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Abstract

Microcrystal electron diffraction (MicroED) was developed at the Janelia Research Campus as a 

new modality in electron cryomicroscopy (cryoEM), with the term MicroED first coined in 2013. 

Since then, MicroED has not only made important contributions for pushing the resolution limits 

of cryoEM protein structure characterization but also of peptides, small-organic and inorganic 

molecules, and natural-products that have resisted structure determination by other methods. This 

review showcases important recent developments in MicroED, highlighting the importance of the 

technique in fields of studies beyond protein structure determination where this MicroED is 

beginning to have paradigm shifting roles.
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Introduction

MicroED1,2 has been pushing the limits of cryoEM in determining structures of 

macromolecular assemblies, peptides, and chemical compounds1,3–5. Prior the technological 

advancements in detectors6–9 and software10–13 that made the “cryoEM resolution 
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revolution14” possible, structure determination of biological assemblies, peptides, and 

chemical compounds has been dominated X-ray crystallography. To date, there are close to 

150,000 depositions in the Protein Data Bank (PDB), comprised of roughly 90% X-ray, 8% 

NMR, and 2% EM structures. Although the first atomic resolution structure by cryoEM was 

already reported in 200515, the highest growth in TEM structure deposition has occurred in 

the last five years.

The field of cryoEM includes at least four major techniques: cryo-electron tomography 

(cryo-ET)16,17, single-particle-analysis (SPA)18–20, 2-dimenstional (2D) electron 

crystallography21,22, and MicroED1,2 (Figure 1). All of these cryoEM techniques exploit the 

advantage that electrons interact orders of magnitude more strongly with materials than X-

rays, allowing the use of samples that are not tractable by other methods23. While CryoET 

and SPA use imaging, the crystallographic cryoEM methods of 2D electron crystallography 

and MicroED can take advantage of electron diffraction. 2D-electron crystallography is 

typically used for structure determination of 2D arrays, which traditionally have been of 

membrane proteins that are crystallized within the native environment of the lipid bilayer22. 

In contrast, MicroED uses 3D crystals and the data is collected by continuous rotation to 

yield structures of a wide range of samples including soluble and membrane proteins, 

peptides, small organic and inorganic molecules, semi-conductors, and natural-

products5.24,25,21,26

During MicroED experiments, crystals are harvested and prepared in a number of ways for 

embedment on EM grids (discussed below)1 (Figure 2). Biological samples, which are more 

sensitive to radiation, are typically vitrified to protect from radiation damage and to 

withstand the high-vacuum within the electron microscope1,27. Once well-diffracting 

crystals are detected, MicroED datasets are collected by exposure of the sample to an 

electron beam in diffraction mode during continuous rotation of the stage2 (Figure 2). 

MicroED data are then collected on a fast camera as a movie, where each frame contains a 

diffraction pattern representing a wedge of the reciprocal space27. Because continuous 

rotation for MicroED is analogous to the rotation method in X-ray crystallography, the data 

collected can be directly processed by existing standard software such as Mosflm28, XDS29, 

DIALS30, SHELX31 and HKL200032 (Figure 2).

After data-processing, the phases are determined and structures are built using the density 

maps1. Given its wide-application and ability to extract structural information from 

nanocrystals, often a billionth the volume of those needed for X-ray crystallography, there 

are a growing number of structures determined by MicroED. Since its inception in 2013, 

there are close to 100 PDB entries produced by MicroED, with the highest growth in the just 

the past two years. To date, several laboratories have published MicroED studies and the 

number of practitioners is growing. Still, there are several challenges that lay ahead for 

MicroED including additional methodologies for sample preparation and technological 

developments for data collection that currently limit widespread usage of the technique. 

Below we discuss the most recent developments and strategies to expand the use of the 

MicroED.
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Protein Structure Determination by MicroED

MicroED was first developed and demonstrated on proteins1,26 and later applied to a cohort 

of diverse samples. Formation of large crystals continue to be the most challenging and 

time-consuming step for X-ray crystallography and neutron diffraction, especially for 

membrane proteins and protein complexes33. The small crystals that are typically formed by 

membrane proteins and protein complexes can often diffract electrons using very low 

exposures to minimize radiation damage (0.01 e–/Å2)1. One of the earliest membrane 

protein structures determined by MicroED was the Ca2+ ATPase (PDB 3J7T/U)34 (Figure 

3A). The Ca2+ ATPase structure illustrated the utility of MicroED for generating Coulomb 

potential maps to detail information about the charged-states of amino-acid sidechains, 

cofactors, metals, and ligands34. Since Ca2+ ATPase, there have been several important 

structures determined by MicroED including the non-selective sodium-potassium (NaK) 

channel (PDB 6CPV)35 and the complex of the transforming growth factor beta paired type 

II (TGF-βm:TβRII) (PBD 5TY4)36 (Figure 3A–B). The MicroED structure of NaK was 

similar to the previously determined X-ray structure of NaK37 but like the Coulomb maps 

for Ca2+ ATPase, the structure of NaK by MicroED allowed generation of density maps to 

unambiguously place Na+ within the ion channel and to capture a new state35. The 

heterodimeric complex between TGF-βm and TβRII plays essential roles in the adaptive 

immune response and maintenance of the extracellular matrix38. Unlike Ca2+ ATPase and 

NaK, which form nanocrystals, the structure of TGF-βm:TβRII were obtained from 

fragmentation of large, imperfect crystals (discussed below)36, expanding the application 

MicroED studies to include much larger crystals. Compared with the parent crystals, this 

approach led to better data by MicroED, and ultimately atomic-resolution structures36.

MicroED in Drug Discovery

MicroED already made important contributions to drug discovery by determining structures 

of protein-drug complexes and supra-resolution of small-molecules and natural-products, 

often directly from powders without crystallization. The MicroED structure of HIV-GAG, 

which plays important roles in the life-cycle of HIV, was solved in complex with the 

antiviral drug, bevirimat (PDB 6N3U)39 (Figure 3C). The HIV-GAG-bevirimat complex 

provided important information about the antiviral drug mechanism and was the first 

demonstration of drug discovery using MicroED, laying the foundation for its therapeutic 

development.

MicroED was originally intended for studying protein assemblies1,26, however, it was 

rapidly recognized that this technique is a powerful tool for the characterization of small-

molecules and natural-products. In 2016, the structure of the sodium channel blocker 

carbamezapine was determined to ~1 Å resolution40. In 2018, a method for small molecule 

sample preparation using powder to structure was described for carbamezapine33 and later 

expanded to several small organic molecules4. In addition, the structure of MBBF441, a 

methylene blue derivative with wide medical applications including as photo-activatable 

antimicrobial agent42, was also solved. Since then, several structures of small-molecules 

were reported by MicroED. These MicroED structures include Grippostad41, an antiviral 

Nguyen and Gonen Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drug for treatment of the common cold and the flu43, and a recent example of the non-

fulleren acceptor (NFA) semi-conductive material ITIC-Th (Figure 3D).

MicroED has also proven its usefulness for the structure determination of several natural-

products that have previously been challenging or, in some cases, impossible to determine 

by other techniques. Unlike their synthetic small-molecules counterparts, biosynthesized 

natural-products are typically larger, structurally dynamic, obtained in small amounts, and 

are difficult to crystallize, posing considerable challenges for X-ray studies. Even when 

natural-products do crystallize, these crystals are often too small and are not useful for X-ray 

diffraction44,45. Brucine is an alkaloid toxin currently being tested for its anticancer 

properties46 (Figure 3E). The MicroED structure of brucine at 0.9 Å resolution allowed for 

definitive assignment of its two chiral centers, key for understanding its toxicity and 

anticancer properties4 (Figure 3). Brucine, while large compared to small-molecules, is 

relatively small compared to amino-acid derived natural-products called ribosomally 

synthesized and post-translationally modified peptides (RiPPs), including 3-thiaGlu44 and 

thiostreptin47 (Figure 3E). Glutamylated thiols, similar to the peptide modification of 3-

thiaGlu, have been shown to block jasmonate and ethylene signaling pathways48. 

Thiostreptin is an antibiotic currently used in veterinary medicine47 (Figure 3E). When 

efforts failed by X-ray crystallography, MicroED readily provided a 0.9 Å resolution of the 

3-thiaGlu peptide (PDB 6PO6)44. While thiostreptin has been studied by NMR44 and X-ray 

crystallography49 previously, the ease of its characterization speaks to the robustness of 

MicroED for structural characterization of large, flexible natural-products (Figure 3E). Like 

the difficulties encountered for 3-thiaGlu, the structures of 3-substituted oxindole derivatives 

(Figure 3E), which contains a new stereocenter at the γ carbon installed by an enzyme 

through directed-evolution, was only solved with the application of MicroED45. These 

recent studies demonstrate strategies for determining the absolute configuration in small 

molecules based on an internal marker44,45.

Strategies for Preparing Large Crystals for MicroED Experiments

Electrons interact much more strongly with material than X-ray23. This phenomenon, 

however, results in high absorption and, thus, electrons can only penetrate very thin 

materials. Thick crystals that are >500nm must be thinned before MicroED data can be 

collected36. There are two strategies for trimming large crystals to thicknesses suitable for 

MicroED including mechanical fragmentation (typically by sonication, vigorous pipetting, 

or vortexing)36 and milling with a focused ion beam (FIB)50–52. Fragmentation has been 

successful for determining protein structures from large crystals of lysozyme, TGF-βm 

TβRII, xylanase, thaumatin, trypsin, proteinase K, thermolysin, and a segment of the protein 

tau36. Moving forward, the most current and promising technique for trimming large crystals 

for MicroED is FIB milling50–52. During FIB milling, a crystal is repeatedly exposed a 

gallium beam to trim away the surrounding materials and generate lamellas with controllable 

thicknesses. As proof of principle, the structure of several proteins, including lysosome and 

proteinase K, have been determined by FIB milling and MicroED50–54 (Figure 4). FIB 

milling crystals is a relatively slow process but even then about 10 crystals can be prepared 

per day.
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Out Running Radiation Damage and Structural Dynamics Using Fast 

Cameras

Radiation damage in structural studies continue to be a major challenge leading to poor 

processing statistics and map quality55,56. When electrons penetrate the sample they deposit 

energy and this energy deteriorates the sample, referred to as radiation damage. Radiation 

damage can be categorized into two forms: global and site-specific damage. Global radiation 

damage typically results in the disruption of the crystal lattice and can be detected during 

data-processing when decreases in overall diffraction intensities and increases in B-factors 

are observed57,58. On the other hand, site-specific radiation damage is not uniform, is not 

typically detected during data-processing, and observable only during examination of the 

real-space map59. The degree of radiation damage depends, among other things, on the 

content of the sample, the surrounding solution, and is proportional to the amount of energy 

used during diffraction studies. For MicroED, site-specific radiation damage has been 

illustrated to occur on specific amino-acids including cysteines, glutamate, and aspartic 

acids60. To curb the effects of radiation damage, samples are often vitrified for cryoEM 

studies61. However, even the combination of vitrification with exposure to extremely low 

doses of electrons (0.01 e–/Å2/s) during MicroED experiments can still lead to observable 

radiation damage60.

TEMs for cryo-EM studies are typically equipped with highly-sensitive direct-electron 

detectors designed for optimal imaging9,14,62. These highly sensitive cameras, however, have 

not been used extensively for MicroED because of concerns of damage to the sensors. As 

such, MicroED data are typically collected on indirect-electron detectors such as the 

complementary metal oxide semiconductor (CMOS)-based CetaD and TVIPS TemCam-

F416 cameras. This strategy, however, limits the availability of MicroED because most 

TEMs are typically outfitted with top-of-the-line direct-electron detectors and not CMOS 

cameras. To expand the use the TEMs, the Falcon III direct-electron camera was tested for 

MicroED data collection63. These studies demonstrate that MicroED data collected at lower 

electron exposure, to avoid camera damage of Falcon III, lead to greater mean completeness 

relative to CMOS detectors. As proof of principle, examination of maps of proteinase K 

from data collected on the Falcon III camera preserved the disulfide bonds (which are highly 

susceptible to radiation damage)63 (Figure 5A). A similar approach was used recently with a 

Gatan K2 direct-electron detector in counting mode with an exposure 25 times less than for 

the Falcon III detector and a seemingly damage-free structure of Proteinase K has been 

determined.

Outrunning radiation damage using the direct electron detector Falcon III has been 

instrumental in determining the structures of samples that are highly susceptible to 

damage44,45 and we believe that many more such examples would be forthcoming. 

Radiation damage was recently used to establish a pipeline for phasing MicroED data64 

(Figure 5B). A low-damage followed by a high-damage data sets were taken from the very 

same crystal. A difference Patterson was calculated and allowed for generation of initial 

phases. Following cycles of model building and refinement, the structure of a protein peptide 
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was determined (Figure 5B). This study demonstrates the ability to extract meaningful phase 

information using radiation damage in MicroED.

Concluding Remarks

MicroED is proving to be an important new tool in structural biology not only in 

determining structures of proteins but also of peptides, small organic and inorganic 

molecules, and natural-products. Continuous rotation MicroED is paradigm shifting because 

it has proven to be a robust, fast, and efficient method for determining the structures of 

small-molecules, natural-products, and semi-conductor materials without crystallization and 

directly from mixtures4. To our knowledge no other structural biology method is capable of 

determining atomic resolution structures directly from mixtures, making MicroED a useful 

and powerful tool for an array of problems that are yet to be explored. Moving forward, the 

application of FIB-milling and fast-cameras will certainly expand MicroED for structure 

determination of varying types samples with a wide-range of crystal sizes and facilitate time 

resolved studies. These advancements could ultimately be applied to establish automate 

pipelines that mirror those for X-ray crystallography to facilitate obtaining MicroED 

structures. Early examples of automation in MicroED has already reported in which several 

hundred complete data sets could be collected automatically overnight to demonstrate 

similar throughput as synchrotrons65. The application of these advancements would make 

MicroED more accessible for widespread use. 66,67
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Figure 1. The four major modalities of cryoEM.
From left to right. A model of the HeLa cell nuclear periphery (Reprint from reference 24 

with permission from AAAS) by tomography. Model of COVID-19 spike protein by SPA 

(Reprint from reference 25 with permission from AAAS). The structure of 

bacteriorhodopsin determined by electron crystallography (Reprint from reference 21) and 

the structure of catalase determined by MicroED (Reprint from reference 26).
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Figure 2. MicroED workflow.
From left to right. Crystals are grown, harvested, and placed directly on EM grids. Manual 

or automated screening to assess for electron diffraction of the crystals. When a well 

diffracting crystal is identified, a diffraction dataset is collected by continuous rotation. The 

diffraction dataset is then processed using standard crystallography software leading to 

model building and refinement.
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Figure 3. Representative MicroED structures of membrane proteins, protein complexes, small-
molecules, and natural-products.
(A) MicroED structures of the membrane proteins rendered as cyan and green ribbon for 

Ca2+ ATPase (PDB 3J7T/U)34 and NaK (PDB 6CPV)35, repectively. (B) MircoED structure 

of the TGF-pm:TpRII protein-protein complex (PBD 5TY4)36. Protein rendered as pink and 

magenta ribbon for TGF-pm and TpRII, respectively. (C) MircoED structure of the HIV-

GAG-bevirimat rendered as blue ribbon (PDB 6N3U)39. (D) A galley of small-molecules 

with structures determined by MircoED. (E) Examples of natural-products with structures 

determined by MircoED.
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Figure 4. FIB milling of crystals for MicroED.
(A) Image of select proteinase K crystals at high magnification before milling. The arrow 

indicates the crystal that was milled in (C). (B) FIB image of select crystal from (A) after 

milling the top of the crystal. (C) FIB image of crystal after milling and cleaning both the 

top and bottom of the crystal leaving a lamella indicated by an arrow. (Reprint from 

reference 52).
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Figure 5. MicroED radiation damage and experimental phasing.
(A) Disulfide bonds of the proteinase K structures determined from data collected on Falcon 

III and CetaD. The density around the two disulfide bonds indicates increasing radiation 

damage as an effect of increasing dose. The positive difference density around Cβ of Cys283 

in the CetaD data (black arrow) indicates a partially dislocated S atom. The 2mFo – DFc 

densities (blue meshes) are contoured at 1.5σ (Reprint of reference 63). (B) Fourier 

difference maps between the damaged and undamaged structure of the GSNQNNF peptide 

using the phases at 2.5-Å resolution, contoured at 3s (Top left). Maps of the experimental 

phases of the peptide extended to 1.4 Å (Top right). Maps of an intermediate model-building 
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step (Bottom left) to generate the final peptide structure at 1.4 Å (Bottom right). Reprint 

from reference 64.
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