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Abstract

Multi-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to 

probe early microstructural damage in neurological disorders. It is usually performed in vivo by 

combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, 

geometrical distortions and susceptibility to physiological noise. This ultimately hinders joint 

multi-contrast modelling and makes the geometric correspondence of parametric maps 

challenging. We propose an approach to overcome these limitations, by implementing state-of-the-

art microstructural MRI of the spinal cord with a unified signal readout in vivo (i.e. with matched 

spatial encoding parameters across a range of imaging contrasts). We base our acquisition on 

single-shot echo planar imaging with reduced field-of-view, and obtain data from two different 

vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma). Importantly, the unified 

acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality 

enhancement via multi-contrast image denoising methods. As a proof-of-concept, here we provide 

a demonstration with one such method, known as Marchenko-Pastur (MP) Principal Component 

Analysis (PCA) denoising. MP-PCA is a singular value (SV) decomposition truncation approach 

that relies on redundant acquisitions, i.e. such that the number of measurements is large compared 

to the number of components that are maintained in the truncated SV decomposition. Here we 

used in vivo and synthetic data to test whether a unified readout enables more efficient MP-PCA 

denoising of less redundant acquisitions, since these can be denoised jointly with more redundant 

ones. We demonstrate that a unified readout provides robust multi-parametric maps, including 

diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation 

transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality 

of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by 

up to 17% for mean kurtosis, 8% for bound pool fraction (BPF, myelin-sensitive), and 13% for T1, 

while enabling more efficient denoising of modalities limited in redundancy (e.g. relaxometry). In 

conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust 

microstructural metrics with matched resolution and distortions, whose quality benefits from 

multi-contrast denoising methods such as MP-PCA.

Keywords

Spinal cord; Signal readout; Quantitative MRI; Multi-parametric MRI; Marchenko-Pastur PCA 
denoising

1. Introduction

The spinal cord is a small but functionally important structure of the human central nervous 

system, affected in several common disorders. These are often associated with high 

disability (Hendrix et al., 2015), and include: multiple sclerosis (Ciccarelli et al., 2019), 

amyotrophic lateral sclerosis (van Es et al., 2017), spinal cord injury (Ahuja et al., 2017) and 
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many others (Lorenzi et al., 2020). Routine anatomical magnetic resonance imaging (MRI) 

plays an important role in the diagnosis and management of these conditions (Kearney et al., 

2015). However, it only offers macroscopic descriptors of tissue damage that lack specificity 

for pathophysiology, have limited prognostic value and fail to guide treatment and 

rehabilitation personalisation (Cohen-Adad, 2018; Stroman et al., 2014; Wheeler-Kingshott 

et al., 2014). The gradual adoption of quantitative MRI (qMRI) techniques may help 

overcome the limitations of conventional anatomical MRI. Based on either well-validated 

biophysical models or parsimonious signal representations (Novikov et al., 2018), qMRI 

promises to provide estimates of biologically meaningful characteristics, which would make 

parametric maps vendor-independent (Cercignani and Bouyagoub, 2018). The latest 

multimodal qMRI techniques exploit the complementary information from different 

contrasts (De Santis et al., 2016; Stikov et al., 2015), for example relaxometry and diffusion, 

to better quantify the parameters of tissue microstructure (Benjamini and Basser, 2019; 

Hutter et al., 2018; Kim et al., 2017; Lemberskiy et al., 2018; Ning et al., 2019; Slator et al., 

2019; Veraart et al., 2018).

In vivo qMRI of the spinal cord is increasingly popular (Battiston et al., 2018a; Battiston et 

al., 2018b; By et al., 2017, 2018; Duval et al., 2017; Grussu et al., 2019; Grussu et al., 2015; 

Ljungberg et al., 2017; Massire et al., 2016; Schilling et al., 2019; Taso et al., 2016) due to 

recent advancements in scanner hardware (Barry et al., 2018; Duval et al., 2015) and 

analysis software (De Leener et al., 2017). However, its development is currently hampered 

by the following two challenges.

Firstly, multi-contrast qMRI in the spinal cord in vivo typically relies on specialised 

techniques with dedicated signal readout for each contrast (Duval et al., 2017; Massire et al., 

2016; Taso et al., 2016). The variety of readouts is not compatible with joint computational 

modelling of voxel-wise multi-contrast signals, and also limits the alignment of multimodal 

metrics due to different distortions and susceptibility to physiological noise (Campbell et al., 

2018). The second major challenge is related to the fact that data quality in spinal cord 

imaging remains lower compared to the brain. This is due to the need for high spatial 

resolution (the spinal cord cross sectional area is about 1 cm2), which is challenged by 

artifacts from pulsation (Morozov et al., 2018; Summers et al., 2006) and local magnetic 

field inhomogeneities (Vannesjo et al., 2018; Verma and Cohen-Adad, 2014). Improving the 

intrinsic quality of qMRI data is therefore imperative to facilitate the application of the latest 

qMRI techniques to the spinal cord, which are still in their infancy as compared to those in 

the brain (Cohen-Adad, 2018; Wheeler-Kingshott et al., 2014).

In this paper, we propose a unified acquisition for state-of-the-art multimodal qMRI of the 

spinal cord in vivo that addresses both challenges. Our protocol relies on a unified signal 

readout based on single-shot spin echo planar imaging (EPI) with reduced field-of-view. 

(rFOV). Our acquisition provides images whose spatial encoding is identical across a range 

of MRI contrasts, and thus have the same intrinsic resolution and susceptibility artifacts (i.e. 

distortions). Importantly, the unified acquisition also enforces the same noise statistics 

across multiple signal contrasts, thus enabling overall data quality enhancement via 

denoising of the whole multimodal image set.
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Several denoising methods have been proposed in MRI, some of them being promising to 

enhance the quality of multi-contrast image sets. Examples include total variation (Blomgren 

and Chan, 1998) , non-local (Kafali et al., 2018; Kim et al., 2016; Manjón et al., 

2009Manjón et al., 2009), wavelet (Scheunders and De Backer, 2007), principal component 

(Manjón et al., 2015; Sonderer and Chen, 2018) or k-space (Haldar and Liang, 2008; Kim et 

al., 2016) methods. Here we provide a first demonstration of the usefulness of multi-contrast 

denoising in in vivo spinal cord settings, as enabled by the unified signal readout. For this 

practical demonstration, we adopt the MP-PCA technique (Veraart et al., 2016b), since it is a 

promising, open-access and easy-to-use method that has proven to be useful in a number of 

MRI contexts (Adanyeguh et al., 2018; Does et al., 2019; McKinnon et al., 2018; Tax et al., 

2019). Also, MP-PCA enables the analysis of multi-contrast reconstructed images without 

the need to obtain raw k-space of complex-valued (Cordero-Grande et al., 2019) data, which 

is typically not very practical in most real-life clinical settings. Different denoising 

approaches could have also been tested, and we aim to consider them in future work.

It is important to point out that unified, multi-contrast readouts are well known in MRI 

literature, given the growing interest in multi-parametric approaches. As compared to such 

previous approaches (Benjamini and Basser, 2019; Hutter et al., 2018; Kim et al., 2017; 

Ning et al., 2019; Slator et al., 2019), this paper provides several original contributions. 

Firstly, multi-contrast MRI approaches have not been demonstrated in the spinal cord in 

vivo, given the intrinsic challenge to deal with physiological noise, non-rigid motion and 

distortions. Here we tackle these challenges using a cardiac-gated, reduced field-of-view 

readout. Secondly, to our knowledge we present the richest in vivo multi-contrast spinal cord 

protocol, encompassing DW, qMT, inversion recovery (IR) and multi echo time (multi-TE) 

imaging. Modality-wise, we focus on diffusion-weighted (DW) imaging, quantitative 

magnetisation transfer (qMT) imaging and relaxometry (T1 and T2 mapping), since these 

techniques provide microstructural measurers that are potential biomarkers in 

neurodegenerative and demyelinating diseases (Battiston et al., 2018a; Kearney et al., 2015). 

Each of these quantitative methods is potentially useful on its own. However, their joint 

acquisition enables multi-contrast analyses, where the complementary information of the 

different indices can be fused to obtain novel metrics such as indices of myelin g-ratio 

(Cercignani and Bouyagoub, 2018; Duval et al., 2017). Importantly, our work is the first to 

characterise in detail multi-contrast denoising for application in the spinal cord in vivo 

against real-life confounders (e.g. signal/noise drifts during the acquisition; non-rigid 

motion; updates in scanners gains). Therefore, it provides the community with quantitative 

figures related to image quality and metrics variability that are useful for the design of 

sample sizes in future clinical studies.

2. Background on MP-PCA

MP-PCA (Veraart et al., 2016b) denoising is a singular value (SV) decomposition truncation 

method. MP-PCA denoises noisy input matrices A = [ai,j] of size M × N constructed by 

arranging M MRI measurements along rows from N neighbouring voxels along columns, 

such that M < N without loss of generality.
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MP-PCA studies the squared SVs of A, which we indicate as {λ1, … , λM} s.t. λi+1 ≥ λi for 

i = 2, … , M, and selects a threshold at the P-th SV λP by identifying an MP distribution on 

the distribution of the remaining M − P smallest SVs of A, which are fully-random in the 

limit case of infinitely large matrices (Baik et al., 2005; Hoyle and Rattray, 2004). Once the 

threshold λP has been identified, MP-PCA sets the M − P SVs λi (i > P) to zero and outputs 

a matrix Aden = [ai, jden], i.e. a denoised version of A, as well as the simultaneously estimated 

noise standard deviation σ and the number of SVs P that survive truncation. As far as the 

output matrix Aden is concerned, it is important to keep in mind is that not all original noise-

free signal components might be recovered, since some unrecoverable signal may be 

represented in the M − P nullified components.

It should be noted that the P remaining SVs are corrupted with thermal noise, such that the 

SNR gain can be roughly estimated as min(M) ∕ P  (Veraart et al., 2016a; Veraart et al., 

2016b). This motivates the application of MP-PCA on large redundant image series, i.e. such 

that they are characterised by M ≫ P. This fuels the hypothesis that bundling contrasts 

together to increase M may improve the performance of MP-PCA, thus motivating our work.

Importantly, several other methods for low-rank matrix denoising have been proposed in the 

literature (Bunea et al., 2011; Giraud, 2011; Kargin, 2015; Nadakuditi, 2014), including 

statistical/information theory (Johnstone, 2006) approaches deriving optimal asymptotic 

matrix denoisers (Donoho et al., 2018; Gavish and Donoho, 2014, 2017; Shabalin and 

Nobel, 2013). Notably, the optimal shrinkage approach (Gavish and Donoho, 2017) not only 

sets to zero SV below the optimal SV threshold λP, but also reduces the values of λ for λ > 

λP, improving denoising performance compared to hard SV truncation. Here we used MP-

PCA to provide a practical demonstration of multi-contrast applications unlocked by our 

unified readout. MP-PCA is an open-source tool developed in the imaging context that is 

well-known and widely adopted within the MRI community, having shown utility and 

robustness in real-life scenarios (e.g. in presence of signal, noise or frequency drifts as well 

as of physiological noise) (Adanyeguh et al., 2018; Does et al., 2019; McKinnon et al., 

2018; Tax et al., 2019). Other multi-contrast denoising approaches could also show benefit, 

and we reserve them for future investigation.

3 Methods

We synthesised multimodal MRI scans encompassing modalities with different redundancy, 

emphasising protocols that could be realistically implemented in the spinal cord in vivo, and 

evaluated the performance of MP-PCA denoising when performed on each modality 

independently or on multiple modalities jointly.

We also acquired multi-contrast MRI data with unified readout on scanners from two 

vendors (vendor 1: Philips; vendor 2: Siemens), and characterised the quality of several 

qMRI metrics as obtained following MP-PCA denoising or without denoising. The shared 

readout enables the assessment of whether denoising modalities characterised by limited 

redundancy can be improved if these are denoised jointly with more redundant acquisitions.
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In the following sections, we will describe simulations first, as these provide the context for 

the interpretation of findings in vivo. All analyses were performed using in-house scripts, 

which are made openly available (http://github.com/fragrussu/PaperScripts/tree/master/

sc_unireadout).

3.1 In silico study

3.1.1 Signal synthesis—We synthesised realistic spinal cord scans using anatomical 

information from the Spinal Cord Toolbox (http://github.com/neuropoly/spinalcordtoolbox) 

(SCT) (De Leener et al., 2017), which contains a high resolution MRI template with voxel-

wise volume fractions of white matter (WM, νWM), grey matter (GM, νGM) and 

cerebrospinal fluid (CSF, νCSF) (Lévy et al., 2015).

Firstly, we used NiftyReg (http://niftyreg.sf.net) reg_resample (Modat et al., 2010) with 

default options to downsample the voxel-wise volume fractions νWM, νGM and νCSF to a 

resolution that is plausible for quantitative MRI of the spinal cord based on EPI (By et al., 

2018; Duval et al., 2015; Grussu et al., 2015), i.e. 1×1×5 mm3 along R-L, A-P and S-I 

directions, ensuring realistic partial volume effects. Afterwards, we cropped the field-of-

view along the foot-head direction to 200 mm (40 slices), in order to keep a tractable 

number of synthetic spinal cord voxels to analyse (i.e. 1700 voxels).

We used custom-written Matlab (The MathWorks, Inc., Natick, MA) code to synthesise 

signals for a rich multimodal quantitative MRI protocol encompassing of DW, qMT, IR and 

multi-TE imaging with shared imaging readout (protocol in Table 1, matching our rich in 

vivo MRI protocol). The total voxel-wise noise-free magnitude signal STOT was obtained as 

the weighted sum of the signals from WM, GM and CSF, i.e.

STOT = vWM SWM + vGM SGM + vCSF SCSF, (1)

where νWM + νGM + νCSF = 1.

For each measurement characterised by sequence parameters (TE, TI, b, g, θ, Δfc) 

(respectively: echo time, inversion time, diffusion-weighting strength or b-value, diffusion 

gradient direction, off-resonance pulse flip angle, off-resonance pulse offset frequency), we 

synthesised each of SWM, SGM and SCSF as:

S = ρ e−
TE
T2 1 − 2 e−

TI
T1 e−b gT (AD − RD)zzT + RD I g w(θ, Δfc; T1T2

F, k, T2
B, BPF

) .
(2)

Above, I is the 3 × 3 identity matrix, w describes MT-weighting, z = [0 0 1]T is aligned with 

the cord longitudinal axis and (ρ, T1, T2, AD, RD, k, T2
F, T2

B, BPF) are tissues-specific 

parameters, in this order: relative proton density (Mezer et al., 2013), macroscopic 

longitudinal and transverse relaxation rate (Smith et al., 2008), axial and radial diffusivity 

(Basser et al., 1994), free-to-bound pool exchange rate, free pool transverse relaxation rate, 

bound pool transverse relaxation rate, bound pool fraction (Henkelman et al., 1993). Eq. 2 

models water relaxation as mono-exponential; diffusion as Gaussian, described by an axially 
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symmetric diffusion tensor with primary diffusion direction aligned with the cord 

longitudinal axis; exchange between free and bound (i.e. myelin) protons according to the 

two-pool MT model (Henkelman et al., 1993). The MT-weighting factor w was calculated 

via direct numerical integration of the two-pool Bloch equations (details in Supplementary 

Material S1), assuming a super-Lorentzian line shape for bound protons and simulating off-

resonance pulse trains made of 25 sinc-Gaussian pulses (bandwidth: 122 Hz), each lasting 

15 ms and with inter-pulse delay of 15 ms, as used before in spinal cord applications 

(Battiston et al., 2018a).

We synthesised a unique noise-free signal profile in each tissue voxel by simulating within-

tissue variability in WM and GM. This ensures that each synthetic voxel has its own unique 

sources of signal, avoiding obvious redundancies within the set of synthetic signals, as these 

could lead to overestimation of the performances of MP-PCA denoising (Ades-Aron et al., 

2018). In practice, we drew voxel-wise values for each of (ρ, T1, T2, AD, RD, k, T2
F, T2

B, 

BPF) from a tissue-specific Gaussian distribution, with parameters inspired by values known 

from literature (Battiston et al., 2018a; Grussu et al., 2015; Smith et al., 2008) (parameters in 

Table 2).

The synthetic spinal cord phantom is made openly available online (http://github.com/

fragrussu/PaperScripts/tree/master/sc_unireadout/sc_phantom).

3.1.2 Denoising—We corrupted the synthetic signals with Gaussian and Rician noise at 

different signal-to-noise ratios (SNRs) (300 unique noise realisations on 1700 voxels), 

ranging from 10 to 40 (SNR evaluated with respect to the b = 0 signal in WM for the DW 

measurements).

Afterwards, we used the Matlab implementation of the MP-PCA algorithm (http://

github.com/NYU-DiffusionMRI/mppca_denoise) to denoise the synthetic spinal cord 

images at the various SNRs.

For our simulations, we processed MP-PCA matrices constructed by arranging spinal cord 

voxels within an individual MRI slice along rows and different MRI measurements along 

columns (i.e. slice-by-slice cord denoising). We implemented three different denoising 

strategies:

1. individual denoising of each modality among DW, IR, multi-TE and quantitative 

MT imaging respectively (importantly, IR, multi-TE have limited redundancy 

and would not theoretically qualify for MP-PCA, which is expected to remove 

little to no noise);

2. joint denoising of all modalities concatenated as one large set of measurements;

3. joint denoising of DW imaging concatenated with each of IR, multi-TE and qMT 

imaging in series respectively, which would be useful to describe cases when 

only one modality other than DW imaging is acquired.

3.1.3 Analysis—We evaluated the performance of MP-PCA denoising by studying the 

percentage relative error ε between the denoised signals STOT,denoised and the ground truth 
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signal STOT. We estimated accuracy and precision of the different denoising strategies by 

calculating respectively the median of ε (such that the closer to zero, the higher the 

accuracy) and interquartile range (IQR) of ε (such that the lower, the higher the precision) 

within the synthetic spinal cord over the 100 noise instantiations.

Additionally, we performed the SV decomposition on noisy, noise-free and MP-PCA 

denoised signal matrices (Matlab function svd()) at various SNRs (both Gaussian and Rician 

noise) for a representative synthetic MRI slice. This enabled the visualisation of the MP-

PCA threshold given the set of matrix SVs.

3.2 In vivo study

We performed clinically viable, multi-contrast spinal cord qMRI scans on healthy volunteers 

and analysed them to characterise the performance of MP-PCA denoising on different qMRI 

modalities, devising denoising strategies for acquisitions with different levels of redundancy. 

The experimental sessions were approved by local research ethics committees.

Our qMRI protocols exhibit a unified signal readout, which is based on spin echo EPI, a 

typical choice for DW imaging. The shared readout ensures comparable noise characteristics 

across the different qMRI modalities, thus enabling joint denoising of different qMRI 

contrasts. The MRI protocol in vendor 1 encompasses DW, qMT, IR and multi-TE imaging, 

while in vendor 2 includes DW and multi-TE imaging. The MRI protocol in vendor 2 is less 

rich due to practical availability of pulse sequences. Nonetheless, it suffices to demonstrate 

the potential of joint multi-contrast denoising of modalities with different redundancies, and 

is representative of protocols required in multi-contrast techniques such as TEDDI (Veraart 

et al., 2018).

In all systems, MRI scans were performed axially-oblique at the level of the cervical cord, 

with field-of-view centred at the C2-C3 intervertebral disk (foot-head coverage of 60 mm). 

The whole set of MRI sequence parameters used for both vendors is reported in 

Supplementary Material S2.

3.2.1 MRI: vendor 1—The protocol developed on a 3T Philips Achieva machine, located 

at the UCL Queen Square Institute of Neurology (London, UK) consisted of multi-contrast, 

single-shot spin echo EPI scans with unified signal readout based on reduced field-of-view 

ZOOM technology (Wheeler-Kingshott et al., 2002), which enable 4 contrast mechanisms to 

be exploited: DW imaging, qMT imaging, IR imaging and multi-TE imaging (mTE, i.e. 

acquisitions of single-shot images at different TE). Salient sequence parameters, including 

information on b-values, echo/inversion times, off resonance saturation and cardiac gating 

are reported in Table 3.

The protocol also included an anatomical 3D FFE scan (flip angle of 7°, TE of 4.1 ms, TR 

of 20 ms, resolution of 0.75 × 0.75 × 5 mm3 and field-of-view of 180 × 240 × 60 mm3 along 

R-L, A-P, S-I directions; ProSet fat suppression, 3 signal averages, scan time of 3 min : 30 s) 

and standard B0 and B1 field mapping for accurate qMT analysis. Both B0 and B1 mapping 

were based on 3D FFE acquisitions with resolution of 2.25 × 2.25 × 5 mm3 and field-of-

view of 215 × 206 × 60 mm3 along R-L, A-P, S-I directions. B0 mapping was performed 
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with the double-echo method (Jezzard and Balaban, 1995), with parameters: flip angle of 

25°, TE of 6.9 ms and 9.2 ms, TR of 50 ms, scan time of 1 min : 40 s. B1 mapping was 

instead performed via actual flip angle imaging (Yarnykh, 2007), with parameters: flip angle 

of 60°, TE of 2.5 ms, TR of 30 ms, TR extension of 120 ms, scan time of 1 min : 40 s).

For signal reception, the vendor’s 16-channel neurovascular receive-only coil was used. The 

nominal acquisition time was roughly 47 min, with variations depending on subject’s heart 

rate. We scanned 4 healthy volunteers twice (2 males, age range 28-40), with the rescan 

performed within one month of the first scan.

3.2.2 MRI: vendor 2—For vendor 2, we performed scans on two separate 3T Siemens 

Prisma systems, located at the New York University School of Medicine (USA) and at the 

Neuroimaging Functional Unit of the University of Montreal (Canada).

The protocol consisted in exploiting 2 contrast mechanisms including DW imaging and 

multi-TE imaging with unified readout based on syngo ZOOMit reduced field-of-view 

technology (Rieseberg et al., 2002) (salient parameters including b-values, TEs and cardiac 

gating are reported in Table 4). The protocol also included a 3D MEDIC scan for anatomical 

depiction (flip angle of 30°, TE of 15 ms, TR of 625 ms, resolution of 0.50 × 0.50 × 5 mm3 

and field-of-view of 128 × 128 × 60 mm3 along R-L, A-P, S-I directions; 3 signal averages, 

scan time of 6 min : 24 s).

The total scan time was 18 min : 57 s in the New York Prisma and 22 min : 19 s in the 

Montreal Prisma, with the scan time difference due to slightly higher number of diffusion 

directions being acquired in Montreal. Two subjects were scanned in New York (1 male, 28 

years old; 1 female, 25 years old) and one subject (male, 28 years old) in Montreal after 

obtaining informed written consent. The vendor-provided 64 channel head-neck coil was 

used in both cases for signal reception.

3.2.3 Denoising—We implemented the same denoising strategies as in simulations:

1. individual denoising of each modality separately;

2. joint denoising of all modalities together;

3. joint denoising of DW imaging concatenated with each of IR, multi-TE and qMT 

imaging in series (multi-TE only for Prisma).

We performed denoising slice-by-slice to account for the anisotropic voxel-size and to limit 

the effect of potential between-shot signal fluctuations due to physiological noise (Summers 

et al., 2006). We proceeded as follows:

• the spinal cord was identified on the mean DW image with SCT sct_propseg (De 

Leener et al., 2014);

• all cord voxels of an MRI slice were arranged as one matrix and denoised with 

MP-PCA;

• noise floor (Gudbjartsson and Patz, 1995) was subsequently mitigated on the 

denoised signals with the method of moments (Koay and Basser, 2006). Note 
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that for both vendors we study magnitude images, which exhibit a noise floor. 

Also, it is well known that scanner reconstruction software may perform certain 

filtering operations in the background. Therefore, overall the noise distribution in 

vivo is not expected to be Gaussian.

We estimated voxel-wise signal-to-noise ratio in vivo and for both vendors by taking as 

reference the mean non-DW image (mean b = 0 image). For this purpose, we normalised the 

mean non-DW image by the MP-PCA estimate of noise standard deviation obtained by 

denoising the DW scan alone. Afterwards, we calculated the mean SNR within the spinal 

cord for each subject and scan.

3.2.4 Post-processing—We performed motion correction on the concatenation of all 

acquired EPI images within an MRI session. Practically, we ran slice-wise rigid motion 

correction with sct_dmri_moco on the non-denoised scans, treating qMT, IR and multi-TE 

images as b = 0 scans. The estimated registration transformations were stored and used to 

correct all the denoised versions of each qMRI modality, as well as the non-denoised data. 

This was done to focus our analysis on the effect that thermal noise removal has on qMRI 

metrics.

Afterwards, we segmented the whole cord and the grey matter in the anatomical spinal cord 

scan respectively with sct_propseg and with sct_deepseg_gm. We also segmented the spinal 

cord in the mean DW EPI image with sct_propseg.

Lastly, we co-registered the anatomical spinal cord scan to the mean EPI image with 

sct_register_multimodal, using dilated spinal cord masks in the two image spaces to guide 

registration (dilation performed with NifTK seg_maths, available at http://github.com/

NifTK/NifTK ). The estimated warping field transformation was used to warp the grey 

matter mask to EPI space, which was subsequently used to obtain a white matter mask by 

subtracting it from the whole-cord mask. For vendor 1, the warping field was also used to 

resample the B0 and B1 magnetic field maps to the EPI space for downstream model fitting.

3.2.5 Evaluation of quantitative metrics—We fit quantitative models/signal 

representations for the different contrasts and obtain popular metrics that are promising 

imaging biomarkers. These were:

• diffusion kurtosis imaging (Jensen et al., 2005; Veraart et al., 2011) on DW data 

(both vendors) with DiPy dipy.reconst.dkimodule (http://nipy.org/dipy/

examples_built/reconst_dki.html), obtaining voxel-wise diffusion and kurtosis 

tensors, of which fractional anisotropy (FA), mean diffusivity (MD) and mean 

kurtosis (MK) were considered for downstream analyses;

• mono-exponential T2 relaxation on multi-TE data (both vendors) with MyRelax 

getT2T2star.py (http://github.com/fragrussu/myrelax), obtaining voxel-wise 

macroscopic T2 ;

• mono-exponential T1 relaxation on IR data (vendor 1 only), with MyRelax 

getT1IR.py, obtaining voxel-wise macroscopic T1;
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• two-pool qMT model on qMT data (vendor 1 only) with custom-written Matlab 

code (Battiston et al., 2018a), obtaining voxel-wise bound pool fraction BPF, 

exchange rate k and bound pool transverse relaxation T2
B, of which BPF and k 

were considered for downstream analyses. For qMT fitting, static/transmitted 

fields were corrected on a voxel-by-voxel basis using the B0 and B1 field maps 

warped to EPI space.

3.2.6 Analysis—We characterised values of all qMRI metrics by calculating the median 

within grey and white matter for all denoising strategies (including no denoising).

Furthermore, we quantified each metric variability by calculating a percentage coefficient of 

variation (CoV) within grey matter and within white matter for all denoising strategies 

(including no denoising). We defined CoV as

CoV = 100 % × IQR
median , (3)

where iqr is the interquartile range of a metric within grey/white matter, measuring the 

metric variability, while median is the median value of the metric within the same tissue. We 

hypothesise that effective denoising would reduce noise-induced metric variability, resulting 

in lower IQR and unchanged median and hence lower CoV, under assumption that variability 

due to noise is much larger than the biological variability (please see figure 4 of (Ades-Aron 

et al., 2018)). We also provide estimates of the intrinsic scan-rescan variability of each 

metric m in both WM and GM as

variability = 100 % × IQR(m1 − m2)

meadian m1 + m2
2

,
(4)

where m1 and m2 are the voxel-wise values of the metric at first scan and rescan. For the 

evaluation of Eq. 4, we warped parametric maps at rescan to the first scan by estimating and 

affine transformation with NiftyReg reg_aladin on the mean DW image.

Finally, we also evaluated the sharpness of the WM/GM contrast-to-noise ratio (CNR) for all 

metrics, all denoising strategies, all subjects and scans as

CNR = ∣ median(mWM) − median(mGM) ∣
(IQR(mWM) ∕ 1.349)2 + (IQR(mGM) ∕ 1.349)2 , (5)

where mWM and mGM respectively represent voxel-wise values of the generic parametric 

map m in WM and GM.

4 Results

4.1 In silico study

Fig. 1 shows percentage relative error accuracy (top row: error median) and precision 

(bottom row: error IQR) of the denoised signals compared to the noise-free ground truth, for 
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different qMRI modalities and different denoising strategies (Gaussian noise). While plots 

do not highlight any noticeable differences in terms of accuracy for the different denoising 

strategies (i.e. joint denoising or individual denoising, since their confidence intervals 

overlap perfectly), they do suggest that better precision (i.e. error IQR closer to zero) can be 

achieved for modalities that are intrinsically limited in redundancy, when these are denoised 

jointly with more redundant modalities. For example, IQR drops from 8% to 5% at SNR = 

10 for mTE when it is denoised jointly with all modalities, as compared to when mTE is 

denoised alone. No appreciable improvement of denoising performance is observed with 

joint multi-contrast denoising for modalities that intrinsically feature high redundancy. This 

is apparent for qMT and even more so for DW imaging, since their percentage error IQR 

does not change when these are denoised jointly with other modalites.

Fig. 2 shows an illustrative example of noise-free, noisy and denoised signal matrices 

(Gaussian noise case, simulated SNR of 15, evaluated in white matter for the synthetic 

diffusion scan at b = 0). Note that, strictly speaking, such set of measurements is not 

redundant, since the noise-free SV spectrum is continuous and none of noise-free SVs are 

exactly zero. However, the SVs widely vary in their value, over 8 orders of magnitude, such 

that only a few of them are quite large and dominate the signal. The figure demonstrates that 

the SV spectrum gets rearranged in the presence of noise in such a way that the contrast 

exhibited by the smallest SVs is flattened and buried in noise. MP-PCA preserves a few 

significant SVs that are above the noise floor, while nullifying the rest. The figure focuses on 

multi-contrast denoising enabled by the unified readout, as this is the main element of 

novelty of this work. Supplementary Material S3 shows results from all other denoising 

strategies (including single-contrast denoising), which are in line with Fig. 2.

Supplementary Material S4 shows results from simulations conducted with Rician noise. 

Results are generally in line with the case considering Gaussian noise. However, residual 

noise floor biases are apparent at the lowest SNR levels. Supplementary material S5 shows 

examples of distributions of normalised residuals (i.e. difference between input and output 

of denoising algorithm).

4.2 In vivo study

The SNR in vivo on the b = 0 images is estimated to be (mean ± standard deviation across 

subjects and scans): 21.7 ± 2.7 for vendor 1; 17.1 ± 2.4 for vendor 2.

Figs. 3 and 4 show examples of acquired and denoised in vivo images. Fig. 3 illustrates 

information for vendor 1, while Fig. 4 for vendor 2. For both vendors, improvements in 

image quality are visually and observed, especially for DW imaging. Residual distributions 

from both simulations and in vivo data exhibit a Gaussian behaviour on visual inspection 

and are reported in Supplementary Material S5 for illustrative purpose (normally-distributed, 

spatially-uncorrelated residuals with standard deviation comparable to the noise level are a 

necessary condition for good denoising (Ades-Aron et al., 2018; Veraart et al., 2016b), 

although not sufficient).

Figs. 5, 6 and 7 show examples of quantitative parametric maps obtained in one 

representative subject from vendor 1 (Fig. 5; DW, qMT, IR and mTE imaging) and from the 
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vendor 2 (New York system in Fig. 6, Montreal system in Fig. 7; DW and mTE imaging) for 

different denoising strategies. Visual inspection suggests that MP-PCA denoising generates 

less noisy maps, especially for vendor 1. The most striking examples of improved parameter 

estimation are seen in both vendors for DW imaging parameter MK. Additionally, 

improvements on visual inspection are apparent for other qMRI metrics such as BPF and T1, 

especially for joint multimodal denoising. Supplementary Material S6 shows voxel-wise 

differences of all quantitative maps when obtained with and without denoising. No biases in 

quantitative metrics obtained after denoising are apparent on visual inspection, and the 

differences between maps obtained with/without denoising appear stronger when multiple 

contrasts are denoised together.

Tables 5 and 6 report median values of all qMRI metrics in grey and white matter for the 

different denoising strategies (Table 5: vendor 1; Table 6: vendor 2, pooling together results 

from the two systems). The tables reveal contrasts between grey and white matter in various 

metrics. Examples that are consistent between vendors include: higher FA and MD in white 

compared to grey matter; similar MK in grey/white matter; slightly higher T2 in white 

compared to grey matter. Other examples from vendor 1 include: similar BPF and T1 in 

grey/white matter; higher exchange rate k in grey compared to white matter. The tables also 

show that systematic differences between the data sets acquired with the two vendors exist, 

as for example: higher T2 and MK and lower MD in data from vendor 2 compared to 1; 

different grey/white matter contrasts in FA. Notably, Tables 5 and 6 also demonstrate that 

denoising introduce little to no biases in the quantitative parametric maps. In all cases and 

for both vendors the tissue-wise medians never differ for more than 5% compared to the 

values obtained without any denoising.

Tables 7 and 8 report within-grey and within-white matter CoV for the various qMRI 

metrics and for different denoising strategies. Table 7 reports figures from vendor 1, while 

Table 8 from vendor 2 (data from both systems from vendor 2 pooled together). The tables 

show that MP-PCA denoising leads to reductions of CoV for various metrics of 5% or more 

compared to the case with no denoising, as for example for FA, MK, BPF and T1 for vendor 

1 and MK for vendor 2. Some increases of CoV are observed (for example for MD in white 

matter for vendor 2). For vendor 1, the strongest reductions in CoV are observed for joint 

multimodal MP-PCA denoising. For comparison, we also report the intrinsic scan-rescan 

variability of the metrics when no denoising is applied (vendor 1 only), which is in 

WM/GM: 25.2/25.5% for FA; 43.6/31.5 for MD; 63.8/63.1 % for MK; 77.4/54.9 % for BPF; 

61.3/43.3 % for k; 47.4/14.5 % for T1; 48.5/30.4 % for T2.

Supplementary Material S7 shows results from WM/GM CNR calculations. Denoising 

increases WM/GM CNR more than 5% for FA, MK, BPF and T2 in vendor 1 and for MK in 

vendor 2. Additionally, CNR decreases for MD in vendor 1 more than 5% when DW 

imaging is denoised jointly with qMT or qMT, IR and mTE imaging.
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5 Discussion

5.1 Summary and key findings

This work demonstrates the advantages of multimodal qMRI of the spinal cord in vivo with 

unified MRI signal readout. The unified readout enables matching resolution and distortions 

across different contrasts, thereby also facilitating joint analyses and computational 

modelling of multi-contrast signal. Here we provide a practical demonstration by studying 

joint multi-contrast denoising, an example of which is given via MP-PCA denoising. The 

unified readout enables efficient MP-PCA denoising of modalities that feature a limited 

number of measurements, when these are denoised jointly with modalities whose protocols 

is much richer.

Our key findings are that a unified readout enables reliable and detailed microstructural 

characterisation of the human cervical spinal cord in clinical setting, providing metrics of 

relaxometry and diffusion as well as myelin-sensitive indices with matched resolution and 

distortions. Moreover, MP-PCA appears as a valid tool to improve the intrinsic quality of 

unified readout acquisitions, as supported by both in vivo and in silico data. Finally, this 

approach is feasible on 3T MRI systems from two major vendors.

5.2 In silico study

We have designed and run computer simulations to test whether a unified readout offers 

opportunities for MP-PCA denoising of qMRI modalities that exhibit limited redundancy (a 

number of measurements comparable to the number of SVs that would not be zeroed by 

MP-PCA, i.e. M ~ P), for which effective MP-PCA denoising remains challenging.

Our simulations suggest that a unified readout has indeed the potential of supporting more 

efficient MP-PCA denoising for modalities limited in redundancy, as for example mono-

exponential and multi-exponential (Does et al., 2019) relaxation mapping. Denoising these 

modalities jointly with more redundant modalities enables more efficient noise mitigation in 

the former. Interestingly, joint multimodal denoising did not affect the denoising 

performance on modalities that are already redundant, as for example DW imaging.

Moreover, calculations on simulated data suggest that MP-PCA finds the SV threshold in a 

zone of the SV spectrum where the between-SV contrast is flattened by the presence of 

noise. Importantly, those SVs are various orders of magnitude smaller than the SV that 

survive MP-PCA thresholding for SNR levels that are realistic in the spinal cord in vivo. 

Therefore, our analysis suggests that the salient characteristics of the MRI contrast are 

preserved by MP-PCA.

Finally, the improved denoising accuracy and precision for joint multi-contrast denoising are 

seen when both Rician and Gaussian noise are considered, giving further confidence on the 

generalisability of our simulation results to in vivo settings (i.e. in presence of strong noise 

floors).
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5.3 In vivo study

In this paper we tested multi-parametric qMRI of the spinal cord with unified readout using 

3T MRI scanners from two major vendors (Philips and Siemens), and studied to what extent 

MP-PCA improves the quality of such MRI data.

Our multi-vendor data demonstrate the feasibility of implementing reliable multi-parametric 

qMRI of the spinal cord with unified readout. A unified readout provides matched resolution 

and distortions across MRI contrasts, and ensures comparability of signals across a rich set 

of qMRI measurements. Moreover, it enables the development of unified analysis pipelines, 

spanning from motion correction, to data denoising and potentially model fitting, paving the 

way to joint modelling of multi-contrast signals (Kim et al., 2017). Importantly, it may be 

useful in techniques that combine information from diffusion with relaxation/myelin-

sensitive indices, as for example g-ratio MRI (Campbell et al., 2018; Duval et al., 2017; 

Stikov et al., 2015)), where matched EPI distortions (Irfanoglu et al., 2015) are crucial 

(Campbell et al., 2018). Here, we demonstrate our approach in the spinal cord in vivo, but 

preliminary investigation suggest that it may be useful even in the brain (Grussu et al., 

2017).

Innovative elements of this work are the use of MP-PCA denoising across various MRI 

contrasts, and its application in vivo in the human spinal cord. Our analyses demonstrate that 

MP-PCA effectively mitigates noise in all modalities and for both vendors. Importantly, 

quantitative analysis of parametric maps suggests that the performance of MP-PCA in 

enhancing the quality of modalities with limited redundancy (i.e. IR and mTE imaging) can 

be improved by denoising these modalities jointly with more redundant schemes.

Our joint multimodal denoising relies on the hypothesis of noise homoscedasticity across 

MRI contrasts. Supplementary material S8 shows that the estimated noise level on 

modalities other than DWI follows the same trends as those of estimates from DWI in both 

simulations and in vivo. The supplementary document also demonstrates that estimating the 

noise level is a very challenging task: noise level estimates are highly variable per se. 

Moreover, Supplementary material S8 reveals systematic differences between noise standard 

deviation estimates from DW imaging compared to other modalities, such as qMT. This is 

likely attributed to the stronger departures from the hypothesis of Gaussian noise underlying 

MP-PCA in DW imaging, due to lower SNR and stronger noise floor effects (Koay and 

Basser, 2006), and to the fact that qMT suffers from stronger physiological noise that may 

resemble thermal noise (qMT is not cardiac gated). Nonetheless, it should be remembered 

that MP-PCA noise levels estimated on modalities with limited number of measurements 

(e.g. multi-TE imaging) are not reliable, as the limited number of measurements does not 

allow the MP distribution to be detected accurately (Veraart et al., 2016b). Importantly, such 

differences in terms of noise level estimates among modalities introduce little to no bias in 

downstream quantitative parameter maps, and therefore do not appear to be a concerning 

issue for practical MP-PCA deployment.

We also investigated the effect of MP-PCA denoising on the quality of popular parametric 

maps. To this end, we studied median values of metrics within grey/white matter as well as 

metric variabilities as quantified by a CoV. Our experiments show that MP-PCA introduces 
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little to no biases in any of the metrics, irrespectively of the chosen denoising strategy (joint 

multimodal denoising vs modality-wise denoising). The difference in median values 

between metrics obtained with denoising compared to the case with no denoising are ±5 % 

or less. These differences, which are very low, likely reflect the intrinsic susceptibility of the 

different model fitting routines to noise fluctuations and noise floors, and are therefore 

expected since noise-floor mitigation (Koay and Basser, 2006) was performed following 

MP-PCA denoising. Conversely, MP-PCA does decrease metric variability, as it leads to 

considerable reductions of tissue-wise CoV, as for example for MK (−16% for vendor1, 

−17% for vendor 2), FA, BPF and T1 (−13% for vendor 1). The reduction in variability is the 

highest for metrics like MK, which carry important information about tissue microstructure, 

and that are notoriously difficult to estimate (Veraart et al., 2011). It should be noted the 

using CoV as a metric to evaluate denoising performance has some intrinsic limitations, 

since CoV can potentially increase simply because of increased blurring. Our supplementary 

analysis of sharpness based on GM/WM CNR (Supplementary Material S7) suggests that 

this is unlikely for most MRI metrics considered here (we observe increases of CNR higher 

than 5% for FA, MK, BPF and T2). However, it is possible that certain MRI metrics such as 

MD are more prone to blurring as compared to other metrics, given that we observe a 

reduction of CNR for this index.

Our parametric maps follow known trends and contrasts, with some differences in terms of 

relaxometry metrics, e.g. low contrast white/grey matter contrast for T1 and T2. This 

difference may be explained by residual CSF pulsation that corrupts neighbouring white 

matter signals, and by the fact that literature values for T1 and T2 are typically obtained with 

different readout strategies compared to the employed single-shot EPI (Smith et al., 2008). 

Another explanation, especially for vendor 1, may be related to the coarse resolution of the 

anatomical scan, required to limit scan time, as this was used for grey matter segmentation 

potentially introducing partial volume effects in the tissue masks. Overall, while grey/white 

matter contrasts in parametric maps are similar in data from both vendors, systematic 

differences between metric values (Table 5 vs 6) and variability (Table 7 vs 8) are seen. 

Several factors may have contributed to these differences between vendors, namely in: 

intrinsic SNRs; reduced field-of-view techniques; resolution of the anatomical scan used for 

grey/white matter segmentation; parallel imaging/reconstruction techniques; qMRI protocol; 

between-subject biological differences.

In this study, we employed cardiac gating for some of the contrasts, but not for others, due to 

practical implementation challenges (e.g. DW imaging was cardiac-gated with a relatively 

long TR; qMT and IR were not as the variable TR introduced by gating would pose issues to 

model parameters computation). As a consequence, the non-gated contrasts are likely to 

suffer from stronger physiological noise than gated modalities. This difference is likely to be 

preserved after denoising, since MP-PCA is limited to detecting signatures in matrix SVs 

that are specific to thermal, rather than physiological noise (Veraart et al., 2016a; Veraart et 

al., 2016b). Also, none of our in vivo acquisitions were respiratory-gated. Therefore, all 

contrasts are likely to be affected by respiratory motion in a similar way.

Finally, we point out that we took care to use the same registration transformations to correct 

for motion in all denoising strategies, estimating motion on the non-denoised data. We 
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followed this motion correction strategy on purpose, as our focus was to study the effects of 

thermal noise mitigation on parametric maps. It is possible that the benefits of MP-PCA may 

extend beyond thermal noise mitigation and may also improve post-processing such as 

motion correction, as shown in other studies (Ades-Aron et al., 2018), which will be the 

subject of future investigations. Importantly, we performed motion correction after MP-PCA 

to avoid altering the noise characteristics. This implies that input MP-PCA signal were 

affected by motion-induced fluctuations. However, such physiological fluctuations are 

distinct from thermal noise, and therefore may be still present in the MP-PCA output 

especially when affecting the part of SV spectrum that survives MP-PCA thresholding 

(Veraart et al., 2016a; Veraart et al., 2016b).

5.4 Methodological considerations

We acknowledge a number of potential limitations of our approach.

Firstly, our unified protocol was more comprehensive on the system from vendor 1 as 

compared to vendor 2. This was due to the practical availability of MRI sequences at the 

time of acquisition of the data.

Secondly, the DW imaging protocol for the vendor 2 differed between the system in New 

York and the one in Montreal, with the latter being slightly longer. This was due to a choice 

in the design of the protocol in Montreal, which would enable the inclusion of the scan in 

other ongoing group studies.

Thirdly, it must be acknowledged that a unified acquisition based on reduced-field-of-view 

EPI has some intrinsic limitations. For instance, other readouts could be used for in vivo 

relaxometry of the spinal cord, as for example spin echo, spoiled gradient echo (SPGR) or 

gradient echo asymmetric spin echo (GREASE) imaging (Duval et al., 2017; Ljungberg et 

al., 2017; Smith et al., 2008). In particular the use of EPI for T2 mapping results in 

substantially longer echo times, which practically limits the possibility of measuring signal 

from short T2 components. Such components may be relevant contributors to the T2/T2* 

contrast, given the high levels of myelin water in the spinal cord (Ljungberg et al., 2017). On 

the one hand, a unified readout facilitates the joint computational modelling of multi-

contrast signals compared to a mixed readout approach, while also matching distortions. On 

the other hand, these advantages come at the expense of potential reductions in SNR and 

hence intrinsic quantitative map quality (e.g. T1 and T2 maps in (Smith et al., 2008); note 

that single-shot EPI has lower SNR compared to other multi-shot readouts). Importantly, it 

should be noted that the EPI readout for spinal cord imaging is sensitive to the effects of 

physiological noise (Summers et al., 2006). These can lead to residual edge artifacts at the 

WM/CSF boundary, where strong partial volume is likely. This is apparent for instance in 

our T1 and T2 maps (e.g. higher T2 in WM compared to GM), and is more generally a well-

known issue in quantitative spinal cord MRI (Duval et al., 2017; Ljungberg et al., 2017).

An additional limitation of our work regards the use of median, COV and CNR of 

parametric maps to evaluate the effect of the denoising. Metrics such as CoV have their own 

limitations, since they could decrease (i.e. point towards reduced metric variability) simply 

because of increased blurring. However, this is a common approach when analysing in vivo 
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data, where no “noise-free” ground truth is available. When scan time allows, a different 

approach to validate an image quality enhancement method could be that of acquiring 

additional, high SNR scans, which could act as bench mark data.

Finally, we highlight that our analysis on MP-PCA is intended to provide a practical 

demonstration of the potential of multi-contrast analyses unlocked by a unified readout in 

the spinal cord. Several different denoising strategies could have also been used (Donoho 

and Gavish, 2014; Donoho et al., 2018; Gavish and Donoho, 2014; Shabalin and Nobel, 

2013), and we aim to consider them in future works focussing on comparisons of denoising 

methods.

5.5 Conclusions

Multi-parametric qMRI of the spinal cord with unified readout (i.e. with matched resolution 

and distortions) is advantageous and provides robust microstructural metrics sensitive to 

axonal characteristics, such as the diffusion propagator, relaxometry and myelin. Our unified 

acquisition paves the way to joint modelling of multi-contrast signals, and offers unique 

opportunities for image quality enhancement via joint denoising of multiple contrasts. A 

practical demonstration of this is provided with the MP-PCA technique, which is shown to 

be a useful pre-processing step in spinal cord MRI analysis pipelines.
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List of symbols and abbreviations

AD Axial Diffusivity

b Diffusion weighting strength (b-value)

BPF Bound Pool Fraction

CNR Contrast-to-noise Ratio
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CoV Coefficient of Variation

CSF Cerebrospinal Fluid

Δfc Off-resonance pulse offset frequency

DW Diffusion-weighted

EPI Echo Planar Imaging

FA Fractional Anisotropy

FFE Fast Field Echo

FOV Field-of-view

FSL FMRIB Software Library

g Diffusion weighting gradient direction

GM Grey Matter

GREASE Gradient Echo Asymmetric Spin Echo

IQR Interquartile range

IR Inversion Recovery

k Free-to-bound pool exchange rate

MD Mean Diffusivity

MK Mean Kurtosis

MP Marchenko-Pastur

MRI Magnetic Resonance Imaging

MT Magnetisation Transfer

mTE, multi-TE Multi-echo time

PCA Principal Component Analysis

θ Off-resonance pulse flip angle

qMRI Quantitative Magnetic Resonance Imaging

qMT Quantitative Magnetisation Transfer

ρ Relative Proton Density

RARE Rapid Acquisition with Refocussed Echoes

RD Radial Diffusivity

rFOV Reduced Field-of-view
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SCT Spinal Cord Toolbox

SNR Signal-to-noise Ratio

SPGR Spoiled Gradient Echo

SV Singular Value

T1 Macroscopic longitudinal relaxation time

T2 Macroscopic transverse relaxation time

T2
B Bound-pool transverse relaxation time

T2
B Free-pool transverse relaxation time

TE, TE Echo time

TEDDI TE-Dependent Diffusion Imaging

TI, TI Inversion time

TR, TR Repetition time

WM White Matter

ZOOM Zonally-magnified Oblique Multi-slice
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Highlights

• We present a multi-parametric MRI protocol for in vivo microstructural 

imaging of the spinal cord based on a unified signal readout

• The protocol enables the evaluation of diffusion, relaxation and myelin 

metrics with matched resolution and distortions

• The unified readout enables multi-contrast analyses, a practical demonstration 

of which is given by multi-contrast Marchenko-Pastur Principal Component 

Analysis (MP-PCA) denoising

• Simulations and multi-vendor in vivo data show that MP-PCA is a useful pre-

processing step for spinal cord imaging pipelines

• The performance of MP-PCA greatly benefits from the increased number of 

measurements enabled by the unified readout
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Fig. 1. 
Accuracy and precision of different denoising strategies as obtained from percentage relative 

errors (percentage errors between denoised signals and noise-free ground truth signals) in 

simulations. Panels A to D (top) show median percentage at different SNR levels, and 

represent a measure of accuracy (the closer to zero, the higher the accuracy; DW imaging in 

A, qMT imaging in B, IR imaging in C, mTE imaging in D). Panels E to H (bottom) show 

percentage relative error interquartile ranges at different SNR levels, and represent a 

measure of precision (the closer to zero, the higher the precision; DW imaging in E, qMT 

imaging in F, IR imaging in G, mTE imaging in H). The SNR is evaluated with respected to 

the white matter signal on the synthetic DW scan at b = 0.
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Fig. 2. 
Top: examples of noise-free (A), noisy (B) and denoised (C) matrices from the synthetic 

spinal cord phantom. Bottom (D): SV decomposition of the noise-free and noisy matrices 

shown in A and B, alongside MP-PCA cut off (i.e. edge of noisy SVs MP distribution). MP-

PCA nullifies all SVs starting from the cut off to the right, while it preserves those to the 

left. The figure reports results from the simulation conducted with Gaussian noise at an SNR 

of 15, and considers joint denoising of the whole set of 131 MRI measurements from one 

spinal cord slice made of 44 voxels (concatenation of DW, qMT, IR and mTE imaging).
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Fig. 3. 
Examples of MP-PCA denoising in one subjects who was scanned with vendor 1. Panels A, 

B, C, D show raw and denoised images, obtained according to different strategies. DW 

imaging: panel A; qMT imaging: panel B ; IR imaging: panelC; mTE imaging: panelD. 

Anterior, Posterior, Right, Left respectively indicate subject’s anterior, posterior parts and 

right and left sides.
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Fig. 4. 
Examples of MP-PCA denoising in two subjects, scanned with vendor 2 respectively in New 

York and in Montreal. Panels A, B, C, D show raw and denoised images, obtained according 

to different strategies. DW imaging: images in panels A and C; mTE imaging: images in 

panels B and DAnt., Post., Right, Left respectively indicate subject’s anterior, posterior parts 

and right and left sides.
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Fig. 5. 
Examples of quantitative maps from vendor 1. From top to bottom: FA, MD, MK (DW 

imaging); BPF, k (qMT imaging); T1 (IR imaging); T2 (mTE imaging). Different rows 

illustrate the metrics obtained according to different denoising strategies (no denoising; 

independent denoising of each modality; various combinations of joint multi-modal 

denoising). Quantitative maps are overlaid onto the mean non-DW image and shown within 

the cord only. The same anatomical conventions with regard to subject’s anterior, posterior 

parts and right and left sides as in Fig. 3 are used.
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Fig. 6. 
Examples of quantitative maps from vendor 2 (Siemens Prisma system located in New York, 

USA). From top to bottom: FA, MD, MK (DW imaging); T2 (mTE). Different rows 

illustrate the metrics obtained according to different denoising strategies (no denoising; 

independent denoising of each modality; various combinations of joint multi-modal 

denoising). Quantitative maps are overlaid onto the mean non-DW image and shown within 

the cord only. The same anatomical conventions with regard to subject’s anterior, posterior 

parts and right and left sides as in Fig. 4 are used.
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Fig. 7. 
Examples of quantitative maps from vendor 2 (Siemens Prisma system located in Montreal, 

Canada). From top to bottom: FA, MD, MK (DWI); T2 (mTE). Different rows illustrate the 

metrics obtained according to different denoising strategies (no denoising; independent 

denoising of each modality; various combinations of joint multi-modal denoising). 

Quantitative maps are overlaid onto the mean non-DW image and shown within the cord 

only. The same anatomical conventions with regard to subject’s anterior, posterior parts and 

right and left sides as in Fig. 4 are used.
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Table 1

Sequence parameters used to simulate synthetic multimodal spinal cord scans. In the table, DW, qMT, IR and 

multi-TE stand respectively for diffusion-weighted, quantitative magnetisation transfer, inversion recovery and 

multi-echo time. All of DW, qMT, IR and multi-TE imaging rely on the same spin echo EPI readout with long 

TR (i.e. such that it is hypothesised that TR >> T1). For qMT, each of the 4 repetitions of 11 MT-weighted 

measurements is characterised by a different delay between the end of the off-resonance pulse train and the 

readout, i.e. {17, 95, 173, 251} ms. The off-resonance pulse train in qMT was made of 25 sinc-Gaussian 

pulses (bandwidth: 122 Hz), each lasting 15 ms and with inter-pulse delay of 15 ms (Battiston et al., 2018a).

Scan Echo time
TE [ms]

Inversion time
TI [ms]

Diffusion encoding
strength

b [s/mm2]

Off-resonance pulse
flip angle
θ [°]

Off-resonance pulse
offset frequency

Δfc [KHz]

DW 
imaging

72 No inversion pulse 
used

{0, 300, 1000, 2000, 
2800} s/mm2 with {8, 4, 

10, 18, 28} directions

No off-resonance pulse 
used

No off-resonance pulse 
used

qMT 
imaging

24 No inversion pulse 
used

No diffusion encoding 
used

4 repetitions of {0, 426, 
433, 524, 1429, 1438, 

1440, 1459, 1460, 1462, 
1465}

4 repetitions of {0.00, 1.07, 
1.00, 2.70, 14.13, 3.78, 
13.60, 1.05, 1.01, 3.76, 

8.39}

IR imaging 24 12 linearly spaced in 
[200, 2300] ms

No diffusion encoding 
used

No off-resonance pulse 
used

No off-resonance pulse 
used

multi-TE 
imaging

{25, 40, 55, 
70, 85, 100, 

200}

No inversion pulse 
used

No diffusion encoding 
used

No off-resonance pulse 
used

No off-resonance pulse 
used
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Table 2

Tissue parameters used to generate the synthetic spinal cord scans. Values are inspired by previous literature 

(Battiston et al., 2018a; Grussu et al., 2015; Smith et al., 2008). For white/grey matter, within-tissue variability 

was simulated by drawing parameter values from a Gaussian distribution and assigning the obtained values to 

different voxels. The mean and standard deviation of the Gaussian distributions are reported in the table 

(standard deviation within brackets, equal to 10% of the mean). For the cerebrospinal fluid (CSF), tissue 

parameters were fixed to the same values across all CSF-containing voxels.

Tissue

Relative
proton
density

ρ

Longitudinal
relaxation

time
T1 [ms]

Transverse
relaxation

time
T2 [ms]

Axial
diffusivity

AD
[μm2/ms]

Radial
diffusivity

RD
[μm2/ms]

Free-to-
bound 
proton

exchange
rate

k [1/s]

Free proton
transverse
relaxation

time T2
F [ms]

Bound 
proton

transverse
relaxation

time T2
B [μs]

Bound
pool

fraction
BPF

White 0.70 1000 70 2.10 0.40 2.3 We fix 12 0.14

matter (0.07) (100) (7) (0.21) (0.040) (0.23) T2
F = T2 (0.12) (0.014)

Grey 0.80 1200 80 1.60 0.55 1.7 We fix 12 0.08

matter (0.08) (120) (8) (0.16) (0.055) (0.17) T2
F = T2 (0.12) (0.008)

CSF 1.00 4000 800 3.00 3.00 Not defined 
(BPF = 0) We fix T2

F = T2
Not defined 
(BPF = 0) 0.00
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Table 3

Salient sequence parameters for the qMRI protocol with unified readout implemented on vendor 1 (Philips 

Achieva, London, UK). DW, qMT, IR and multi-TE stand for diffusion-weighted, quantitative magnetisation 

transfer, inversion recovery and multi-echo time. Consistently with simulations, in qMT each repetition is 

characterised by a different delay between the end of the off-resonance train and the readout, i.e. {17, 95, 173, 

251} ms. qMT off-resonance trains were made of 25 sinc-Gaussian pulses (bandwidth: 122 Hz), each lasting 

15 ms and with inter-pulse delay of 15 ms (Battiston et al., 2018).

Scan TE
[ms]

TR
[ms]

RL-
AP

field-
of-

view
[mm2]

Resolution
[mm2]

Slices Bandwidth
[Hz/pixel]

Acceleration Parameters for
quantitative

imaging

Nominal
scan
time

DW 
imaging

71 12000 
(peripheral 

gating, 
delay of 
150 ms)

64×48 1×1 12 slices, 5 
mm-thick, 
3 packages

2132 Half-scan 
factor of 0.6

8 b = 0; b = {300, 
1000, 2000, 

2800} s mm−2 

with {4, 10, 18, 
28} gradient 

directions

16 min : 
41 s

qMT 
imaging

24 7246 64×48 1×1 12 slices, 5 
mm-thick, 
3 packages

2132 Half-scan 
factor of 0.6

1 non-MT 
weighted, 10 MT-

weighted; 4 
repetitions with 
different slice 

ordering (same 
off-resonance 

pulses as in Table 
1)

16 min : 
18 s

IR 
imaging

24 8305 64×48 1×1 12 slices, 5 
mm-thick, 
3 packages

2132 Half-scan 
factor of 0.6

12 linearly-
spaced inversion 
times TI in [100; 

2300] ms; 
spacing of 200 

ms

4 min : 50 
s

multi-
TE 

imaging

Various 12000 (1 
dummy 
scan per 

TE)

64×48 1×1 12 slices, 5 
mm-thick, 
3 packages

2132 Half-scan 
factor of 0.6

7 echo times TE: 
{25, 40, 55, 70, 

85, 100, 200} ms

2 min : 48 
s
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Table 4

Salient sequence parameters for the qMRI protocol with unified readout implemented on vendor 2 (Siemens 

Prisma systems in New York, USA and Montreal, Canada). DW and and multi-TE stand respectively for 

diffusion-weighted and multi-echo time.

Scan TE
[ms]

TR
[ms]

RL-
AP

field-
of-

view
[mm2]

Resolution
[mm2]

Slices Bandwidth
[Hz/pixel]

Acceleration Parameters 
for

quantitative
imaging

Nominal
scan
time

DW 
imaging

85 9194 
(peripheral 

gating, 
delay of 
200 ms)

64×64 1×1 12 slices, 5 
mm-thick, 12 

concatenations

1240 6/8 Partial 
Fourier 
Imaging

4 b = 0; b = 
{300, 1000, 

2000, 2800} s 
mm−2 with {6, 

12, 20, 30} 
directions in 
NY and {20, 
20, 20, 30} 
directions in 

Montreal

11 min : 02 
s in NY; 14 
min : 24 s 

in 
Montreal 
(a higher 

number of 
DW 

images 
acquired in 
Montreal)

multi-
TE 

imaging

various 13000 
(peripheral 

gating, 
delay of 
200 ms)

64×64 1×1 12 slices, 5 
mm-thick, 12 

concatenations

1240 6/8 Partial 
Fourier 
Imaging

7 echo times 
TE: {45, 60, 
75, 90, 105, 

120, 200} ms

1 min : 31 
s
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Table 5

Median values in grey and white matter of qMRI metrics obtained with a scanner from vendor 1 following 

different denoising strategies. Median values from different subjects and scans are pooled so that figures in the 

table report mean and standard deviation (in brackets) across subjects and scans. In all cases, values of metrics 

obtained after denoising are less than 5% different from the values obtained with no denoising.

No
denoising

Individual
denoising

Joint
denoising

DWI-mTE

Joint
denoising
DWI-IR

Joint
denoising

DWI-qMT

Joint
denoising

of all

FA (DWI) GM: 0.70 (0.05)
WM:0.73 (0.04)

GM: 0.70 (0.06)
WM:0.73 (0.04)

GM: 0.70 (0.06)
WM:0.74 (0.04)

GM: 0.70 (0.06)
WM:0.73 (0.04)

GM: 0.71 (0.06)
WM:0.74 (0.04)

GM: 0.71 (0.06)
WM:0.73 (0.04)

MD [μm2/ms] (DWI) GM: 1.01 (0.08)
WM:1.24 (0.09)

GM: 1.02 (0.08)
WM:1.24 (0.09)

GM: 1.02 (0.08)
WM:1.24 (0.10)

GM: 1.02 (0.08)
WM:1.24 (0.10)

GM: 1.03 (0.08)
WM:1.24 (0.10)

GM: 1.03 (0.08)
WM:1.24 (0.10)

MK (DWI) GM: 0.75 (0.18)
WM:0.75 (0.13)

GM: 0.75 (0.18)
WM:0.76 (0.11)

GM: 0.75 (0.20)
WM:0.77 (0.11)

GM: 0.74 (0.21)
WM:0.76 (0.11)

GM: 0.76 (0.19)
WM:0.78 (0.11)

GM: 0.76 (0.19)
WM:0.77 (0.11)

BPF (qMT) GM: 0.11 (0.01)
WM:0.10 (0.01)

GM: 0.11 (0.01)
WM:0.10 (0.01)

NA NA GM: 0.11 (0.01)
WM:0.10 (0.01)

GM: 0.11 (0.01)
WM:0.10 (0.01)

k [1/s] (qMT) GM: 1.73 (0.14)
WM:1.52 (0.07)

GM: 1.75 (0.13)
WM:1.53 (0.07)

NA NA GM: 1.75 (0.14)
WM:1.53 (0.08)

GM: 1.75 (0.13)
WM:1.54 (0.08)

T1 [ms] (IR) GM: 1108 (22)
WM:1131 (5)

GM: 1111 (22)
WM:1131 (5)

NA GM: 1110 (22)
WM:1130 (5)

NA GM: 1108 (21)
WM:1130 (6)

T2 [ms] (mTE) GM: 83.8 (5.9)
WM: 94.8 (2.9)

GM: 82.7 (5.6)
WM: 93.4 (3.1)

GM: 83.3 (5.8)
WM: 94.2 (2.9)

NA NA GM: 83.0 (6.2)
WM: 93.8 (2.8)
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Table 6

Median values in grey and white matter of qMRI metrics obtained with scanners from vendor 2 following 

different denoising strategies. Median values from different subjects and scans are pooled so that figures in the 

table report mean and standard deviation (in brackets) of across subjects and scans. In all cases, values of 

metrics obtained after denoising are less than 5% different from the values obtained with no denoising.

No
denoising

Individual
denoising

Joint
denoising

DWI-mTE

FA (DWI) GM: 0.68 (0.02)
WM: 0.78 (0.01)

GM: 0.68 (0.02)
WM: 0.78 (0.01)

GM: 0.68 (0.02)
WM: 0.78 (0.01)

MD [μm2/ms] (DWI)
GM: 0.99 (0.09)
WM: 1.07 (0.08)

GM: 0.98 (0.09)
WM: 1.07 (0.08)

GM: 0.98 (0.09)
WM: 1.07 (0.08)

MK (DWI) GM: 0.83 (0.05)
WM: 0.83 (0.06)

GM: 0.81 (0.07)
WM: 0.83 (0.06)

GM: 0.82 (0.06)
WM: 0.83 (0.07)

T2 [ms] (mTE) GM: 89.1 (2.7)
WM: 104.6 (1.2)

GM: 87.8 (2.7)
WM: 102.7 (2.0)

GM: 88.4 (2.7)
WM: 104.1 (1.9)
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Table 7

Percentage CoV in grey and white matter for the various qMRI metrics obtained from vendor 1 (London, UK) 

with different denoising strategies. The table reports CoV = 100 iqr/median, where iqr and median are 

respectively the interquartile range and the median of a metric within grey/white matter. CoV from different 

subjects and scans are pooled so that figures report mean and standard deviation (in brackets) of CoV across 

subjects and scans. Reductions in mean CoV with more than 5% as compared to the case with no denoising 

are labelled in bold font and grey shadowing, with the percentage reduction of CoV reported explicitly (note 

that no increase of mean CoV greater than 5% is observed).

No
denoising

Individual
denoising

Joint
denoising

DWI-mTE

Joint
denoising
DWI-IR

Joint
denoising

DWI-qMT

Joint
denoising of

all

FA CoV [%] (DWI) GM: 23.9 (3.3) 23.7 (3.3) 23.6 (3.6) 24.4 (4.5) 23.2 (4.7) 22.6(4.6),−5.4%

WM: 24.3 (2.8) 24.2 (3.0) 23.8 (3.1) 23.8 (3.1) 23.2 (2.7) 23.3 (2.8)

MD CoV [%] 
(DWI)

GM: 31.2 (15.5) 30.7 (14.4) 30.7 (13.5) 30.5 (13.9) 29.6 (15.0) 29.1(15.8),6.7%

WM: 56.7 (3.3) 58.3 (4.1) 58.0 (4.2) 57.8 (4.1) 57.6 (2.7) 57.6 (3.4)

MK CoV [%] 
(DWI)

GM: 70.6 (65.5) 64.3(59.6),−8.9% 69.2 (76.6) 71.1 (81.6) 61.7(73.2),12.6
%

59.3(70.0),
−16.0%

WM:58.9 (44.0) 53.4 (39.7),
−9.3%

51.9(37.9),
−11.9%

52.7(39.3),
−10.5%

50.7(39.1),
−13.9%

50.9(39.2),
−13.5%

BPF CoV[%] 
(qMT)

GM: 44.5 (7.4) 42.5 (8.7) NA NA 42.3 (8.1) 40.9(7.1),−8.1%

WM:73.4 (12.3) 72.5 (14.6) 71.5 (15.7) 70.9 (14.9)

k CoV [%] (qMT) GM: 38.0 (9.9) 38.8 (11.0) NA NA 37.9 (10.4) 37.1 (10.0)

WM:75.6 (16.6) 74.1 (15.6) 73.5 (15.8) 73.2 (15.8)

T1 CoV [%] (IR) GM: 11.7 (6.9) 10.9(5.4),−6.8% NA 10.9(6.3),
−6.8%

NA 10.2(6.6),−12.8%

WM:41.7 (39.8) 41.5 (40.1) 41.7 (40.2) 39.9 (40.6)

T2 CoV [%] (mTE) GM:27.8 (9.5) 28.2 (10.2) 27.5 (10.5) NA NA 26.5 (6.8)

GM:27.8 (9.5) 28.2 (10.2) 27.5 (10.5) 43.7 (13.1)
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Table 8

Percentage CoV in grey and white matter for the various qMRI metrics obtained from vendor 2 (New York, 

NY, USA and Montreal, Canada) with different denoising strategies. The table reports CoV = 100 iqr/median, 
where iqr and median are respectively the interquartile range and the median of a metric within grey/white 

matter. CoV from different subjects and scans are pooled so that figures report mean and standard deviation (in 

brackets) of CoV across subjects and scans. Improvements of mean CoV greater than 5% compared to the case 

with no denoising (i.e. lower CoV) are labelled in bold font and grey shadowing, with the percentage reduction 

of CoV reported explicitly (note that no increase of mean CoV greater than 5% is observed).

No denoising
Individual
denoising

Joint denoising
DWI-mTE

FA CoV [%] (DWI) GM: 32.6 (1.0) 33.1 (1.7) 33.1 (2.8)

WM: 23.2 (1.4) 22.8 (2.0) 22.9 (1.9)

MD CoV [%] (DWI) GM: 29.7 (7.1) 30.1 (7.3) 28.9 (4.7)

WM: 39.7 (4.1) 41.0 (3.4) 40.6 (4.9)

MK CoV [%] (DWI) GM: 46.9 (7.8) 39.7 (9.2),−15.4% 38.9 (8.1),−17.1%

WM: 52.0 (6.7) 44.1 (4.3),−15.2% 44.3 (5.8),−14.8

T2 CoV [%] (mTE) GM: 26.3 (1.9) 25.3 (2.5) 26.5 (0.9)

WM: 39.4 (8.1) 40.1 (8.1) 39.7 (7.9)
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