-D) and immunoStates (A) for 8 

microarray datasets and 5 RNA-Seq datasets (Table S2). (E) Scaled expression of 20 genes 

found in our neutrophil-interferon signatures are shown for the RNA-Seq and microarray 

samples as well as the disease status of the sample. Significance was determined by Kruskal-

Wallis rank sum test with p-value < 0.05 = *, p-value < 0.01 = ** and p-value < 0.001 = ***. 

Sample sizes for each disease state and data type are as follows; healthy (microarray n = 88, 
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RNA-Seq n = 365), latently infected (microarray n = 376, RNA-Seq n = 117) and active 

disease individuals (microarray n = 547, RNA-Seq n = 306).
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Figure 6. Myeloid signatures under stimulation are indicative of survival in glioma.
(A) Survival analysis of statistically deconvolved bulk RNA-Seq data from 671 glioma 

tumor samples for individuals with low proportion estimates (red) or high proportion 

estimates (blue) for Neutrophils responding to IL4 and IL13 and for Monocytes responding 

to IFN- γ and IFN- β. (B) The power of our myeloid gene signature was determined by area 

under the curve measures for LASSO models at 2 and 5-year increments trained on our 131-

cytokine stimulated myeloid gene signature with 7-fold cross validation. A dashed diagonal 

line indicates an AUC of 0.5 for a random prediction model. (C) As measured by model 
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importance (see methods) the top 20 features derived from the 5-year prediction model are 

shown. (D) Hierarchical clustering of pairwise spearman correlation analysis of 40 of the 

most predictive features derived from our 5-year model. Gene expression clusters were then 

mapped by genotype for a wild-type or mutated IDH gene locus, a molecular marker of 

gliomas. (E) Survival analysis based on individual genes from cluster 1 (ASF1B and 

PLSCR1) and cluster 2 (SLC1A4 and GRINA3A) using a cox regression model of gene 

expression in the TCGA samples profiled.
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