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SUMMARY

A major bottleneck in developing clinically impactful machine learning models is a lack of labeled 

training data for model supervision. Thus, medical researchers increasingly turn to weaker, noisier 

sources of supervision, such as leveraging extractions from unstructured text reports to supervise 
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image classification. A key challenge in weak supervision is combining sources of information 

that may differ in quality and have correlated errors. Recently, a statistical theory of weak 

supervision called data programming has shown promise in addressing this challenge. Data 

programming now underpins many deployed machine-learning systems in the technology industry, 

even for critical applications. We propose a new technique for applying data programming to the 

problem of cross-modal weak supervision in medicine, wherein weak labels derived from an 

auxiliary modality (e.g., text) are used to train models over a different target modality (e.g., 

images). We evaluate our approach on diverse clinical tasks via direct comparison to institution-

scale, hand-labeled datasets. We find that our supervision technique increases model performance 

by up to 6 points area under the receiver operating characteristic curve (ROC-AUC) over baseline 

methods by improving both coverage and quality of the weak labels. Our approach yields models 

that on average perform within 1.75 points ROC-AUC of those supervised with physician-years of 

hand labeling and outperform those supervised with physician-months of hand labeling by 10.25 

points ROC-AUC, while using only person-days of developer time and clinician work—a time 

saving of 96%. Our results suggest that modern weak supervision techniques such as data 

programming may enable more rapid development and deployment of clinically useful machine-

learning models.

In Brief

Machine learning (ML) models have achieved record-breaking performance on many tasks, but 

development is often blocked by a lack of large, hand-labeled training datasets for model 

supervision. We extend data programming—a theoretically grounded technique for supervision 

using cheaper, noisier labels—to train medical ML models using person-days of effort that 

previously required person-years of hand labeling. We find that our weakly supervised models 

perform similarly to their hand-labeled counterparts and that their performance improves as 

additional unlabeled data becomes available.

INTRODUCTION

Modern machine learning approaches have achieved impressive empirical successes on 

diverse clinical tasks that include predicting cancer prognosis from digital pathology,1,2 

classifying skin lesions from dermatoscopy,3 characterizing retinopathy from fundus 

photographs,4 detecting intracranial hemorrhage through computed tomography (CT),5,6 and 

performing automated interpretation of chest radiographs (CXRs).7,8 These applications 

typically use standard neural network architectures9 that are supported in professionally 

maintained open-source frameworks and can be downloaded within minutes from online 

repositories.10,11 This trend suggests that model design is no longer a major barrier to entry 

in medical machine learning. However, each of these application successes was predicated 

on the existence of massive hand-labeled training datasets that often require physician-years 

of labeling time to create, cost hundreds of thousands of dollars per task, and are not robust 

to changes in the data distribution or labeling schema.4,12 Reducing the dependence of 

clinically impactful machine learning models on costly hand-labeled data would enable 

more rapid deployment to provide value in medical practice.12
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Reliance on hand-labeled datasets is not a challenge unique to medicine. Similar problems in 

both industry and academia have recently been addressed using advances in weak 

supervision, where training data can be rapidly labeled in noisier, higher-level, often 

programmatic ways rather than manually by experts. The statistical intuition behind these 

techniques is that a larger volume of noisier training data can sometimes be more effective 

than a smaller amount of hand-labeled data. Similar ideas have historically driven a rich set 

of work on topics such as template-based systems for knowledge-base construction,13 

pattern-oriented bootstrapping for relation extraction,14 and co-training techniques for 

leveraging unlabeled data.15 Weak supervision has already had a substantial impact on how 

machine learning models are built in the technology industry, where these methods have 

been used to build models for critical applications that perform better than their hand-labeled 

counterparts while using fewer labeling resources.16–22 Our work assesses whether the 

benefits of these same weak supervision techniques can be translated from industrial use 

cases into clinical impact by reducing the amount of hand-labeled data required to train 

clinically useful machine learning models.

A common difficulty in applying weak supervision methods in medicine is that providing 

even noisy labels can be difficult if only raw image or sensor data are available. In this 

context, a promising approach is one we call cross-modal weak supervision, where noisy 

labels are programmatically extracted from an auxiliary modality (e.g., the unstructured text 

reports accompanying an imaging study) and then used to train a model over a target 

modality (e.g., the medical images). At test time, we would like to obtain a prediction from 

the target modality but usually do not have access to the auxiliary modality–for instance, the 

text report has not yet been written when the image is first acquired. Recent research in 

medical imaging has used cross-modal weak supervision by applying natural language-

processing techniques to clinical reports accompanying the images of interest.5,8,23–26 Such 

approaches are compelling because important medical information that could be used for 

labeling is often encoded in unstructured forms (e.g., free text) that are not suitable for 

supervising machine learning models.

The key technical challenge in applying such weak supervision techniques in practice is 

combining sources of information that may overlap, conflict, and be arbitrarily correlated in 

order to provide accurate training labels for a machine learning algorithm. While a variety of 

previous cross-modal weak supervision approaches have shown promise in medical 

applications, studies performed to date have generated weak labels from text in ad hoc, 

application-specific ways. Specific strategies reported in the medical literature range from 

combining pre-existing disease tagging tools27,28 with handcrafted negation detection rules 

to provide labels for CXR classification8,23 to ensembling large numbers of distinct 

regressors that predict specific medical concepts to provide labels for cranial abnormality 

detection from CT.5 None of these application-specific cross-modal weak supervision 

approaches are supported by theoretical analysis that characterizes how well the resultant 

models are expected to perform. Furthermore, because large, hand-labeled datasets are 

generally unavailable when cross-modal weak supervision is used in medicine, empirical 

comparison of these models’ performance with those trained using hand labels has not yet 

been possible. Because neither theoretical nor empirical analysis of how cross-modal weak 
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supervision methods perform across diverse clinical use cases has been conducted, it 

remains difficult for practitioners to confidently deploy these models to improve patient care.

In this work, we propose a theoretically grounded, application-agnostic approach to cross-

modal weak supervision and apply this technique to diverse, institution-scale hand-labeled 

clinical datasets to perform the first comprehensive study of cross-modal weak supervision 

in medicine. Such a study allows us to directly assess both the merits of our proposed 

approach and the broader translational potential of models trained using cross-modal weak 

supervision across multiple clinical use cases. We directly compare our cross-modal weak 

supervision technique with hand labeling along three principal axes: absolute model 

performance, model performance improvement with additional training data, and the type 

and amount of labeling resources required. We further evaluate how our supervision 

approach improves model performance via a series of ablation studies. We make four 

distinct contributions in the course of this work.

First, we propose a single, uniform approach to cross-modal weak supervision that is 

theoretically grounded, is applicable across diverse medical-use cases, and exhibits high 

levels of performance when compared with hand labeling. We base our technique on data 

programming, an application-agnostic weak supervision technique recently developed and 

theoretically analyzed by Ratner et al.29–31 Data programming uses a generative modeling 

step to create weak training labels by combining unlabeled data with heuristics provided by 

domain experts that may overlap, conflict, and be arbitrarily correlated. Data programming 

has also recently been shown to consistently outperform simple heuristic ensembling 

strategies such as majority vote across use cases spanning academic natural language 

processing (NLP) benchmarks, biomedical text classification tasks, and core products in the 

technology industry, making it a compelling method on which to base our approach.16,30 To 

handle cross-modal applications where it is challenging to enumerate sets of heuristics that 

provide useful supervision signal on every example in the dataset, we propose the use of a 

learned neural network to improve both the coverage and quality of the weak labels emitted 

by the base data-programming model. Our work represents the first extension of data 

programming, and the associated open-source Snorkel software,30 to diverse, clinically 

important imaging and monitoring tasks in the cross-modal setting. We refer to the specific 

cross-modal weak supervision approach we propose here as “cross-modal data 

programming.”

Second, to support an analysis of cross-modal weak supervision that generalizes across 

applications, we curate four diverse medical datasets in applications spanning CXR and knee 

extremity radiograph (EXR) triage, intracranial hemorrhage identification on head CT 

(HCT), and seizure onset detection on electroencephalography (EEG), each of which has 

important clinical implications previously described in the literature.5,7,32,33 In contrast to 

previous work, we evaluate our cross-modal weak supervision technique by directly 

comparing performance and resource requirements for models trained using our approach 

with those trained using hand labels provided over the exact same data. We view the curation 

of the diverse institution-scale datasets required to perform these comparisons–each of 

which contains raw images or signals, associated clinical reports, and clinician-provided 

hand labels–as a major contribution of this work. This type of comparative analysis is 
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critical to evaluating the translational potential of models trained using cross-modal weak 

supervision, but has not yet been performed because large, hand-labeled datasets with 

associated text-image pairs are rarely available and because previous work does not report 

the amount of domain expert time and resources required to perform cross-modal weak 

supervision (e.g., training an NLP model for label extraction).

Third, we present empirical evidence that models for clinically important applications that 

have been trained using cross-modal weak supervision can perform similarly to those trained 

using large hand-labeled datasets while providing several practical advantages. Across 

applications, we find that models weakly supervised using cross-modal data programming 

over all available data outperform models trained with physician-months of hand-labeled 

data by an average of 10.25 points of area under the receiver-operating characteristic curve 

(ROC-AUC). We additionally find that models trained using cross-modal data programming 

over all available data achieve on average within 1.75 points ROC-AUC of models trained 

using hand labels over all available data, which required physician-years to obtain. These 

results suggest that cross-modal data programming can yield models with similar clinical 

utility to those trained with hand labels. We further observe that the performance of models 

trained using cross-modal data programming and hand labeling both improve with additional 

training data, and often at similar rates. Not only is this behavior consistent with theoretical 

predictions, but it also emphasizes that weakly supervised model performance can be 

improved by providing more unlabeled data with no additional clinician effort. Finally, we 

find that cross-modal data programming required less than 8 h of clinician time per 

application, which was largely spent defining simple pattern-matching or ontology-lookup 

heuristics over clinical text reports. In our experiments, models trained with cross-modal 

data programming achieved statistical equivalence to those trained using hand labels while 

providing an average 96% saving in labeling time. Our results provide evidence that cross-

modal data programming can lower a substantial barrier to machine-learning model 

development in medicine by reducing the labeling time required from domain experts by 

orders of magnitude while maintaining high levels of performance.

Fourth, our ablation studies demonstrate that modeling steps within cross-modal data 

programming result in target modality models that perform up to 6 points ROC-AUC better 

than those trained using majority vote of clinician-provided heuristics, which serves as a 

proxy for common rule-based approaches to cross-modal weak supervision. Our analysis 

suggests that these performance improvements are caused by increases in both the coverage 

and quality of the weak labels with respect to the majority-vote baseline, and that our 

proposed neural network approach emits weak labels that yield a statistically significant 

performance improvement for target modality models. We find that these gains are more 

pronounced on screening tasks such as radiograph triage and marginal on more targeted 

detection tasks such as hemorrhage or seizure detection on which clinician-provided 

heuristics are both highly accurate and cover most of the dataset. Thus, we not only 

demonstrate that the specific cross-modal weak supervision technique proposed in this work 

can improve performance over strong baselines but also identify the clinical contexts in 

which each component of our approach may be particularly useful.
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We first describe technical details of our cross-modal data programming approach. We then 

provide an overview of the institution-scale, hand-labeled datasets curated for this study and 

outline our process for applying cross-modal data programming to these use cases using a 

consistent procedure. We next compare models trained using cross-modal data programming 

against their hand-labeled counterparts, assessing absolute levels of performance, 

performance scaling with the amount of training data, and required labeling resources. 

Finally, we assess the empirical utility of each component of our cross-modal data 

programming modeling approach via a series of ablation studies and discuss important 

implications of our results for translational medicine.

RESULTS

Overview of Cross-Modal Data Programming

The data programming method of Ratner et al.29 handles the label noise inherent in weak 

supervision by automatically estimating the accuracies and correlations of different labeling 

heuristics in an unsupervised manner, reweighting and combining their outputs, and finally 

producing a set of probabilistic training labels that can be used to supervise a deep learning 

model. We build on these ideas by proposing cross-modal data programming.

In cross-modal data programming (Figure 1), users such as clinicians provide two basic 

inputs: first, unlabeled cross-modal data points, which are represented as target-auxiliary 

modality pairs Xt
i , Xa

i ∈ Xt × Xa (e.g., an imaging study and the accompanying text 

report); and second, a set of labeling functions (LFs), λj , which are user-defined functions 

(e.g., pattern-matching rules, existing classifiers) that take in an auxiliary modality data 

point Xa
i  as input and either output a label, λj

i ∈ Y, or abstain λj
i = 0 . Here, we consider 

the binary setting Y = −1, 1 , corresponding to, for example, “normal” and “abnormal,” 

and make the assumption that the majority of these LFs will be more accurate than random 

chance.29 In practice, users often create a small, hand-labeled development set (e.g., several 

hundred examples) to assist in LF development and tuning.

Given m such LFs, we apply them to the unlabeled auxiliary modality data points 

Xa
i

i = 1, …, n to generate a matrix Λ ∈ ℝn × m of noisy labels, where the non-zero elements 

in each row Λi represent the training labels generated by the LFs for point i. In general, these 

labels may overlap, conflict, and be arbitrarily correlated. The goal of data programming is 

to reweight and combine them to generate a single probabilistic (i.e., confidence-weighted) 

label y i  To do this, we use an unsupervised generative modeling procedure to learn the LF 

accuracies θ that best explain the observed labeling pattern via minimization of the negative 

log marginal likelihood29

θ = argminθ −log
Y

pθ Y Λ , (Equation 1)

where pθ is an exponential family generative model and Y is the unobserved true label vector 

over which we marginalize.
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The result of this first modeling stage is a set of probabilistic or confidence-weighted 

training labels y i . In the simplest case, these labels are used to train a weakly supervised 

discriminative model ft (e.g., a neural network) over the target modality t using a noise-

aware variant of the loss function l,29 which takes into account the uncertainty of the 

probabilistic training labels:

wt = argminwt
i 1

n
Ey i pθ Λi l ft Xt

i ; W t , y i (Equation 2)

The resulting model ft • ; wt –represented by the estimated parameters wt–can then be 

applied to the target modality alone; for example, to classify CXRs by triage priority before 

human interpretation. Importantly, data programming relies on recent statistical learning 

theory,31 which guarantees that, under certain basic statistical assumptions, the estimation 

error of the learned LF accuracies and correlation parameters (Equation 1) and the test error 

of the discriminative model (Equation 2) will both be upper bounded by O(n− 1
2) That is, as 

the size n of the unlabeled dataset increases with the LFs held constant–i.e., with no 

additional supervision signal–we expect to observe improved performance at the same 

asymptotic rate as in traditional supervised approaches when adding more hand-labeled 

samples. This result, recently derived by Ratner et al.,31 provides a theoretical framework for 

understanding a broad spectrum of cross-modal weak supervision methods and how they can 

leverage both clinician domain expertise and available unlabeled data.

The cross-modal setting presents an opportunity to improve this basic data-programming 

pipeline via an additional modeling step that we propose here. Specifically, the probabilistic 

training labels y i  produced by the generative model do not always provide full coverage, as 

all LFs may abstain on any given example.30 We mitigate the effects of incomplete coverage 

by training an intermediate discriminative model fa, parameterized by weights wa, that 

predicts the generative model output directly from the raw auxiliary modality a. Concretely, 

we can create an augmented set of probabilistic labels ya
i  by estimating wa as

wa = argminwa
i 1

n
Ey i pθ Λi l fa Xa

i ; wa , y i (Equation 3)

and subsequently evaluating fa over all training points,

ya
i = fa Xa

i ; wa . (Equation 4)

In this way, we can produce a set of training labels that approximately retains the favorable 

statistical properties described above but provides useful labels for every element of the 

training set. The target modality model is then trained exactly as in Equation 2, but using ya
i

instead of y i :
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wt = argminwt
i 1

n
Eya

i l ft xt
i ; wt , ya

i . (Equation 5)

As illustrated in Figure 1, we implement this idea on paired text-image datasets by training a 

standard long short-term memory (LSTM) network over text reports (the auxiliary modality) 

using probabilistic labels y i  generated by combining our LFs within the generative 

modeling step.34 We use a simple heuristic optimizer to decide whether to use the generative 

model probabilistic labels y i  directly or if performance could be improved by using an 

augmented set of probabilistic labels ya
i  emitted from the trained LSTM model. Specifically, 

we train the LSTM only if either generative model coverage or ROC-AUC on the 

development set is less than 90%. Bypassing the LSTM training step in cases where we 

would expect end model performance to be equivalent using the generative model labels can 

save substantial computation. We explicitly assess the effect of each step in this cross-modal 

data programming pipeline as part of our experimental analysis.

We propose using cross-modal data programming as an exemplar technique for evaluating 

the efficacy of training medical machine learning models with cross-modal weak supervision 

for several compelling reasons. First, data programming naturally extends and improves 

upon common rule-based methods by using unsupervised statistical modeling techniques to 

automatically denoise potentially overlapping and conflicting heuristic functions in a way 

that provides more accurate, probabilistic training labels to deep learning models.29 This 

allows us to directly compare with a majority vote over our LFs as a proxy for existing, 

application-specific cross-modal weak supervision methods that commonly use rule-based 

procedures. Second, theoretical analysis suggests that this approach should yield continual 

performance improvement with increasing amounts of unlabeled data.31 Third, the 

generative modeling formulation allows us to easily add an intermediate neural network 

model that can improve the coverage of our weak labels while approximately retaining these 

theoretical guarantees. Finally, data programming is well suited to evaluating the resource 

requirements of cross-modal weak supervision relative to hand labeling because it is 

supported by Snorkel,30 a well-validated, open-source software system that enables cross-

modal weak supervision across different applications in a manner that is both accessible to 

clinicians and amenable to detailed quantitative analysis.

Datasets and Experimental Procedure

We use the theoretically grounded cross-modal data programming approach described above 

to assess the performance of cross-modal weak supervision in four real-world medical 

applications (Figure 2) spanning CXR triage (two-dimensional [2D] image classification), 

EXR series triage (2D image series classification), intracranial hemorrhage detection on CT 

(three-dimensional [3D] volumetric image classification), and seizure-onset detection on 

EEG (19-channel time-series classification). We use a standard deep neural network 

architecture for the target modality in each application, as described in Table 1. Fixing the 

model class and training procedure for each application allows us to assess the effects of 

different supervision approaches with all other variables held constant. To provide a rigorous 
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comparison between cross-modal data programming and hand-labeled data in our 

experiments, we curate a large hand-labeled dataset for each application comprising raw 

data, associated reports, and clinician-provided labels. Each of these datasets represents 

physician-years of hand labeling. Using these data resources, we can assess how closely the 

performance of models trained using cross-modal data programming can come to matching 

their fully supervised equivalents in the context of real clinical data.

For each application, we apply the cross-modal data-programming approach described 

above, which is implemented as an extension to the Snorkel30 software package: a clinician 

first writes LFs over the text reports using a small, hand-labeled development set for LF 

tuning; we then use Snorkel to generate a final set of probabilistic training labels, using the 

intermediate LSTM text model if generative model coverage or ROC-AUC is below 90% on 

the development set; and we finally train a discriminative model over the target data 

modality. We report implementation details for each application in Experimental Procedures 

and present an in-depth walkthrough of how cross-modal data programming was applied to 

the HCT application in Supplemental Experimental Procedures. Complete code for all LFs is 

provided in Supplemental Experimental Procedures, along with a Jupyter notebook 

containing a step-by-step tutorial on how to apply cross-modal data programming to a small, 

publicly available dataset.38

We use this cross-modal data-programming approach to empirically assess the hypothesis 

that cross-modal weak supervision methods can reduce the amount of labeling resources 

required to build useful machine-learning models across diverse clinical settings. We 

compare the absolute performance of cross-modal data programming with hand-labeled 

supervision in Figure 3, provide empirical scaling results compared with hand-labeled 

supervision in Figure 4, analyze the amount of labeling resources required relative to hand-

labeled supervision in Figure 5, and assess the performance effects of each part of the cross-

modal data programming pipeline in Figure 6.

Weakly Supervised Performance Matches or Exceeds Fully Supervised Performance

We first assess the degree to which models trained with cross-modal data programming and 

standard model architectures (see Experimental Procedures) can approach the performance 

of those trained using hand-labeled datasets. From a translational standpoint, this experiment 

evaluates whether cross-modal weak supervision can allow large hand-labeled training sets 

to be replaced with flexible and high-level programmatic supervision specified by clinicians. 

In Figure 3, we compare cross-modal data programming with hand-labeled full supervision 

with Large and Medium hand-labeled datasets (see Table 1 for dataset size definitions). Note 

that data programming refers to either the LSTM or generative model output, as determined 

by the optimizer step; we analyze cases in which the LSTM versus the generative model 

should be used in a later section. We find that across applications, median models (i.e., 

models achieving median ROC-AUC across five random seeds) trained using cross-modal 

data programming are able to perform within an average of 1.75 points ROC-AUC of those 

trained with Large hand-labeled datasets while outperforming those trained using Medium 

hand-labeled datasets by an average of 10.25 points ROC-AUC. Median weakly supervised 

models for CXR and HCT are not statistically different from median models trained using 
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large hand-labeled datasets (DeLong p > 0.38),41 the median weakly supervised EXR model 

performs several points ROC-AUC higher than the median model trained using the Large 

hand-labeled dataset (DeLong p < 0.05), and median weakly supervised EEG models are not 

statistically different from median models trained using Medium hand-labeled datasets 

(DeLong p > 0.25). Exact p values for these comparisons are provided in Table S1. We view 

the impressive empirical performance of the weakly supervised models as compared with 

the fully supervised ones as a notably positive outcome of our study, and in turn view the 

annotation and curation effort required to perform this comparison between weakly and fully 

supervised models as a major contribution of this work. Furthermore, the fact that our fully 

supervised results compare favorably with recently published work on each problem (Table 

S2) reflects encouragingly on the potential clinical utility of analogous weakly supervised 

models.6,7,32,42

Cross-Modal Data-Programming Models Improve with More Unlabeled Data

A major trend in the modern clinical world is that large amounts of digitized medical data 

are increasingly accessible, but important information is often encoded in unstructured forms 

(e.g., free text) that are not suitable for supervising machine-learning models. We therefore 

evaluate whether cross-modal weak supervision can harness these growing unstructured data 

resources without requiring additional clinician effort. Specifically, we assess the 

performance of the target modality model when additional unlabeled data are weakly labeled 

using cross-modal data programming, but without any modification of the fixed set of 

clinician-authored LFs. In Figure 4, we observe favorable performance scaling across all 

applications studied. In particular, the CXR results of Figure 4A demonstrate that the ROC-

AUC score of the weakly supervised model improves with additional unlabeled data at a 

similar rate to that at which the fully supervised model improves with additional hand-

labeled data, as suggested by recent theoretical analysis.29,31 Figure 4B, describing EXR 

triage, shows analogous scaling trends, but the initial improvement in performance of the 

weakly supervised model upon adding more data points appears far more rapid. We 

speculate that this is due to the combination of weak supervision with the relatively simple 

multiple-instance labeling (MIL) modeling approach used for this application (i.e., mean 

across radiographs), which causes the model to perform particularly poorly at small sample 

sizes. These scaling trends also hold for more complex modalities in HCT and EEG in 

Figures 4C and 4D. For HCT, we observe that the weakly supervised and fully supervised 

results in this case are extremely similar at all dataset sizes; this behavior likely results from 

well-engineered LFs that yield particularly accurate labels over the text reports. While the 

gap between the weakly and fully supervised EEG results is larger than those in other 

applications, this is not unexpected given the known difficulty of the problem and the fact 

that we work with pediatric signals, which generally exhibit high levels of patient-to-patient 

variation.42 Across applications, we find that mean performance of the weakly supervised 

models improves substantially with additional examples and observe that model variance 

across training runs with different random seeds often decreases as training-set size 

increases. Thus, our scaling results suggest that the performance of machine learning models 

supervised using weak supervision techniques such as cross-modal data programming can be 

continually improved by harnessing additional unlabeled data, which requires no extra 

labeling effort from clinicians.
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Cross-Modal Data Programming Requires Simple and Minimal Clinician Input

We also analyze the time and input complexity that were required of clinicians in cross-

modal data programming relative to hand-labeling data. On average, 14 LFs comprising on 

average six lines of code each were developed per application, using a mix of general text 

patterns (e.g., identifying non-medical words indicating normalcy, equivocation), medical 

text patterns (e.g., identifying specific terms or overlaps with medical ontologies), and 

structural heuristics (e.g., shorter reports tend to describe normal cases), as described in 

Figure 5A. Importantly, between the CXR and EXR applications, six LFs were directly 

reused, demonstrating the ability of weak supervision methods such as data programming to 

amortize clinician effort across different modeling tasks. While composing LFs took less 

than a single physician-day per application, hand-labeling training sets required physician-

months to physician-years, as shown in Figure 5B. We observe that weakly supervised 

models are able to attain statistically equivalent performance to supervised models while 

using on average 4% of the amount of physician-hours for labeling; exact values are reported 

in Table S3, and relative time-performance values are presented graphically in Figure 5C. 

Thus, we see not only that cross-modal data programming can support models that achieve 

high levels of performance, but also that it can do so while requiring orders-of-magnitude 

less time spent on the labeling process and directly incorporating relevant domain 

knowledge.

Cross-Modal Data Programming Can Improve Cross-Modal Weak Supervision Performance

A final hypothesis of this work is that modeling steps within cross-modal data programming 

are important to providing performance benefits for the target modality model. We evaluate 

this hypothesis in two steps. First, we assess the quality of weak labels emitted from each 

step in the modeling pipeline of Figure 1 by comparing the coverage and ROC-AUC of each 

of the following text models: an unweighted majority vote of the LFs (MV), the data-

programming generative model (GM), an LSTM discriminative text model trained on MV 

(DM-MV), and an LSTM discriminative text model trained on GM (DM-GM). As a proxy 

for common heuristic approaches to cross-modal weak supervision, MV represents a strong 

baseline for GM.30 Comparing DM-GM with GM indicates the degree to which our 

proposed LSTM step improves performance over the GM output, and comparing DM-GM 

with DM-MV indicates how important the generative modeling step is to achieving the 

improvements observed from the LSTM. We expect that the GM will improve label quality 

(as measured by ROC-AUC) by resolving label overlaps and noise, while the discriminative 

LSTM model may both improve label coverage and further increase probabilistic label 

quality. Second, we compare the performance of target modality models trained on labels 

generated using each of these approaches with that attained using hand-labeled full 

supervision. This procedure allows us to empirically evaluate the effect of both the 

generative and discriminative text modeling steps on target modality model performance.

Performance of each text model on the development set is presented in Figure 6 for each 

application, while exact values–including additional metrics such as precision, recall, and F1 

score–are provided in Table S4. We first find that our GM text model ROC-AUC is strictly 

superior to that of MV and that it provides larger improvements–on average 8.5 points ROC-

AUC–on CXR and EXR applications where we have more LFs that can overlap and conflict. 
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We also find that both DM-GM and DM-MV provide improvements in coverage and strictly 

non-inferior performance with respect to the LF-based MV and GM approaches for both 

CXR and EXR applications. On HCT and EEG, the clinician-provided rules are both full 

coverage and highly performant, limiting the additional utility of the intermediate LSTM 

text model. These results are in line with our heuristic optimizer, which would train an 

LSTM model only if either ROC-AUC or coverage of the GM labels is less than 90%. Thus, 

in the results of Figures 3, 4, and 5, we have used models trained on DM-GM labels for 

CXR and EXR (ya) and models trained on GM labels (y) for HCT and EEG. This procedure 

allows us to save substantial computation–between GPU-hours and GPU-days depending on 

the application and available hardware–while producing median target modality models for 

HCT (DeLong p = 0.72) and EEG (DeLong p = 0.75) that are not statistically different than 

those trained using labels emitted from the LSTM.

In Figure 6, we also present the performance of target modality models trained on labels 

from each label source on Large dataset sizes; numerical mean, median, and standard 

deviation for each case are recorded in the rightmost column of Table S4. The effect of the 

different text modeling approaches on target modality model performance varies by 

application. We perform statistical comparisons between the ROC-AUC values of the 

median model for each case so that outliers do not affect our overall performance analysis. 

On CXR, we see that the median target modality models trained on DM-GM and DM-MV 

labels are only 1 point ROC-AUC apart, but are on average 4 points ROC-AUC higher than 

those trained on GM (DeLong p = 0.0012) and MV (DeLong p = 0.0020) labels, 

respectively. These general trends correlate directly with those seen in the text modeling 

results, where the LSTM models consistently and substantially outperform the LF-based 

models. Thus, on this application, our results suggest that gains in performance from 

additional modeling stem mostly from the improvements in ROC-AUC and coverage 

resultant from the intermediate LSTM step we propose in this work. We observe a slightly 

different trend on the EXR dataset. In this case, MV and DM-MV models perform similarly, 

while we see a 2-point ROC-AUC median performance improvement when using the GM 

labels (DeLong p = 0.15) and a further 4-point ROC-AUC increase (DeLong p = 0.0064) 

when using DM-GM labels. These relative results suggest that for EXR, the additional 

coverage provided by the discriminative model was only helpful when the LSTM was able 

to learn from the higher-quality GM labels. Finally, HCT and EEG represent use cases in 

which the LFs provide both high coverage and high performance when combined via 

majority vote. We observe that models trained using DM-GM labels in Figures 6C and 6D 

perform at levels similar to those trained using GM model labels, as our heuristic optimizer 

predicts.

DISCUSSION

In this work, we have performed the first comprehensive study of cross-modal weak 

supervision in medicine and have empirically assessed the hypothesis that cross-modal weak 

supervision methods can reduce the amount of labeling resources required to build useful 

machine learning models across diverse clinical settings. We have analyzed this class of 

techniques by proposing the cross-modal data programming approach, applying it to 
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clinically relevant applications spanning radiography, CT, and EEG, and performing a direct 

comparison with large-scale hand labeling. Our results show that cross-modal weak 

supervision can enable clinicians to rapidly generate large training sets in a matter of hours 

or days that match or exceed the performance of large, hand-labeled training sets that took 

months or years of physician time to annotate. We have further provided evidence that weak 

supervision approaches such as cross-modal data programming can be used to train models 

that increase in quality as more unlabeled data become available, making efficient use of 

clinician resources.

Our results also suggest specific situations in which modeling the labeling process can 

improve the performance of weakly supervised models in medical imaging and monitoring. 

In the CXR and EXR applications on which generative and discriminative modeling over the 

text was able to provide more useful sets of labels for target modality model training, 

clinician LFs tended to be quite accurate but relatively low-coverage. Such a pattern would 

be expected in screening applications such as radiograph triage wherein the variety of 

pathologies that can appear on a scan is large.7,32 Hemorrhage detection on HCT and seizure 

detection on EEG, on the other hand, are more targeted detection applications wherein 

clinicians are tasked with identifying a specific pathology. In these cases, clinicians tend to 

refer to the pathology in question in their reports in very consistent ways, which makes the 

LFs they provide both accurate and high coverage. Our results suggest that simple majority 

vote over report text LFs may often be sufficient for building highly accurate detection 

models for specialized diagnostic protocols, while additional generative or discriminative 

modeling could provide substantial benefit for training machine-learning models on target 

modalities intended for general screening.

Several limitations should be considered when interpreting the results of this study. First, 

because we use data sourced from a single hospital, our results do not address cross-

institutional model validation. While substantial resources are required to de-identify and 

make publicly available datasets of the sizes considered here, we hope that continued 

progress on this front will allow for future work that addresses this important question. 

Second, although the statistical estimation techniques underlying cross-modal data 

programming do handle the multi-class setting, this work focuses on well-defined binary 

tasks. Third, cross-modal data programming is limited to cases wherein an auxiliary 

modality exists, is readily available, and is amenable to rapid LF specification. Finally, our 

study assumes the existence of reference neural network architectures for each diagnostic 

modality; while this is often valid in computer vision, additional resources may be required 

to create high-performance models for other diagnostic modalities. Addressing each of these 

points would be a natural and valuable direction for future research.

Remaining challenges associated with translating this work to clinical practice mirror those 

usually faced by machine learning systems for decision support in medicine. In addition to 

well-documented regulatory hurdles, these include integrating rapid model iteration and data 

collection workflows into hospitals and care centers, designing robust testing infrastructures 

to support continual model improvement while guarding against critical failure modes, and 

training physicians to best make use of these algorithms.43 Indeed, our specific aim with this 

work is to reduce these barriers. By demonstrating that models trained using cross-modal 
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weak supervision can perform comparably with their fully supervised counterparts on four 

clinically relevant tasks with only days of development time, our results suggest that high-

performance machine learning models can be developed quickly enough to support more 

rapid clinical deployment. This ability to shorten the model development cycle has other 

practical benefits, as models could be rapidly retrained using cross-modal weak supervision 

to address important issues such as failures on critical subsets, changes in patient population 

demography, or updates to scanning hardware. It is our hope that the conclusions of this 

work will provide empirical support for deploying higher-level, more practical methods of 

generating training data for modern machine learning algorithms in the clinical setting, 

translating advances that have had substantial impact on the technology industry to improve 

patient care.

EXPERIMENTAL PROCEDURES

Study Design

The purpose of this study is to assess the hypothesis that cross-modal weak supervision 

techniques such as cross-modal data programming can enable rapid construction of useful 

machine learning models across diverse clinical-use cases. Each dataset analyzed here was 

retrospectively collected from our institution, and Institutional Review Board (IRB) approval 

was obtained from our institution (Stanford University) in each case. In each dataset, 

different patients were randomly assigned to training, development, and held-out test sets, 

and subsets of the training set were chosen via random sampling. The study was blinded in 

the sense that the study authors were unaware of which patients were in the train, 

development, and test sets.

Text models were trained using the Snorkel30 software package and standard tools in 

PyTorch. For each application, a 20-trial random hyperparameter search was performed to 

determine final values for learning rate and [2 regularization to use for training the GM 

described in Equation 1. Five separate GMs were then trained using procedures documented 

in the Snorkel code-base.30 The output of each GM training procedure was then used to train 

a discriminative bidirectional LSTM with attention44 wherein the input was the raw text and 

the output was the generative model label. Hyperparameters for the LSTM for each 

application were determined via 20-trial random search; this same set of hyperparameters 

was used to train all LSTMs within each application. Standard tools in PyTorch were used 

for tokenization, word embeddings were initialized randomly, and each model consisted of a 

single bidirectional LSTM layer with hidden size 128. LSTM models were trained using the 

Adam optimizer until validation loss had not decreased for more than three epochs.

Details of dataset composition, preprocessing routines, training procedures, and neural 

network architectures for each target modality model are provided below. LFs for each 

application and an annotated, functional Jupyter notebook tutorial applying the cross-modal 

data-programming technique to a publicly available CXR dataset are provided in 

Supplemental Experimental Procedures.
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Automated Triage of Frontal Chest Radiographs

As the demand for imaging services increases, automated triage for common diagnostics 

such as CXRs is expected to become an increasingly important part of radiological 

workflows.5,7 Our frontal chest radiography dataset comprises 50,000 examples wherein 

each instance contains an image, a free-text radiology report, and a prospective normal or 

abnormal label provided by a single radiologist at the time of interpretation. Each data point 

describes a unique patient, and the dataset balance is 80% abnormal. The fully supervised 

(hand-labeled) models are trained using these prospective labels. For both fully and weakly 

supervised models, we use a development set size of 200 prospectively labeled images for 

cross-validation during the training process and evaluate on the same 533-image held-out 

test dataset as Dunnmon et al.,7 which is labeled by blinded consensus of two radiologists 

with 5 and 20 years of training. Examples of CXRs can be found in Figure 2A.

For this task, a radiology fellow wrote 20 LFs over the text in less than 8 h of cumulative 

clinician time, using a labeled development set of 200 reports. These LFs were implemented 

in Python with several hours of assistance from a computer science graduate student. These 

LFs represent a combination of pattern-matching, comparison with known knowledge bases, 

and domain-specific cues. In the context of chest radiography, the impression and findings 

sections of the radiology report tend to be the most informative; thus, the majority of LFs 

considered text within these sections. Once LFs had been generated, tools within the Snorkel 

software package were used to generate sets of probabilistic training labels.30 Note that the 

particular set of LFs used for this application is not meant to be prescriptive or exhaustive; 

rather, it represents the output of a real-world effort to create useful rules for programmatic 

labeling of data with domain experts in a reasonable period of time.

The image model used for this task was an 18-layer Residual Network (ResNet-18) with a 

sigmoid nonlinearity on top of a single-neuron final layer, which yields near-state-of-the-art 

results on this dataset at a modest computational cost.7,9 The model was implemented using 

the PyTorch software framework and was initialized using weights pretrained on the 

ImageNet database.11,45 Models were trained on a single Tesla P100 GPU using the Adam 

optimizer with default parameters and early stopping, an initial learning rate of 0.001, batch 

size of 72, learning rate decay rate of 0.1 on plateau in the validation loss, weight decay (i.e., 

[2 regularization) value of 0.005, and the binary cross-entropy loss function. We train 

models on the full dataset for 20 epochs with early stopping and use an equivalent number of 

batches for models trained on subsets of the dataset. Images were preprocessed using 

histogram equalization, downsampled to 224 × 224 resolution, Z-score normalized using 

global mean and standard deviation values computed across the dataset, and replicated over 

three channels (for compatibility with a model originally for RGB images) before injection 

into the training loop. Each model over 50,000 images took approximately 6 h to train.

Because each image is associated with a unique report, evaluation is performed on a simple 

image-by-image basis, using ROC-AUC as the evaluation metric.
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Automated Triage of Extremity Radiograph Series

Musculoskeletal disorders are generally diagnosed from imaging, and their substantial 

prevalence makes them a natural target for automated triage systems; in this work, we 

specifically focus on detecting musculoskeletal disorders of the knee from multiple-view 

radiograph series. We originally obtained a dataset of 3,564 patient exams prospectively 

labeled as normal or abnormal in the same manner as described for chest radiography, 

containing a total of 37,633 individual images and 3,564 reports. A single exam can have a 

variable number of radiographs across different views, as collection protocols are not 

standard for this type of exam. The dataset was pulled from the PACS system in such a way 

that it contains a 50:50 distribution of normal and abnormal cases (as indicated by the 

prospective label). We split the dataset such that images from a randomly sampled 3,008-

patient cohort are available for training both fully supervised and weakly supervised models, 

with images from 200 patients available for cross-validation. We then obtained retrospective 

labels for each image in a held-out test set of356 patient exams (3,718 images) where a 

single radiologist with 9 years of training provided a normal or abnormal label with no time 

constraints. We used this set of 356 exams for evaluation on a patient-by-patient basis. 

Examples of knee radiographs can be found in Figure 2B.

For this task, a single radiology fellow wrote the 18 LFs within 8 h of cumulative clinician 

time, which were implemented in Python with several hours of assistance from a computer 

science graduate student using a development set of 200 labeled reports. These LFs use a 

variety of pattern-matching and semantic cues to identify reports as either normal or 

abnormal. While there is some overlap between these LFs and those for the CXRs (e.g., the 

length of the report), LFs nonetheless had to be adapted for this specific application. 

Probabilistic labels were then generated from these LFs using tools in the Snorkel software 

package.30 Note that this application represents an MIL setting wherein the label extracted 

from a report is applied to all images in the study, but it is unknown which of these images 

actually contains the abnormality.

The image model for this task takes a single radiograph as input and outputs the probability 

that this radiograph is abnormal. We use a 50-layer Residual Network (ResNet-50) 

architecture modified to emit a binary classification result on each radiograph in the training 

set, and leverage ImageNet-pretrained weights for model initialization.9,45 The model is 

implemented using the Keras software package46 and trained using the Adam optimizer with 

early stopping, a learning rate of α = 0.0001 with learning rate decay rate of 0.1 on plateau 

in the validation loss, a weight decay value of 0.005, and the binary cross-entropy loss 

function. We train models on the full dataset for 30 epochs with early stopping and use an 

equivalent number of batches for models trained on subsets of the dataset. Images were 

preprocessed using histogram equalization, downsampled to 224 × 224 resolution, Z-score 

normalized using global mean and standard deviation values computed across the dataset, 

and replicated over three channels (for compatibility with a model originally for RGB 

images) before injection into the training loop. Batch size was set at 60 radiographs, the 

maximum possible on the single 1080 Ti GPU that was used to train each model. Models 

over 30,000 training images took approximately 6 h to train. For each exam in the test set, 
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we compute an output score by taking the mean of the image model outputs for all 

radiographs in the exam following Rajpurkar et al.32

Intracranial Hemorrhage Detection on Computed Tomography

The problem of rapid intracranial hemorrhage detection on CT of the head (HCT) represents 

an important task in clinical radiology to expedite clinical triage and care.47 To create a 

dataset describing a binary task of intracranial hemorrhage detection on HCT, we acquired 

5,582 non-contrast HCT studies performed between the years 2001 and 2014 from our 

institution’s PACS system. Each study was evaluated for a series containing 5-mm axial CT 

slices with greater than 29 slices and fewer than 45 slices. For each study containing the 

requisite 5-mm axial series, the series was padded with additional homogeneous images with 

Hounsfield units of 0 such that each series contained 44 CT slices. The center 32 slices were 

then selected for automated analysis. The final dataset contains 4,340 studies preprocessed 

in this way, and 340 of these examples are provided with a ground truth label at the scan 

level (cf. the slice level6) confirmed by consensus of two radiology fellows. Of these hand-

labeled scans, 50% (170 scans) are allocated for cross-validation during end-model training 

while the rest are used for evaluation. Scan-level hand labels for the 4,000 images that 

support assessment of model performance using fully supervised training were provided via 

single-annotator reads of each report. An example set of 32 CT slices for both hemorrhage 

and non-hemorrhage cases can be found in Figure 2C.

The seven LFs for the hemorrhage detection task were written in Python entirely by a single 

radiology resident in less than 8 h of cumulative development time using a labeled 

development set of 200 reports. Notably, these LFs programmatically combine many 

possible expressions for normality or hemorrhage that are drawn from this radiologist’s 

personal experience. Again, probabilistic labels are generated from these LFs using tools in 

the Snorkel software package.30

The hemorrhage detection task fits naturally with the framework of MIL because we have a 

single label per CT scan, each of which contains 32 image slices. Furthermore, if a CT 

image is labeled as positive, there must exist at least one slice that contains evidence of a 

hemorrhage. We leverage the attention-based MIL approach recommended by Ilse et al.35 

for this task. Specifically, we embed each instance (i.e., each slice) into a feature space and 

subsequently learn a weighted average off all instance (i.e., slice) embeddings corresponding 

to a single bag of instances (i.e., a single CT scan). These weights are learned using a two-

layer neural network known as an “attention layer.” Classification is then performed using 

the attention-weighted combination of all instances (i.e., all CT slices).

Our attention-based MIL model uses a randomly initialized ResNet-18 encoder with an 

output size of 50. Each slice is downsampled to dimensions of 224 × 224 and Z-score 

normalized using global mean and standard deviation values computed across the dataset. 

Model training is accomplished using the stochastic gradient descent optimizer in PyTorch 

with a learning rate that was initially set to a high value of 0.1 and reduced upon plateaus in 

the validation loss, a momentum of 0.9, and a weight decay value of 0.005. Models over the 

full dataset were trained for 30 epochs with early stopping, and use an equivalent number of 

batches for model strained on subsets of the dataset. Batch size was set at 12 CT scans, the 
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maximum possible using the single Tesla P100 GPU that was used to train each model. 

Training each model on the full set of images took approximately 6 h.

Because only 39 of the 340 consensus-labeled examples were positive for hemorrhage, the 

end-model performance metrics could be sensitive to the random splitting of the test and 

development datasets. We therefore carry out a cross-validation procedure where we repeat 

the stratified 50:50 development set/test set split using the 340 gold-labeled data points, and 

analyze average model performance over five trials with different random seeds, where one 

of the seeded operations was the development set/test set split.

Seizure Monitoring on Electroencephalography

One of the most common tasks performed using EEG is epileptic seizure detection, where an 

epileptologist examines large amounts of time-series data to determine whether the repeated, 

uncontrolled electrical discharges suggestive of seizure activity have occurred. Our EEG 

dataset comprises 36,644 pediatric EEG signals from our institution along with 9,496 EEG 

reports. Each EEG report can reference multiple signals, and each signal can be referenced 

by multiple EEG reports. Each signal is annotated by an EEG technician with onset times of 

possible seizures, which we treat as full hand-labeled supervision for a machine-learning 

model for seizure detection. To ensure consistency across exams, each of which could have a 

unique sensor alignment, we use only signals from the 19 electrodes in the standard 10–20 

International EEG configuration, which forms a subset of the electrodes deployed to every 

patient at our institution. Voltage readings from each channel are sampled at 200 Hz. We 

approach the seizure-onset detection problem as a clip-level classification problem over 12-s 

clips of the full time series. Our model maps an input x∈R2400×19 to a single output 

indicating the probability of seizure onset in that clip. An example set of EEG signals can be 

found in Figure 2D.

The 11 LFs used to determine whether a given EEG clip contains seizure onset were written 

collaboratively by a clinical neurologist and a postdoctoral computer scientist over the 

course of less than 8 cumulative hours of dedicated time using a labeled development set of 

200 reports. These LFs simultaneously leverage the structure of the EEG report along with 

unstructured information contained in the raw text, which can often cover several 

paragraphs. The Snorkel software package is then used to create probabilistic labels for each 

report.30 Due to the length of these reports and their highly variable structure, the LFs for 

this application represent a particularly compelling example of how domain-specific 

knowledge can be used to inform heuristic development.

Because these reports refer to entire signals rather than to specific clips, a small hand-

labeled EEG clip dataset for cross-validation and end-model evaluation was created by a 

pediatric clinical neurologist with 10 years of experience. This dataset contains 350 12-s 

clips representative of seizure onset; 100 of these positive examples are allocated to a 

development set for cross-validating the end model and 250 are allocated to the test set for 

final evaluation. Sets used for both cross-validation and evaluation were made to contain an 

80% fraction of clips without seizure onset by randomly sampling clips from signals in each 

set confirmed to contain no evidence of seizure. We use a densely connected Inception 

architecture inspired by Roy et al.36 for seizure-onset detection. This modeling approach 
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combines the most compelling aspects of the InceptionNet48 and DenseNet37 architectures, 

namely the extraction of convolutional features at multiple granularities at each layer 

combined with concatenation of each filter bank with all of those preceding it. To address 

the issue of extreme class imbalance caused by the low frequency of clips containing seizure 

onset even in EEG signals that contain a seizure, we use a simple filtering process analogous 

to common techniques used in the information extraction literature for candidate extraction 

for weakly supervised models.30 Specifically, we construct a candidate extractor that is a 

three-layer neural network operating on a set of 551 features reported to be useful for seizure 

detection from the literature.49 This candidate extractor, which is trained on the development 

set, is executed over all signals with an associated report that is weakly labeled as containing 

a seizure to provide clips that are positive for seizure onset with high probability, while 

negative clips are randomly sampled from signals with no associated positive report. The 

candidate extractor cutoff was tuned using the development set such that precision was 

100% and recall was 15%; because we have such a large unlabeled dataset, we are able to 

optimize for this high level of precision while still obtaining a large set of positive examples.

Model training is accomplished using the Adam optimizer in PyTorch, learning rate was 

initially set to a value of 1 × 10−6 and reduced by a factor of 0.1 upon plateaus in the 

validation loss, and a dropout probability of 0.2 was applied to the last layer. We train 

models on the full dataset for 30 epochs with early stopping and use an equivalent number of 

batches for models trained on subsets of the dataset. Plentiful negative examples were under-

sampled such that the train set contained 50% positive examples. Batch size was set at ten 

EEG signals, the maximum possible using the single Tesla P100 GPU that was used to train 

each model. Training each model on the full set of signals took approximately 12 h.

Statistical Analysis

All statistical tests performed in this work are two-tailed DeLong non-parametric tests41 to 

evaluate the equivalence of ROC-AUC values. These tests were implemented using the R 

package pROC accessed via the Python package rpy2. A statistical significance (a) threshold 

of 0.05 was used for all reported tests. All ROC-AUC values were computed using the entire 

test sets described above. Confidence intervals reported in plots are standard 95% 

confidence intervals assuming a normally distributed population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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THE BIGGER PICTURE

Machine learning can achieve record-breaking performance on many tasks, but machine 

learning development is often hindered by insufficient hand-labeled data for model 

training. This issue is particularly prohibitive in areas such as medical diagnostic 

analysis, where data are private and require expensive labeling by clinicians.

A promising approach to handle this bottleneck is weak supervision, where machine 

learning models are trained using cheaper, noisier labels. We extend a recent, 

theoretically grounded weak supervision paradigm—data programming—wherein subject 

matter expert users write labeling functions to label training data imprecisely rather than 

hand-labeling data points. We show that our approach allows us to train machine learning 

models using person-days of effort that previously required person-years of hand 

labeling. Our methods could enable researchers and practitioners to leverage machine 

learning models over high-dimensional data (e.g., images, time series) even when labeled 

training sets are unavailable.

Development/Pre-production: Data science output has been rolled out/validated across 

multiple domains/problems
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Highlights

• We propose cross-modal data programming (XMDP) for machine learning 

(ML) in medicine

• XMDP reduces labeling costs by 96% versus hand labeling on 4 diverse 

medical ML tasks

• Days of XMDP and years of hand labeling often yield similarly performing 

models

• XMDP performance continually improves as more unlabeled data becomes 

available
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Figure 1. A Cross-Modal Data Programming Pipeline for Rapidly Training Medical Classifiers
A clinician first writes several labeling functions (LFs), which are Python functions that 

express pattern-based rules or other heuristics over the auxiliary modality (e.g., text report). 

Here, for instance, the function LF_pneumo would label a text report as “abnormal” if the 

report contains a word with the prefix “pneumo”; note that these LFs may overlap, conflict, 

and be arbitrarily correlated with each other. During the offline model training phase, LFs 

are applied to unstructured clinician reports and combined to generate probabilistic 

(confidence-weighted) training labels for a classifier defined over the target modality (e.g., 

radiograph). A discriminative text model such as a long short-term memory (LSTM) 

network can then be trained to map the raw text to the generative model output. Our 

optimizer uses a simple heuristic to determine whether computation can be saved by training 

the target modality end model directly on probabilistic labels emitted from the generative 

model or if end model performance can be improved by using probabilistic labels emitted 

from the trained LSTM. At test time, the end model receives only the target modality as 

input and returns predictions.
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Figure 2. Example Target Modality Data for Four Clinical Applications
Single 2D chest radiographs (A), examples of knee extremity radiographs drawn from 2D 

radiograph series (B), 32 slices from 3D head CT scans (HCT) with and without hemorrhage 

(C), and 19-channel electroencephalography (EEG) signals with and without evidence of 

seizure onset (D). Note that while these applications are fundamentally different in both 

dimensionality and modeling requirements (see Table 1), deep machine learning models 

supporting each can be rapidly trained using cross-modal data programming.
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Figure 3. ROC Curves for Models Trained Using Full Hand-Labeled Supervision and Cross-
Modal Data Programming
Results are presented for chest radiographs (CXR) (A), extremity radiographs (EXR) (B), 

head CT (HCT) (C), and electroencephalography (EEG) (D). DP, cross-modal data 

programming; FS, full hand-labeled supervision. Each curve shown is that attaining the 

median ROC-AUC score on the test set over runs using five different random seeds (see 

Experimental Procedures). Models trained using cross-modal data programming exhibit 

performance levels that meet or exceed those of models trained with Medium fully 

supervised datasets (i.e., physician-months of labeling time) and approach or exceed those of 
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models trained with Large fully supervised datasets (i.e., physician-years of labeling time). 

See Table 1 for additional details of dataset sizes.
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Figure 4. Mean Neural Network ROC-AUC Score versus Dataset Size Using Full Supervision 
and Cross-Modal Data Programming
Results are presented for chest radiographs (CXR) (A), extremity radiographs (EXR) (B), 

head CT (HCT) (C), and electroencephalography (EEG) (D). DP, cross-modal data 

programming; FS, full hand-labeled supervision. In each case, the performance of models 

trained using cross-modal data programming improve as additional unlabeled data are 

added, and in several cases exhibit scaling properties very similar to those of the fully 

supervised model as additional labeled data are added. Error bars (dashed lines for FS, 

shaded region for DP) represent 95% confidence intervals from five training runs with 

different random seeds.
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Figure 5. Analysis of Labeling Function Types and Time-versus-Performance Tradeoffs
(A and B) Labeling function (LF) types (A); labeling time for datasets describing chest 

(CXR) and extremity (EXR) radiographs, head CT (HCT), and electroencephalography 

(EEG) (B). Labeling times are presented for the small development set (Dev) of several 

hundred examples, the Large fully supervised dataset (i.e., physician-years of labeling time), 

and the Medium fully supervised dataset (i.e., physician-months of labeling time). See Table 

1 for additional details on dataset sizes. Hand-labeling times were estimated using median 

read times of 1 min 38 s per CXR, 1 min 26 s per EXR, 6 min 38 s per HCT, and 12 min 30 

s per EEG drawn from reported values in the literature.39,40 These estimates are conservative 

because they assume that only a single clinician contributed to reading each case. (C) 

Labeling time versus performance in the context of dataset size, the task, and the type of 

supervision. Cross-modal data programming (DP) often yields models similar in 

performance to those trained on Large hand-labeled datasets (FS) but using a fraction of the 

labeling time.
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Figure 6. Model Performance versus Supervision Type on Auxiliary (Text) and Target (Image or 
Signal) Domains
We analyzed the performance of majority vote (MV) of the labeling functions (LFs), a 

generative model trained on these LFs (GM), an LSTM trained to map the raw text to the 

MV output (DM-MV), an LSTM trained to map the raw text to the GM output (DM-GM), 

and hand-labeled full supervision (FS). Text model performance is evaluated on the 

development set, as coverage and ROC-AUC on this set are used in the cross-modal data 

programming heuristic optimizer. Target modality performance is evaluated on the held-out 

test set. We present results for CXR (A), EXR (B), HCT (C), and EEG (D). Note that MV 

text results and coverage results are deterministic. Error bars are 95% confidence intervals 

from five runs with different random seeds.
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