
Dendritic spine abnormalities in APP transgenic mice
demonstrated by gene transfer and intravital multiphoton
microscopy

Tara L. Spires, Melanie Meyer-Luehmann, Edward A. Stern, Pamela J. McLean, Jesse
Skoch, Paul T. Nguyen, Brian J. Bacskai, and Bradley T. Hyman
Massachusetts General Hospital/Harvard Medical School, Charlestown, MA USA

Abstract
Accumulation of amyloid-beta (Aβ) into senile plaques in Alzheimer’s disease (AD) is a hallmark
neuropathological feature of the disorder, which likely contributes to alterations in neuronal structure
and function. Recent work has revealed changes in neurite architecture associated with plaques and
functional changes in cortical signaling in amyloid precursor protein (APP) expressing mouse models
of AD. Here we developed a method using gene transfer techniques to introduce GFP into neurons
allowing the investigation of neuronal processes in the vicinity of plaques. Multiphoton imaging of
GFP-labeled neurons in living Tg2576 APP mice revealed disrupted neurite trajectories and
reductions in dendritic spine density compared to age-matched control mice. A profound deficit in
spine density (∼50%) extends approximately 20 μm from plaque edges. Importantly, a robust
decrement (∼25%) also occurs on dendrites not associated with plaques, suggesting widespread loss
of postsynaptic apparatus. Plaques and dendrites remained stable over the course of weeks of imaging.
Post-mortem analysis of axonal immunostaining and co-localization of synaptophysin and
postsynaptic density 95 (PSD-95) protein staining around plaques indicate a parallel loss of pre- and
postsynaptic partners. These results show considerable changes in dendrites and dendritic spines in
APP transgenic mice, demonstrating a dramatic synaptotoxic effect of dense core plaques. Decreased
spine density will likely contribute to altered neural system function and behavioral impairments
observed in Tg2576 mice.
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During the course of Alzheimer’s disease (AD), neuropil in vulnerable brain regions undergoes
extensive degeneration including changes in neurite morphology and dramatic synapse and
dendritic spine loss (reviewed by Spires and Hyman, 2004). Synapse loss appears particularly
relevant since it closely correlates with degree of cognitive impairment (Terry et al., 1991;
DeKosky et al., 1996; Coleman and Yao, 2003). The cause of synaptic loss in AD remains
uncertain, in that it could be secondary to neuronal loss (Gomez-Isla et al., 1996),
neurofibrillary tangles (Ingelsson et al., 2004), or the postulated synaptotoxic effect of Aβ
(Walsh et al., 2002b).

Mouse models that overexpress APP develop plaques remarkably similar to those observed in
AD, but do not recapitulate neurofibrillary pathology or widespread neuronal loss (Games et
al., 1995; Hsiao et al., 1996; Irizarry et al., 1997a; Urbanc et al., 2002), allowing interpretation
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of results in the context of amyloid-related pathologies. Studies of these transgenic mice
demonstrate plaque-associated dystrophic neurites with disrupted trajectories, glial activation,
and free radical generation near plaques, each of which is also observed in AD brain (Le et al.,
2001; D’Amore et al., 2003; McLellan et al., 2003). Dendritic spine loss occurs in APP
transgenic models (Lanz et al., 2003; Moolman et al., 2004; Tsai et al., 2004), an important
observation since spines form the postsynaptic element of the vast majority of cortical synapses
and are the proposed site of synaptic plasticity underlying learning and memory (Segal,
2002). In a recent study using in vivo electrophysiology in the Tg2576 mouse model of AD,
we observed disrupted cortical synaptic integration, which correlated with plaque formation
(Stern et al., 2004).

The amyloid hypothesis holds that disrupted amyloid processing leads to neuron dysfunction
and death in AD (Hardy and Selkoe, 2002). Much of the previous work has focused on axonal
neuritic dystrophies and loss of presynaptic markers like synaptophysin (Masliah et al.,
2001; Scheff and Price, 2003; Yao et al., 2003). In this study, we tested whether accumulation
of amyloid in plaques in the mouse brain perturbs synaptic connections. To this end, we
developed a method using gene transfer techniques to introduce GFP into cortical neurons
allowing longitudinal observation of the fine structure of processes with in vivo 3-dimensional
multiphoton microscopy. Observation of plaques and neurons in the living brain and post
mortem analysis of immunostaining were used to address the questions of whether dense
plaques cause local disruptions of dendrites, axons, and dendritic spines. Further, we compared
neurons in control animals to those in Tg2576 cortex proximal to and distal from plaques to
examine the effects of amyloid deposition on cortical microarchitecture. We found a striking
focal synaptotoxic effect of plaques and importantly an overall loss of dendritic spines even
quite far from plaques. To the extent that dendrite morphology and dendritic spines reflect
fundamental structures necessary for the integration of signals in neocortical neurons, these
changes likely contribute to the breakdown in electrophysiological integrity and behavioral
abnormalities previously documented in Tg2576 mice (Hsiao et al., 1996; Stern et al., 2004).

Materials and Methods
Animals and surgery

Tg2576 mice transgenic for a 695-amino acid isoform of APP containing the Swedish mutation
(Hsiao et al., 1996) and non-transgenic control mice between 21 and 24 months of age were
used in this study (12 transgenic, 4 control). A younger cohort of mice between 8 and 10
months old was also used for analysis of presynaptic marker density (3 transgenic, 3
control). All animal work conformed to NIH and institutional guidelines. For intracortical
injections of adeno-associated virus containing the gene for enhanced green fluorescent protein
(GFP), mice were anesthetized with avertin (1.3% 2,2,2-tribromoethanol, 0.8% tert-
pentylalcohol; 250 mg/kg) and placed in a stereotaxic apparatus. The surgical site was sterilized
with betadyne and isopropyl alcohol and a 2-3 mm incision made in the scalp along the midline
between the ears. Burr holes were drilled in the skull, 1 mm lateral to Bregma bilaterally. Using
a Hamilton syringe, 4 μL of virus (titer 4.2×1012 viral genomes/mL) was injected 1.2 mm deep
in somatosensory cortex at a rate of 0.2 μL per minute. Following one injection in each burr
hole, the scalp was sutured and the mouse recovered from anesthesia on a heating pad. In our
hands, injection of GFP-AAV is not neurotoxic. Immediately around the needle track from the
injection, we do observe some gliosis, but the images in vivo were captured away from the
needle track to avoid any confound from damage due to the injection.

After a 2-3 week incubation period to allow expression of GFP in neurons, mice received an
i.p. injection of methoxyX-O4 (10 mg/kg), a fluorescent compound that crosses the blood-
brain barrier and binds to amyloid plaques (Klunk et al., 2002). The following day, a cranial
window 6 mm in diameter was installed under avertin anesthesia as described previously
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(Bacskai et al., 2002; Klunk et al., 2002; Lombardo et al., 2003; Skoch et al., 2004). To facilitate
finding the same sites in the brain between sessions, Texas Red dextran (70,000 Daltons
molecular weight, 12.5 mg/mL in sterile phosphate-buffered saline, Molecular Probes, Eugene,
OR) was injected into a lateral tail vein to provide a fluorescent angiogram.

Adeno-associated virus-construct and purification
In these experiments, the construct rAAV-CBA-EGFP-WPRE was used. The plasmid contains
the AAV terminal repeats (TRs), the only remaining feature (and 4%) of the wild-type AAV
genome. Flanked by the TRs, the expression cassette includes the following components, in
(5'-3') order: (1) a 1.7-kb sequence containing the hybrid cytomegalovirus (CMV) immediate-
early enhancer/chicken β-actin promoter/exon1/intron (Niwa et al., 1991); (2) the internal
ribosome entry site (IRES) from poliovirus, which provides for bicistronic expression (Dirks
et al., 1993); (3) enhanced green fluorescent protein cDNA (EGFP); (4) woodchuck hepatitis
virus posttranslational regulatory element (WPRE) (Donello et al., 1998); and (5) the poly (A)
tail from bovine growth hormone.

High titer AAV virus (serotype 2) was produced using plasmid triple-transfection, according
to established protocols (Zolotukhin et al., 1999). Briefly, ten 15-cm dishes were seeded with
HEK293 cells at a density of 1.7×107 cells/dish the day before transfection in 25 ml DMEM
containing 10% FBS. Cells were transfected with calcium phosphate/Hepes containing 180 ug
of AAV-RC (Rep/Cap expression plasmid), 180 ug vector plasmid (e.g. pAAV-GFP), and 540
ug pHelper (Ad miniplasmid). The medium was exchanged after 30-40 minutes, and the cells
were harvested after 48 hours. AAV was purified via gravity-flow column chromatography
using Heparin-agarose suspension to bind the virus as follows: Harvested cells were
resuspended in 25 ml DMEM. Cells were lysed using two freeze-thaw cycles in dry ice/ethanol.
The lysate was incubated with 250 U/ml Benzonase at 37°C for 30 minutes and cleared by
centrifugation at 8000 rpm for 10 minutes. The supernatant was incubated with 0.5% DOC for
37°C for 30 minutes. The lysate was then loaded onto a heparin column containing 3 ml of
packed resin equilibrated with PBS, pH 7.4. The column was washed with PBS, pH 7.4, + 0.1
M NaCl. The virus was then eluted with PBS, pH 7.4, + 1M NaCl. Eluates were dialyzed into
PBS using Pierce 10,000 MWCO cassettes, or concentrated and dialyzed using Amicon
Ultra-15 centrifugal concentrators. Titers of purified virus were determined by quantitative
real-time PCR (qPCR). The qPCR assay uses primers directed to the CBA promoter region of
the vector genome. A standard curve of the vector plasmid was generated using a 5-log
spanning serial dilution between 106 and 102 and copies/μl. The viral samples were serially
diluted as necessary to fall within the range of the standard curve. PCR was performed using
a Bio-Rad I-Cycler Real-time PCR. The reaction was carried out in a final volume of 50 μL,
containing 200 fmol/μL of each primer, 25 μL of Master Mix (containing reaction buffer, Taq
polymerase, and DNA double-strand specific SYBR Green I dye), and 1 μL of the template.
Samples (standards and unknowns) are subjected to a 6 min incubation at 95°C, followed by
50 cycles of 30 sec at 95°C, 60 sec at 58.5°C, and 90 sec at 72°C. PCR products were subjected
to melt curve analysis to exclude the possibility of amplification of unwanted products. Results
were analyzed using the I-Cycler Software (Bio-Rad).

Multiphoton Imaging
Images of GFP-filled neuronal processes, amyloid pathology, and blood vessels were obtained
using a Bio-Rad 1024ES multiphoton microscope (Bio-Rad Laboratories, Hercules, CA),
mounted on an Olympus BX50WI upright microscope (Olympus Optical, Tokyo, Japan). A
wax ring was placed on the edges of the coverslip of the cortical window and filled with distilled
water to create a well for an Olympus 20x dipping objective (numerical aperture 0.95). A mode-
locked Ti:Saphire laser (Tsunami, Spectra-Physics) generated 2-photon fluorescence with 800
nm excitation, and detectors containing 3 photomultiplier tubes (Hamamatsu, Ichinocho,
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Japan) collected emitted light in the range of 380-480, 500-540, and 560-650 nm (Bacskai et
al., 2002). During each imaging session, low resolution images (614 μm x 614 μm x 5 μm
sections; 20-60 sections per stack) around the GFP injection site were acquired to provide a
map of the area. Higher resolution images were captured using the zoom feature in the Bio-
Rad multiphoton software (approximately 150 x 150 x 0.8 μm sections; 10-70 sections per
stack). Observations of the same dendrites and plaques over time were made using the 4D stack
acquisition feature within imaging sessions and by taking images of the same dendrites and
plaques in subsequent weekly imaging sessions.

At the end of imaging sessions, mice were allowed to recover and placed singly in their home
cage. For subsequent weekly imaging sessions, mice were again injected with methoxy-XO4
the day before imaging, then anaesthetized with avertin, injected with Texas Red dextran iv,
and observed under the 2-photon microscope as described above.

Immunohistochemisty
After completion of in vivo imaging experiments, animals were euthanized with an overdose
of avertin (400 mg/kg) and the brain fixed in 4% paraformaldehyde in phosphate buffer with
15% glycerol cryoprotectant. Sections of 50 μm were cut on a freezing microtome and
immunostained with primary antibodies to SMI312 (mouse monoclonal, 1:200; Sternberger
Monoclonals, Baltimore, MD) and secondary anti-mouse conjugated to Cy3 (1:200; Jackson
ImmunoResearch, West Grove, PA); or double stained with PSD-95 (guinea pig, 1:3,000;
courtesy of Dr Morgan Sheng, Massachusetts Institute of Technology) and synaptophysin
(rabbit polyclonal, 1:1000; Dako, Glostrup, Denmark) and secondary anti-guinea pig
conjugated to Cy3 (1:1500) and anti-rabbit conjugated to Alexa 488 (1:500, Molecular Probes,
Eugene, OR). For synaptophysin quantification, sections were stained with primary antibody
to synaptophysin (1:1000, Dako) and secondary anti-rabbit antibody conjugated to Cy3
(1:500). Sections were counterstained with 0.2% Thioflavine S (ThioS) to label dense plaques.
Micrographs of immunostaining were obtained on an upright Olympus BX51 fluorescence
microscope with an Olympus DP70 camera, and images were processed to enhance contrast
for figures in Adobe Photoshop.

Image processing and Data Analysis
To correct for motion artifacts induced by heartbeat and breathing, image stacks from in vivo
experiments were aligned using AutoDeblur software (AutoQuant, Watervliet, NY). Images
from the green channel with GFP-filled dendrites were further processed with the blind 3-
dimensional (3D) deconvolution function in AutoDeblur to remove background noise. 2D
projections of stacks from each of the three channels were combined in Adobe Photoshop
(Adobe, San Jose, CA). Reconstructions of dendrites, plaques, and amyloid angiopathy in 3D
were carried out using reconstruct software from synapse web at the Medical College of
Georgia (www.synapses.mcg.edu).

GFP-filled dendrites that could be followed for more than 20 μm and that had identifiable
dendritic spine protrusions were chosen for analysis. Dendrites and dendritic spines were traced
on 2D projections of the green channel using the 3D image stack as a reference to follow
protrusions and ensure that each spine counted connected to the dendritic shaft. The green
channel alone was used for analyses to avoid bias since plaques are not visible in this channel.
Measurements were carried out in Image J or Adobe Photoshop. The distance of each dendrite
segment from the nearest plaque (if present) was measured on 3 channel images. The distance
from the plaque edge was determined as the average of the distance measured from each end
and the midpoint of the dendrite segment. Dendritic shaft diameters were measured at each
end and the midpoint of each segment to provide an average diameter. Dendritic segments and
dendritic spine lengths were also measured. Dendritic spine density was calculated as spines
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per μm along the dendritic shaft. Each spine was classified by morphology as mushroom, thin,
or stubby as previously described (Nimchinsky et al., 2002; Spires et al., 2005). Cross-sectional
areas of plaques were measured using Image J.

Dendrite curvature ratios were calculated by dividing the end-to-end distance of a dendrite
segment by the total length between the two segment ends (Knowles et al., 1999; D’Amore et
al., 2003). The number of dystrophies on each dendrite analyzed for spine density was also
counted. Swellings with a diameter greater than 2.5 μm were classified as dystrophic.

The ratio of GFP intensity above plaques to intensity in the same plane as plaques was
calculated as an estimate of relative neurite density in these areas. On image stacks from the
green channel, a 20 μm x 20 μm region of interest was outlined in a z-image located 20 μm
above a plaque and an identical region of interest was placed 20 μm lateral to the edge of the
plaque in the same z-section as the plaque center. In Image J, a mean gray value was calculated
for each region of interest and the ratio of GFP intensity above the plaque to lateral from the
plaque was calculated. The ratio of SMI312 density and synaptophysin density near a plaque
to distant from a plaque was similarly calculated using Image J. The mean gray value of staining
was obtained in a square region of 50 μm x 50 μm adjacent to a plaque and another 50 μm x
50 μm region 100 μm from the same plaque in the same image. A phantom plaque was placed
in young animals and control animals. Synaptophysin images were thresholded in Image J to
remove background before optical density ratios were measured. The ratio of gray values
adjacent to a plaque (or phantom) and 100 μm from a plaque was calculated.

Data are reported as mean ± standard deviation from the mean. Group means were compared
using analysis of variance and Bonferroni post-hoc comparisons, and correlations were
calculated in the StatView program (SAS Institute, Inc, Cary, NC).

Results
Synapse loss, often assessed using synaptophysin immunostaining, is consistently observed in
AD and correlates with cognitive impairment (DeKosky and Scheff, 1990; Terry et al., 1991;
Masliah et al., 2001). In the Tg2576 AD mouse model, qualitative light microscopy analysis
of synaptophysin staining revealed no difference in synaptophysin immunoreactivity compared
to control animals either at an age before amyloid deposition (8-10 months), or at a late stage
with extensive plaque deposition (21-25 months). These observations concur with previous
data in Tg2576 mice (Takeuchi et al., 2000; King and Arendash, 2002) and APP23 mice
(Boncristiano et al., 2005) showing no change in synaptophysin immunoreactivity up to 19
and 24 months of age, respectively. However, we observed a qualitative decrease in density
near Thioflavine S positive plaques in the older mice. Quantitative optical density analysis
confirmed these observations. We compared optical density of synaptophysin
immunoreactivity adjacent to plaques to that over 100 μm from the edge of a plaque (or
phantom plaque in the case of young animals and controls). In the older age group, there was
a trend toward a decrease in synaptophysin density near plaques of 44% (post-hoc test, p=0.1),
even in this small sample.

The interesting local effect of plaques on synaptic apparatus was further examined in this older
age group using in vivo multiphoton microscopy. An adeno-associated virus introduced the
gene for enhanced green fluorescent protein into neurons in somatosensory cortex, methoxy-
XO4 labeled amyloid plaques and cerebral amyloid angiopathy, and Texas red dextran
provided a fluorescent angiogram for finding the same site in subsequent imaging sessions. A
total of 12 Tg2576 mice and 4 non-transgenic mice were used in these experiments. Of those
mice, 3 non-transgenic and 4 transgenic animals were followed through 2-3 weekly imaging
sessions to observe changes in plaques and dendrites over time, and 6 transgenic and 4 control
brains were utilized post-mortem for qualitative and quantitative immunostaining.
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Amyloid plaques disrupt dendrite trajectories and are associated with dystrophic neurites
Dystrophic neurites form in the AD brain (Probst et al., 1983; Benzing et al., 1993; Su et al.,
1993) and in APP transgenic mice (Games et al., 1995; Masliah et al., 1996); they are usually
associated with amyloid plaques. We confirmed that dystrophic neurites, defined as areas of
swelling greater than 2.5 μm in diameter, associate with plaques in Tg2576 cortex in vivo
(Figure 1). The number of dystrophic neurites per plaque (an average of 6 per plaque) correlated
with the plaque area (Pearson’s correlation coefficient 0.55, p = 0.005), possibly because larger
plaques physically interact with more neurites than smaller plaques. The average area of the
dystrophies is 18.8 μm2 and this area does not correlate with plaque size. Several groups have
reported that these dystrophic swellings are both axonal and dendritic in origin (Su et al.,
1993; Teter and Ashford, 2002; Stokin et al., 2005). Of 158 dystrophic neurites observed
around plaques, 20 could be clearly identified as occurring on spiny dendrites (14.5%),
implying that approximately 85% of observed dystrophies are axonal, arise from non-spiny
dendrites, or from small spiny dendrites that were difficult to identify. Out of the 60 spiny
dendrites analyzed for spine density, 5% had dystrophic swellings, whereas in non-transgenic
mice, 0% of observed dendrites were dystrophic (Table 1).

Observations of GFP-filled neurites in vivo in Tg2576 cortex, followed by 3D reconstruction
of the image sets, also revealed that neurites do not penetrate dense-cored plaques. Instead, the
trajectories of neurites curved around plaques, sometimes becoming remarkably tortuous. This
curvature becomes particularly evident when viewing rotating 3D reconstructions of plaques
and surrounding dendrites (Figure 1 and supplementary figure 1). The curvature ratio of each
dendrite segment was calculated as the end-to-end length of the segment divided by the total
segment length (Knowles et al., 1999;D’Amore et al., 2003). Curvature Ratios of the dendrites
analyzed in Tg2576 averaged 0.963±0.041 and in non-transgenic cortex 0.989±0.013
indicating that dendrites were more curved on average in APP transgenic mice (table 1:
ANOVA F=6.710, p=0.0117). This is in close accord with previous work in another strain of
transgenic APP mice (PDAPP) (D’Amore et al., 2003;Lombardo et al., 2003), and with
analogous measures in human AD (Knowles et al., 1999). Previous work on younger, 12 month
old Tg2576 mice showed that curvature ratios were affected near plaques but not distant from
plaques (Le et al., 2001). The data presented here show the effect of plaques on neurite curvature
extends beyond the immediate vicinity of the plaque at later stages of pathological progression.

In control animals, dendritic shaft diameter is 1.11±0.41 μm. Dendritic shaft diameter is 22%
smaller in aged Tg2576 animals compared to controls (Table 1: ANOVA F[1,72]=11.436, p
= 0.0012). There was no significant difference between dendritic shaft diameter within 15 μm
of a plaque and those further away, and there was no correlation between distance from a plaque
(measured as a continuous variable) and shaft diameter (Pearson’s correlation coefficient
-0.190, p = 0.161), which indicates a general effect of plaques on dendrite diameter and not a
focal toxicity that leads to a reduction of dendrite diameter.

Dendritic spine density decreases near plaques
We used high-resolution images obtained on the multiphoton microscope to analyze the effects
of dense-cored amyloid plaques on dendritic spines. Spiny dendrites were traced on image
stacks obtained in the green channel, which showed GFP-filled neurites (Figure 2). Dendritic
spine density was determined for each dendrite segment, and the segments were then
categorized based on their distance from a plaque edge, as observed in the 3 channel image.
We observed that Tg2576 mice exhibit a 27.3% decrease in density along dendrites when
compared to non-transgenic control mice (Figure 3, ANOVA F[1,72]=12.371, p = 0.0008).
Furthermore, in the Tg2576 mice, dendrites within 15 μm of a plaque edge had 38.4% lower
spine density than those farther away (Bonferroni post-hoc p < 0.0001) and 54.3% decrease
compared to control animals (Bonferroni post-hoc p < 0.0001), indicating a focal toxicity of
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dense-cored amyloid plaques. Distance from plaque in microns correlates with increasing spine
density (Pearson’s correlation coefficient 0.411, p = 0.0015). Plaque area does not affect the
decrease in spine density (Pearson’s correlation coefficient -0.105, p = 0.432), i.e. small plaques
appear as deleterious as larger plaques, at least over the size range of 23 to 8,147 μm2 cross-
sectional area. The correlation is strongest over the first 20 microns from the surface of the
plaque (Figure 3, R2 = 0.40) but it is important to note that even at distances of 50 to 100
microns away from the surface-relatively remote from the physical disruption of plaques which
average 32.2±33.0 μm in diameter (n=392) -the density of spines is ∼25% less than in controls.
As mentioned above, 5% of dendrites analyzed had dystrophic swellings. Although this is a
small sample size, it is interesting to note that the spine density on the handful of dendrites
with swellings was not lower than that of other dendrites within 15 μm of a plaque.

Despite marked loss of spines, dendritic spine morphology and length, which affect post-
synaptic integration of signals, were not changed by dense-cored amyloid plaques (Figure 4,
Table 2). Analysis of spine length revealed no difference in average length or length of each
morphological sub-group between control and transgenic cortex (n = 220 control spines, 364
transgenic). Dendritic spines averaged 1.6±0.6 μm in length. Similarly, there was no difference
between spines on dendrites within 15 μm of a plaque edge and farther than 15 μm from a
plaque in Tg2576 cortex. The proportion of spines exhibiting each of three morphological sub-
groups was not significantly affected by transgenic status or by proximity to a plaque (Table
2). In all groups analyzed, approximately 55% of spines had thin morphology, 25% mushroom,
and 20% stubby.

Presynaptic bouton loss parallels spine loss
Sections stained with antibodies to PSD-95, a postsynaptic density protein, and synaptophysin,
a presynaptic vesicle protein, showed co-localized puncta in control cortex and in Tg2576
cortex. In the Tg2576 brain, these markers are nearly absent within plaques, but show similar
co-localization in neuropil to that seen in control, even in close proximity to Thioflavine S-
positive plaques (Figure 5). The loss of synaptic marker staining around dense core plaques
seen in figure 5 could represent both inhibitory and excitatory synapse loss, but the co-
localization of pre and postsynaptic markers sheds some light on the presumed excitatory
synapse loss implied by the loss of dendritic spines near plaques. Loss of spines suggests three
hypotheses; loss of excitatory synapses (both spines and presynaptic elements), retraction of
spines with a synapse remaining on the dendritic shaft, or loss of spines leaving behind a
presynaptic bouton with no postsynaptic partner. The qualitative immunostaining data showing
similar amounts of co-localization of pre- and postsynaptic elements indicate that presynaptic
boutons are not left without a postsynaptic partner, which eliminates the third hypothesis. There
were also qualitatively fewer synaptic puncta near plaques in the Tg2576 cortex compared to
control cortex, indicating that spine loss reflects a loss of excitatory synapses and not a
retraction of spines to form shaft synapses.

Quantification of SMI312 neurofilament immunostaining of axons showed that axons are also
excluded from the plaque but have a normal density around plaques (Figure 6). The ratio of
SMI312 staining adjacent to a plaque to that 100 μm from a plaque is 1.03±0.10, a value close
to 1, indicating no difference in axon density. Similarly, in control animals, the ratio of SMI312
density at a phantom plaque (randomly placed on the micrograph) and a site 100 μm away is
1.05±0.05. No filaments were visible within plaques, indicating an absence of axons within
the dense cores of plaques. These data show that spines are lost near plaques despite no loss
of axons. Importantly, this indicates that there may be a focal de-stabilization of synapses
around plaques.
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Longitudinal imaging of plaques and dendrites in vivo
Observations of the same dense-cored amyloid plaques over the course of weeks demonstrate
that in these aged Tg2576 mice, plaque size is very stable (Figure 7). Crosssectional plaque
area varied widely ranging from 23 to 8,147 μm2. As seen in figure 7, the same plaques could
be followed over several weeks of imaging. 3D reconstructions of the image stacks allowed
rotation of the images to find plaques that would otherwise be obscured by CAA.

Dendrites could also be followed over time in different imaging sessions (Figure 8). In contrast
to the report of Tsai et al. (2004) who observed that over 10% of dendrites near a plaque
disappear within 2 weeks, we did not see any dendrites disappear or change drastically over
periods of up to two weeks. When looking at 2D projections of image stacks from different
weeks, some dendrites seemed to change or disappear between imaging sessions due to slightly
differing alignments of the animal in the stereotax.

Examination of the z-series of image stacks and 3D reconstructions always revealed that the
dendrites were stable over time. To investigate the possibility of ascending dendrites breaking
or terminating at the plaque as they ascend from GFP-filled cells (usually located in lower
cortical layers 4-6), the intensity of GFP labeling in areas directly superior to plaques to those
lateral to plaques was compared. If neurites were to break at the intersection with the plaque,
one would expect the ratio of intensity above the plaque to the intensity next to the plaque to
be <1 or for this ratio to decrease over time. We found that the intensity of GFP above plaques
was higher than in the same plane as plaques (ratio superior/lateral = 1.41±0.52) and further
that this ratio did not change over one week (second week 1.40±0.51, n = 3 animals, 30 plaques).
This indicates that dendrites are not breaking at plaques in these mice.

Discussion
Synapse and dendritic spine loss are common factors in neurodegenerative diseases. Dementia
in AD, Pick’s, Parkinson’s, Huntington’s, and ALS are all associated with loss of spines
(reviewed by Fiala et al., 2002). In AD, synapses and dendritic spines are lost in the cortex and
the hippocampus (Davies et al., 1987; de Ruiter and Uylings, 1987; Catala et al., 1988; Scheff
et al., 1990; Scheff et al., 1996), and decreased cortical synapse density correlates with
cognitive decline in patients (Terry et al., 1991; DeKosky et al., 1996). In mouse models of
AD, our data and previous studies have shown that overexpression of mutant human APP
causes synapse and dendritic spine loss, despite little or no cell death and no neurofibrillary
pathology in the Tg2576, PDAPP, J20, and APP/PS1 models (Irizarry et al., 1997a; Irizarry et
al., 1997b; Takeuchi et al., 2000; Lanz et al., 2003; Moolman et al., 2004).

In 8-10 month old Tg2576 mice, an age when plaque deposition is minimal, we observed no
alterations in presynaptic marker staining. These data concur with previous studies of evoked
synaptic responses showing no electrophysiological abnormalities in mice of the same age and
significant alterations at 14 months, an age with substantial plaque deposition (Stern et al.,
2004). In 21-25 month old mice, we observed a decrease in synaptophysin immunoreactivity
only associated with plaques. To further investigate the hypothesis that dense plaques alter
synaptic apparatus, we combined gene transfer approaches to introduce GFP into neurons in
the adult cortex with in vivo 3-dimensional multiphoton microscopy to examine the fine
structure of neuritic processes during a neurodegenerative process. The technique complements
studies performed using mice transgenic for YFP in a subset of cortical neurons (Tsai et al.,
2004; Holtmaat et al., 2005). Introduction of the gene for GFP using AAV has the advantages
that the label is anatomically discrete, it can be introduced at any age into any animal model
(including rats, etc.) and does not involve breeding to another strain of mice. The latter point
is important in that some transgene arrays, like Tg2576, are sensitive to background strain
influences, and some experiments (involving, for example, sensitivity to excitotoxicity or
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immune responses) are also highly dependent on background strain. This technique allowed
us to further characterize the effect of plaques on the neuropil, and to test the hypothesis that
a disruption of synaptic integrity near plaques contributes to the functional abnormalities
observed in aged Tg2576 mice.

Our data show several dramatic alterations: (1) 3-dimensional reconstructions of plaques and
neurites reveal an exclusion zone within the volume of the dense core plaques and dramatic
changes in dendritic trajectory and morphology near plaques; (2) dendrites in Tg2576 mice are
thin compared to controls, with a diameter about 20% smaller, corresponding to a cross
sectional area only 65% of controls; (3) in the immediate vicinity of plaques there is a linear
decrement in dendritic spine density; (4) dendritic spine loss does not affect the colocalization
of pre and postsynaptic markers around plaques, indicating that spine loss is concomitant with
presynaptic bouton loss and does not reflect a loss of spines leaving solitary presynaptic
boutons.

Here we show that spine loss is most pronounced near plaques, indicating focal toxicity,
however, the effect also extends beyond plaques leading to a more general disruption of cortical
architecture. The changes are linearly related to distance from a plaque’s surface over the first
20 microns. Thus, these data clearly show that plaque effects go beyond those of a simple
space-occupying lesion. Since axons are not lost near plaques, we know that the loss of dendritic
spines is not simply due to a loss of axonal input. Further, the toxic effect of the plaques is
specific to destabilizing synapses without destroying axons or dendrites to the same drastic
extent. The identity of the synaptotoxic mediator around plaques remains uncertain. Plaques
could be a source of toxic oligomeric species of Aβ (reviewed by Walsh et al., 2002a), toxic
plaque-associated free radicals (El Khoury et al., 1998; McLellan et al., 2003), or cytokines
and other bioactive substances generated by the activated astrocytes and microglia associated
with plaques. The current results suggest an approach to test these hypotheses.

Two recent studies have used similar technologies to study dendritic spine structure in GFP or
YFP overexpressing mice. Holtmatt et al (2005) showed that the density of spines on layer V
pyramidal neurons in somatosensory cortex reached a stable value of 0.32/micrometer after
postnatal day 26, comparable to our observation of ∼0.30/micrometer in the same brain area
of aged nontransgenic mice. Tsai et al (2004) measured dendritic spines in tissue slices as well
as in vivo imaging in YFP/APP-PS1 transgenic mice and observed a decrement in spine density
of 46% compared to dendrites distant to a plaque, quite comparable to our observations of a
52% loss of spine density within 15 microns of a plaque compared to control animals. Tsai et
al measured a dendrite diameter of ∼1.0 micron distant from a plaque and a plaque-associated
decrease in dendritic shaft diameter of 20%; again comparable to our measures of ∼1.1
micrometer diameter and a decrease in dendritic shaft diameter of 18% compared to controls.
One discrepancy between the studies is that Tsai et al measured a dendritic spine density of
∼1.0/micrometer in dendrites distant from a plaque -a substantially higher value than observed
in our study or that of Holtmatt et al (Tsai et al did not include measures on control animals in
their report). This difference may reflect use of DiI labeled dendrites in fixed brain slices rather
than intravital microscopy used in the other studies. Tsai et al also reported that dendrites within
a plaque abruptly ended and disappeared in subsequent imaging sessions, leading to the
conclusion that dendritic breakage contributed strongly to the pathology. By contrast, we have
not observed dendritic breakage either in our current studies or in previous multiphoton
investigations of plaque/neurite interactions using fluorescent dextrans or YFP as the marker
for the neurites (Brendza et al., 2003b;Brendza et al., 2003a;D’Amore et al., 2003). In our
current study, we did frequently observe dendrites near plaques that were extremely tortuous
and left the focal plane, but could be seen to be contiguous in 3 dimensional reconstructions
of the Z series. Serial imaging weeks apart did not reveal any dendrites to be broken. While
there is no doubt that the density of dendrites is diminished within the space occupied by a
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plaque (Knowles et al., 1998), the density of ascending dendrites is not diminished above
plaques, arguing against widespread breakage of dendrites in the neocortex. The discrepancies
between this work and that of Tsai et al. may be due to technical factors involved in imaging,
to differences in stages of pathology examined (they looked at younger mice), or to a difference
in model since we used APP transgenic mice and Tsai et al used mice that overexpress both
mutant presenilin 1 and APP. Mutant PS1 may play a role in neurite stability (Berezovska et
al., 1999).

Regardless of whether plaques cause dendrites to end abruptly or to simply become extremely
tortuous, the marked change in dendritic structure and loss of spine density in a pattern that
centers on, and radiates outward from a plaque implies a remarkable synaptotoxic effect of
plaques and provides additional evidence that amyloid deposition per se is detrimental to
neuronal circuitry. This “halo” effect, observed both in terms of neurite trajectories (Le et al.,
2001; D’Amore et al., 2003) and in terms of spine density, greatly amplifies the effective region
that each plaque disrupts and provides a possible morphological correlate for the dramatic
alterations in synaptic integration that has been observed using electrophysiological recordings
in mice with modest plaque burdens (Stern et al., 2004). The reduced dendritic spine density
in Tg2576 mice is also consistent with findings in AD and mouse models of AD that showed
decreases in mRNA for multiple synaptic genes (Chow et al., 1998; Coleman and Yao, 2003;
Dickey et al., 2003). Insofar as dendritic diameter is thought to be an important contributor to
signal integration and transduction in dendrites (Sorra and Harris, 2000; Holthoff et al.,
2002), dendritic tortuosity is thought to alter temporal integration of convergent afferents
(Knowles et al., 1999), and dendritic spines are the primary postsynaptic functional unit of the
dendrite, these data strongly suggest that plaques provide the morphological underpinnings of
functional impairments in Tg2576 cortex, and by extension, in AD.

We have recently demonstrated that treatment with anti-Aβ antibodies in APP transgenic mice
can remove plaques (Bacskai et al., 2002), straighten the trajectory of neurites (Lombardo et
al., 2003) and even rapidly resolve some of the neuritic swellings near plaques (Brendza et al.,
2005). Our ongoing studies seek to determine if such therapies can also restore dendritic spine
densities and neural system function. Moreover, the development of long term gene expression
strategies using viral vectors combined with in vivo imaging promises a variety of potentially
exciting applications for the study of neurodegeneration and other neuropathological and
physiological processes.
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Figure 1.
Amyloid plaques alter the morphology and trajectory of neurites in vivo. Low magnification
images (a and b) provide an overview of the GFP-AAV injection site containing GFP-filled
neurites (green), blood vessels containing Texas red, and amyloid deposition stained with
methoxy-XO4 (blue). The angiogram, plaques, and cerebral amyloid angiopathy (seen coating
a large vessel in b) are easily identified from week to week allowing re-imaging of the same
sites over different imaging sessions. At higher magnification (c and d), we observe dystrophic
neurites (arrows) associated with plaques. We also confirm that dendrites do not penetrate
plaques, rather their trajectory curves around plaque edges. Three-dimensional reconstructions
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of plaques and neurites (e and f) clearly show this curvature around plaques and highlight
dystrophies near plaques (arrows). Scale bars a and b 100 μm, c and d 20 μm.
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Figure 2.
Dendrites in close proximity to plaques exhibit reduced spine density. Analysis of dendritic
spine density in high-resolution multiphoton images of Tg2576 cortex (examples shown in a
and b) revealed a decrease in dendritic spine density on dendrites within 15 μm of a plaque
edge and an overall decrease in spine density when compared to non-transgenic control mice
(example shown in c). The left column shows 3-channel images with neurites (green), plaques
(blue), and blood vessels (red). The right column shows only the neurites-some of which have
been outlined in red on the 2D projection to show the dendritic spines. Dendrite 1, which is
within 15 μm of a plaque edge (outlined in white), has a lower spine density than dendrite 2
which is farther away from the plaque. Interestingly, the spine density on dendrite 2 is lower
at the top which is nearer to the plaque. Similarly in part b, dendrites 3 and 4 have more spines
than dendrite 5 that is closest to the plaque. Dendrite 6 is a spiny dendrite from a non-transgenic
mouse. Scale bar 10 μm.
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Figure 3.
Dendritic spine loss is most pronounced near amyloid plaques. Analysis of dendritic spine
density in 12 Tg2576 and 4 control animals shows an overall reduction of 27.7% in Tg2576
cortex compared to control. Spine loss is even more dramatic near plaques with a 54.3%
decrease in spine density within 15 μm of a plaque edge compared to control and a 37.5%
decrease compared to dendrites farther from plaques (a). Spine densities are reported as the
mean±standard deviation from the mean (* ANOVA F[1,72]=12.371, p = 0.0008; ** Bonferroni
post-hoc test p < 0.0001). A scatter plot of spine density data from Tg2576 mice (b) shows a
positive correlation between density and distance from a plaque (Pearson’s correlation
coefficient 0.411, p = 0.0015). Even at great distances from a plaque edge, dendritic spine
density is reduced compared to control density (dotted line).
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Figure 4.
Dendritic spine length and morphology are not affected by amyloid plaques. Dendritic spines
were analyzed on tracings of dendrite segments (a). The length of each dendritic spine was
measured from the base where it meets the dendritic shaft to the spine tip (double-headed
arrow). Spines were classified by morphology as mushroom, thin, or stubby (examples shown
in a). There was no effect of the APP transgene or proximity to dense-cored plaques on the
proportion of spines with each morphology (b). Scale bar 10 μm.
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Figure 5.
Spine loss reflects loss of excitatory synapses. Immunostaining for synaptophysin (a, d, g) and
PSD-95 (b, e, h) reveals similar levels of co-localization (c, f, i) of these pre and postsynaptic
markers in control cortex, Tg2576 cortex near the edge of dense plaques (asterisks in d, e, f),
and in Tg2576 cortex distant from plaques (g, h, i). Similar amounts of co-localization indicate
that dendritic spine loss in Tg2576 cortex is accompanied by loss of the presynaptic element,
and not retraction of spines leaving a solitary presynaptic element. There are also qualitatively
fewer synapses in Tg2576 cortex near plaques than in control, implying a loss of excitatory
synapses concomitant with spine loss. Scale bar 5 μm.
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Figure 6.
Axon density is not reduced near plaques. SMI312-positive axon immunoreactivity was
quantified in Tg2576 cortex and control cortex. The ratio of staining intensity was compared
in a 50x50 μm square region of interest adjacent to a plaque (stained blue with thioflavine S)
and in an identical region 100 μm away. In control images, SMI312 immunoreactivity was
measured adjacent to a phantom plaque (circle) and a site 100 μm away. There is no difference
in this ratio between Tg2576 (a) and control cortex (b). In both conditions, the ratio is very
close to 1 (1.03±0.10 in Tg2576 cortex, 1.05±0.05 in control cortex), indicating no difference
in SMI32-positive axon density near plaques. Scale bar 50 μm.
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Figure 7.
Dense-cored amyloid plaques are stable over time in 21-23 month-old Tg2576 mice. Most
plaques observed did not change over the course of weeks. Cross-sectional area of plaques
varied widely as seen in the examples above. Individual plaques followed over one week did
not significantly change size (n = 169 plaques). Three-dimensional reconstruction of plaques
(red) and cerebral amyloid angiopathy (blue) allowed rotation of the data sets in three
dimensions and ensured that errors in analysis due to obstruction of plaques in 2D projections
(green arrows) would not occur. Scale bar 100 μm.
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Figure 8.
Dendrites are stable over time in control (a,b) and Tg2576 (c,d) cortex. The same dendrites
could be identified in different weekly imaging sessions (arrowheads). In 2D projections of
image stacks, some dendrites seemed to disappear over the course of 2 weeks (arrows), but
examination of 3D reconstructions always showed that the dendrites were still present (e, f).
Scale bars 10 μm.
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Table 1

n (dendrites) dendrite curvature ratio % dystrophic dendrites shaft diameter (μm)

Control 18 0.989±0.013 0 1.11±0.41
Tg2576total 56 0.963±0.041* 5.1 0.90±0.21*

*
p < 0.05 compared to control
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