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SUMMARY

Large-scale population screening and in-home monitoring for patients with Parkinson’s disease 

(PD) has so far been mainly carried out by traditional healthcare methods and systems. 

Development of mobile health may provide an independent, future method to detect PD. Current 

PD detection algorithms will benefit from better generalizability with data collected in real-world 

situations. In this paper, we report the top-performing smartphone-based method in the recent 

DREAM Parkinson’s Disease Digital Biomarker Challenge for digital diagnosis of PD. Utilizing 

real-world accelerometer records, this approach differentiated PD from control subjects with an 

area under the receiver-operating characteristic curve of 0.87 by 3D augmentation of 

accelerometer records, a significant improvement over other state-of-the-art methods. This study 

paves the way for future at-home screening of PD and other neurodegenerative conditions 

affecting movement.

In Brief

The widespread use of wearable devices in our daily life has provided an ideal platform for the 

management of motor-related neurodegenerative diseases such as Parkinson’s disease, while the 

application of such systems in the real-world situation has faced many challenges from in-home 

environments. In this study, we show how artificial intelligence could facilitate the efficient 
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screening of Parkinson’s disease in the general population and how interpretable artificial 

intelligence could provide useful information to understand the motor-related pathology of 

Parkinson’s disease.

Graphical Abstract

INTRODUCTION

Application of artificial intelligence to digital health monitoring opensthe doorto in-home 

disease screening and monitoring using widely available devices such as digital watches or 

smartphones. Parkinson’s disease (PD) is a common neurodegenerative disease whose 

defining clinical features are movement dysfunction, namely bradykinesia (e.g., slowness of 

movement) associated with one or more other features of rest tremor, rigidity, or postural 

instability.1–5 Conventional clinical diagnosis depends on defined clinical criteria relying on 

human expert evaluation, which may be difficult to access and delays identification and 

treatment of PD.4,6–9 Similarly, clinical management of PD and the great majority of clinical 

research on PD rely on face-to-face in-clinic evaluations, which may not capture sufficient 

or critical data. In-home evaluation, so far limited in large-scale clinical use, has the 

potential to significantly enhance accessibility to and reduce costs of clinical research via the 

currently widely available digital devices and generalizable algorithm design.10
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Inertial sensors, such as accelerometers and gyroscopes, were originally introduced into 

smartphones to alert holders of sudden device falls and for maintaining display images 

upright.11 These sensors can provide useful instruments for detecting human motion and 

posture, and have been applied extensively in this context.12,13 A hindrance in utilizing 

smartphones for at-home study of PD is that the evaluation of PD movement usually needs 

to be corrected for specific tasks. For instance, when measuring the resting tremor, the 

clinician has to ensure that the patient’s hands are relaxed on the legs, and when measuring 

postural tremor, the patient’s arms must remain outstretched with fingers apart for several 

seconds. Another major challenge for in-home monitoring of PD is that movement 

recordings obtained by these mobile devices can be problematically influenced by the 

surrounding environments, i.e., the topographical orientation of the road, local gravities, and 

the positions and orientations of these devices when placed on the patient’s body.14 These 

unrelated factors may create noise in the data used to extract PD-related pathological 

information from patients’ walking records. This is a particular problem for multiple-

parameter machine-learning models such asdeeplearning, which carrythe riskof overfitting.
15

A recent Dialog for Reverse Engineering Assessments and Methods (DREAM) PD Digital 

Biomarker (PDDB) Challenge called for methods to accurately identify PD in the general 

population using smartphone accelerometer and gyroscope records. Data science challenges 

such as DREAM provide participants with a training dataset and a testing dataset for a one-

shot evaluation, helping to identify current state-of-the-art methods for specific problems 

without overfitting. We describe the top-scoring solution for this challenge, which performed 

significantly better than the prior state-of-the-art methods, such as Deep Learning by 

Convolutional Recurrent Attentive Neural Networks (CRANNs), as well as traditional 

machine-learning methods based on rigorously extracted features from Fourier transform 

and discrete wavelettransform.16,17The key to improved performance was a generic 

methodology reflecting the physical properties of mobile device records. This method can be 

generalized to any accelerometer-based and/or gyroscope-based disease identification 

approach.

RESULTS

Source and Descriptions of Smartphone-Collected Accelerometer and Gyroscope Data

Our study was based on the latest released DREAM dataset (mPower) contributed by Sage 

Bionetworks, whereby a total of 2,804 subjects (656 self-reported patients and 2,148 healthy 

controls) participated in a simple walking evaluation and agreed to share their data with the 

broader research community.17,18 All participants contributed 34,632 walking records to the 

dataset. In the DREAM dataset (mPower), each participating individual may take multiple 

tests, termed “records.” The walking test consisted of two 30-step walking phases, here 

denoted as “Outbound” and “Return,” whereby the participant was asked to walk along a 

straight line. The two walking phases were interrupted by 30 s of quiet standing, here 

denoted as “Rest.” A representative walking record (outbound and return) will have an 

irregular cyclic pattern, and a representative quiet standing record (rest) will be relatively 
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stable, with initial and ending noise periods (Figure 1A). In PD, tremors may occur during 

the quiet standing period, and oscillations may be observed.

Two sets of independent data existed in the phone records to provide information on the 

participants’ body movement as they were captured by different inertial sensors: 

acceleration, captured by an accelerometer (represented as a spring-attached rigid body), and 

rotationRate, captured by a gyroscope (represented as a spinning well with a fixed center) 

(Figure 1A). Both types of the signals could be represented as a 3Xn matrix, where n is the 

total sampled length of the record between ~2,000 and ~3,000 points, as the sampling frame 

is 100 per second for a total of 20–30 s. Our machine-learning PD diagnostic model would 

exploit PD pathological information from the two aforementioned independent 

accelerometer and gyroscope records.

Performance of Deep Convolutional Neural Network Model in Independent Cross-Validation 
and the DREAM PDDB Challenge

Prior studies of gait and gait abnormalities in neurodegenerative disorders used traditional 

signal-extraction techniques such as Fourier transform or wavelet analysis to identify 

extracted features, for example, walking pace, from accelerometer or gyroscope data.19–25 

Classifiers such as Support Vector Machine or K-Nearest Neighbors were applied to 

extracted features to predict disease associations.26–30 These methodologies share the 

common limitation of feature extraction performed independently from the machine-

learning step so that there is inevitably redundant information in the extracted features, 

diluting model power, while useful information is missed. Therefore, we implemented a 

deep convolutional neural network (DCNN), which can directly process the continuous 

accelerometer and gyroscope records (Figures 1B–1D).

Our model achieved an average area under the receiver-operating characteristic curve 

(AUROC) of 0.8558 (95% confidence interval [CI] 0.8529, 0.8588) in the 5-fold cross-

validation using the same mPower dataset. The cross-validation results showed the 

consistently robust performance of our model. Our deep-learning prediction model also took 

first place in the DREAM PD prediction competition, in comparison with other teams that 

employed the aforementioned traditional machine-learning methods.31

Data Augmentation Significantly Improves Model Performance and Stability

Because convolutional neural networks (CNNs) have many parameters, deep-learning 

models are prone to overfitting. To combat overfitting, diverse data-augmentation techniques 

have been developed in the image and audio fields.32 In the past, three-dimensional (3D) 

information of movement in space has only been analyzed via intuitive approaches. For 

example, summed square, mean, or variance has been utilized to remove the differences in 

reference frames.33,34 To address the specific properties of an object moving in 3D space, 

we implemented data normalization and augmentation methods in the deep-learning 

framework (Figure 1D). We first quantile normalized the original 3D waveform signals by 

each axis. After normalization, we applied three types of data-augmentation strategy to the 

accelerometer and gyroscope recordings: timewise scaling, to mimic that the records are 

taken at a faster or a slower speed; magnitude scaling, to mimic the magnitude of the 
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acceleration or rotation-rate disparities among records; and random rotation, to correct the 

disparity of phone orientation when a patient is taking the walking test (Figure 1D).

Without data augmentation the model quickly overfitted, as seen in the increase and 

bumpiness in the test error along a continuous drop in training error (Figure 2A). We found a 

significant improvement in performance when using augmentation, from 0.8261 (95% CI 

0.8231, 0.8292) to 0.8496 (95% CI 0.8465, 0.8496) (p < 1 × 10−6) (Figures 2C, 2D, and 

S1C). On the other hand, both training and testing errors steadily dropped and were 

stabilized at a similar speed when we applied augmentations, indicating alleviation of 

overfitting (Figures 2B and S1B). We compared model performance with and without axis-

wise normalization, and found substantial improvement by using normalization after 

augmentation was applied: 0.8558 (95% CI 0.8531, 0.8588) versus 0.8496 (95% CI 0.8465, 

0.8496) (p < 1 × 10−6) (Figures 2C and S1E). This indicates that disparities in holding 

position leading to shifts in the axes constitute a confounding factor that is appropriately 

addressed by per-axis normalization.

We also compared the performance of models using either accelerometer or gyroscope data 

as input, whereby performance was indistinguishable (Figures 3A and 3D). Furthermore, 

when we added accelerometer data to gyroscope data through a variety of network structures 

with six input channels, we did not observe an improvement in performance compared with 

either acceleration or rotationRate alone (Figure S2). We found that using summed squared 

values at each time point resulted in a substantial drop in performance (Figures 3B and 3E) 

(AUROC = 0.7971, 95% CI 0.7938, 0.8006) compared with using 3D coordinates with 

augmentation techniques discussed above (AUROC = 0.8558, 95% CI 0.8529,0.8588 (p < 1 

× 10−6), likely due to the loss of information. We also found that taking the maximal 

prediction of each individual performed better than taking the mean prediction (Figures 3C 

and 3F), 0.8558 (95% CI 0.8531, 0.8588) versus 0.8294 (95% CI 0.8264,0.8325) (p < 1 × 

10−6). This may imply that the symptoms of PD vary temporally in individuals and that the 

most severe records are more representative of the disease phenotype. Standard DCNN 

models, such as VGG-16 and its alternatives, were also tested in our experiments to search 

for the optimal deep-learning model (Figures S3–S5).35

Quiet Standing Records Predict PD More Accurately Than Outbound/Return and Were Paid 
Most Attention by DCNN Models

We compared the performance of the model using outbound walking, quiet standing, and 

return walking records as model inputs. Quiet standing (Rest) records performed 

substantially better than outbound and return walking records: 0.8548 (95% CI 0.8517, 

0.8578) versus 0.7889 (95% CI 0.7802, 0.7971) and 0.7705 (95% HCI 0.7623, 0.7795) 

(Figures 4A–4C). Including outbound and return walking records did not improve the 

performance of the model (Figure S6).

To examine which part of the records supports PD predictions by the deep-learning model, 

we carried out a saliency map analysis.36 A saliency map is a visualized map signifying the 

first layer gradient of the neural network, where a higher value indicates the stronger signal 

in the original record that is captured by the CNN model.37 Saliency maps from both PD 

subjects and healthy controls revealed that our model extracted strongest PD prediction 
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signals from quiet standing records and also from apparent quiet standing interruptions in 

both outbound and return walking records (Figures 4D and S7–S12). During quiet standing, 

all movement was expected to be involuntary, and the model was robust for detecting 

involuntary movements, such as tremors, as indicated by a waveform of low magnitude and 

high frequency (Figure 4D), a typical PD feature.38–41 This provided an insight into the 

mechanism for the results above that quiet standing (Rest) records gave more accurate 

predictions than the othertwo types of movement records.

Meanwhile, our model also extracted relatively higher signals from the walking records with 

higher frequency and more disturbed waveforms, an obviously more perturbed walking 

pattern compared with healthy controls, as shown on the saliency maps of Outbound and 

Return records (Figures 4D and S7–12). Rather than the clear, synchronized waveform of 

the walking records of the healthy controls, the waveform of the walking records of PD 

patients is more curvy and disturbed, suggesting that the PD patients experienced struggles 

during walking and that their steps were unsteady. Moreover, the wavelength, or the distance 

between two peaks, of PD patients’ walking records was much smaller than that of healthy 

controls, suggesting they were taking smaller steps and shorter strides, which was also a 

typical PD feature.3 The above visualization of the features extracted by the DCNN model 

suggests that our deep-learning model developed its own understanding of PD walking 

pathology by recognizing especially resting tremor and other typical PD gait characteristics.

Model Performance and Predictions in Groups of Different Demographic Status

The mPower dataset also provided self-reported demographic information, year of the first 

PD diagnosis, and Unified Parkinson’s Disease Rating Scale (UPDRS) Part II score.18 We 

analyzed the model performance in different demographic subgroups of the mPower dataset 

(Figure 5). We found better performance of our model in female than in male subjects 

(Figure 5C). One potential reason for this is that women on average took more tests than 

male participants (19.08 versus 10.47 records per person). When participants were stratified 

by age, model performance decreased steadily with aging (Figure 5D).

We also explored model predictions in other subgroups defined by demographic variables, 

such as participant education level, employment, and marital status. We found correlations 

between PD classification and higher educational levels as well as marital status and 

retirement status (Figures 6C–6E). Similar correlations were reported in some previous 

large-scale demographic screening studies, possibly reflecting the composition of study 

cohorts.42,43 While no substantial correlation was observed when we compared the PD 

classification with duration of disease as assessed by self-reported years of diagnosis, a 

strong correlation (Pearson’s r = 0.421) was observed with self-reported UPDRS Part II 

score, which reflected the self-examined motor function in daily activities (Figures 6A and 

6B).

Training Set Size and Model Performance

To test the relationship between the size of the training set and model performance, we 

tested a series of training set sizes and evaluated model performance (Figure 7). Substantial 

AUROC improvement was observed as training size increased from zero to 500 individuals 
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or 5,000 records, with model performance plateauing subsequently. This result suggests that 

the dataset is adequate for training a generalizable model and that our model achieved 

excellent performance despite the variance and limitations of the training set. Also, the 

model predicts best in individuals with 3–5 records. Typically, with more records the 

predictions should be better. However, since only a few people in our dataset had more than 

five records, a decreasing model performance in individuals with more than five records is 

more likely to be the result of sampling bias.

DISCUSSION

We describe a significant steptoward population-level screening for PD. Our application of 

deep learning to smartphone-based gait data from a simple walking task demonstrated 

superior accuracy (AUROC = 0.86) when tested on an independent blind test set compared 

with the second-placed method, which was the prior state-of-the-art method for predicting 

PD using CRANNs (AUROC = 0.7), as well as traditional machine-learning and hand-

crafted feature-extraction methods using wavelet or Fourier transform.16,17 Our model also 

achieved an average AUROC of 0.856 in 5-fold cross-validation on 34,632 walking records 

of 2,804 participating subjects, showing consistent generalizability and potential for future 

large-scale application.

The big-data era has produced opportunities for remote at-home monitoring of chronic 

diseases such as PD. The biggest challenge, however, in utilizing these datasets is how to 

extract the gold from the mud—in other words, how to extract the information that really 

matters in terms of pathophysiology from extensive noise in the coarse real-world data, and 

how to deal with the unavoidable missing values.

We applied two major strategies to address spatiotemporal bias within these real-world 

motion records to detect PD features. First, we identified the major spatial bias that could 

confound the walking record of each individual, such as the placement of the phone when 

recording the motion of participants. A novel augmentation method was applied to simulate 

the random reference frames of accelerometer records. Second, we noticed that the records 

taken by the same individual may not be equally reliablefor PD identification, asthey might 

be taken at time points reflecting different physical and medical conditions. This was solved 

by pulling out the most severe record of each individual, i.e., model ensemble from the 

maximum predictions. When incorporating these strategies into an appropriately tuned 

DCNN model, the performance is further boosted, as deep learning is suitable for handling 

complicated patterns in continuous time-series input, demonstrated by our first place in the 

DREAM PDDB Challenge.31

Our results suggest that resting tremor might be an important indicator of parkinsonian 

movement for efficient PD screening in the general population, as quiet standing records and 

the walking records with longer standing periods provided a more accurate prediction of PD. 

The importance of resting tremor in PD’s digital detection was also observed and pinpointed 

in previous studies.44–46 Our model also paid the most attention to quiet standing periods as 

revealed by the model’s saliency map (Figure 4). These results indicated that resting tremor 

was the most salient feature automatically identified by our DCNN model to distinguish 
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between PD and non-PD participants. Although not all PD patients experience tremor, it is 

recognized as a common feature, present in 70%−100% PD patients,47,48 with resting tremor 

being a relatively specific feature.

We did not observe a significant correlation between our model’s prediction and disease 

duration (Figure 7A). We did, however, observe a strong correlation between our model’s 

prediction and self-reported UPDRS Part II scores (Figure 6A). The poor correlation 

between disease duration and PD prediction could be because of variation in PD 

progression, effects of treatments, or inaccurate recall of the year of first PD diagnosis. As 

tremor often develops early in PD patients,49 differences between early and advanced 

patients might not be very distinguishable by our model.

Our model provided a promising instrument for enhancing telemedicine and early screening 

of PD. Identification and accurate diagnosis of PD is often delayed, likely causing increased 

morbidity in the periods prior to diagnosis.50 Fang et al., for example, showed that head 

injury occurs more frequently in the year prior to diagnosis of PD.51 Therefore, earlier 

identification and large-scale screening of PD might significantly improve clinical outcomes 

in PD. Willis et al. also showed that a substantial fraction of PD patients in the United States 

do not obtain access to neurologist care.52 Accuracy of initial clinician-based diagnosis may 

be as low as 75%−80%, although it often improves markedly with serial patient follow-up.
53–55 An algorithm with satisfactory performance in evaluating real-world in-home data 

might provide useful screening of potential PD patients and earlier referral for expert 

evaluations.

While our PD detection model achieved satisfactory performance with crowd-sourced data, 

it is important to note that there are limitations of our algorithm inherent to the nature of this 

dataset. It is possible that the mPower dataset used in this study overenrolled tremor-

dominant PD subjects. It is also likely that many of the PD subjects enrolled in this dataset 

were treated, and since resting tremor does not always respond robustly to treatment,56 the 

relative sensitivity of tremor detection (versus detection of bradykinesia) for identifying PD 

might be enhanced. It is also plausible that smartphone monitoring and our model captured 

PD-specific resting tremor that cannot be observed by the naked eye. To carefully evaluate 

the specificity and sensitivity of this approach, future evaluations should include robust 

numbers of subjects with other forms of tremor and other forms of parkinsonism. The 

mPower dataset is imbalanced in terms of age, class, and gender (Figure 5). While we 

rebalanced the training set by oversampling the scarcer PD samples, mPower is under-

represented in age-matched controls. The non-PD participants are mainly younger than 45 

years. This might result in bias in our model given that our model performs better in the 

younger group (under age 45) than in the older group (over age 70) (Figure 5D). 

Furthermore, since the demographic information and clinical diagnosis of PD were self-

reported by the participants through a smartphone App rather than by professional clinicians, 

we could inevitably have used inaccurate information in building the PD detection model. 

The lack of clinical data, such as UPDRS Part III subscores and total scores, evaluations in 

“ON” and “OFF” conditions related to levodopa intake, total levodopa equivalent daily 

doses, and Hoehn and Yahr scores, are limitations of this dataset. Extension of our model 
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would benefit from involvement of neurologists and PD specialists in the data-collecting 

steps.

While our PD identification model is based on simple walking task data, smartphones can 

also collect multimodal data from subjects, raising the prospect of multimodal evaluations to 

identify PD. The mPower program also collected other PD-relevant performance data 

including voice, tapping, and memory.18 Integration of deep-learning models based on all 

data might generate more reliable assessments of PD. The techniques used in this study are 

generic, such as the augmentation by altering the reference frame of the accelerometer or 

gyroscope data, and can be used for monitoring other diseases with smartphones, watches, 

or professional medical devices57 in other neurologie disorders.58–61 Sleep quality and 

breathing patterns associated with sleep disorders are also frequently monitored with 

accelerometers and gyroscopes.62–64 In-home monitoring of PD through wearable sensors 

may also elevate the effectiveness of therapy in real-world settings, as it can provide useful 

information for clinicians to evaluate medication regimens or monitor deep brain stimulation 

parameters.65 Wider application of these techniques may facilitate widespread use of 

smartphone gyroscope and accelerometer data in the digital health area.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact—Yuanfang Guan isthe lead contact ofthis studyand can be reached 

through : gyuanfan@umich.edu.

Materials Availability—The machine-learning models generated in this study can be 

obtained via our public github repository: https://github.com/GuanLab/PDDB.

Data and Code Availability—All code associated with this paper can be freely accessed 

and downloaded via https://github.com/GuanLab/PDDB/. The mPowerdataset used in this 

paper can be accessed via the mPower public research portal: https://www.synapse.org/#!

Synapse:syn4993293/wiki/247859.

Collection of Mobile Phone Accelerometer and Gyroscope Data from the Participants

Motion-related data collected from smartphones consisted of the following six categories: 

time-stamp, attitude, rotationRate, userAcceleration, acceleration, and gravity. The latter five 

categories were sampled every 0.01 s (100 frames/s). Following the mPower App protocol, 

participants signal the test start on their smartphone, pocket the phone, and perform the task, 

then take their phone out and stop the test. Each participant is able to make multiple records 

numbering from 1 to over 500, and at different time points, such as when they are feeling at 

their best (just after they have taken the medication) or at their worst (immediately before 

the medication) and othertimes. Demographic and clinical information were self-reported 

through the App.

The aforementioned six categories of data provide two independent sources of information. 

The first source of information is acceleration, taken from the accelerometer, which 

describes the change of speed of a mass point. This change is represented by projections 
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along three orthogonal x, y, z axes in 3D space. userAcceleration is equal to the acceleration 
that the user imparts to the device plus local gravity.

The second source of information is the rotationRate taken from the gyroscopes, which 

describesthe speed ofthe rotation around the reference frame: pitch for x, roll for y, and yaw 

for z.66 For rotationRate, the mobile phone is considered as a rigid body having 6° 

offreedom in motion (acceleration + rotation). Even if the center ofthe phone is still, or 

moving at a constant direction and speed, the rotationRate is not necessarily zero, 

becausethe phone can be rotated at its center point. The reference frame of the rotation is the 

phone. Both attitude and rotationRate recorded in the cell phones contain the same 

information about the rotation, but are expressed in different mathematical terms. 

rotationRate is expressed directly by x, y, z, which stand for pitch, roll, and yaw, 

respectively, while attitude is expressed as a unit vector (x′,y′, z′) and an angle (w) around 

thisvector between 0° and 360°, according to Euler’s rotation theorem.

Building Augmentation Methods for Accelerometer and Gyroscope Records

Adata-augmentation strategy isvital foroverfitting prone machine-learning algorithms. 

Before being fed into the DCNN, we transformed the raw data by quantile normalization and 

three data-augmentation operations (Figure 1D and Supplemental Information).We carried 

two loss-included data-augmentation strategies, by timewise rescaling between 0.8- and 1.2-

fold to mimic that the records are taken at a faster or a slower speed, and magnitude 

rescaling between 0.8- and 1.2-fold to mimic the magnitude of the acceleration or rotation-

rate disparities among records.

Also, the placement of the phone on the subject’s body during movement can have a 

fundamental impact on the measurement by inertial sensors. For example, for a phone lying 

flat on a table, its z-axis acceleration is around 9.8 m2/s while the acceleration along the x 
and y axes is zero. If we keep the phone still but hold itvertically, its y axis acceleration 

becomes 9.8m2/s while the acceleration along the othertwo axes iszero. Normalization 

removes such disparities. Thus, we used a transformation of the reference frame to create 

loss-free augmentations of the same record (see Supplemental Information). After a record is 

transformed by augmentation, it is fed into the deep learning network (Figures 1B and 1C). 

A single mobile record can be augmented to generate multiple records randomly on-the-fly. 

This means every epoch of the same records in the training set can be randomly transformed 

into a new record. For example, if the training process stopped early, say, converged at the 

43rd epoch, 43 new records would be generated from the same training record.

Applying DCNN to Continuous Walking Records

Deep learning is now the preferred algorithm for datasets with spatial (e.g., image) and time 

(e.g., sound) continuity.67 Feature extraction in deep learning is obtained by convolution 

operations that extract local information and progressively summarize local information 

intoaglobal prediction (Figure 1B). Because network parameters are trained directly to fit 

prediction targets, deep learning is a moredirect prediction approach compared with 

traditional feature extraction, which is followed by classification or regression. In many of 

the machine-learning analyses of data with spatial and time continuity, performance of the 
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deep-learning models reaches or surpasses human performance (i.e., human visual 

interpretation, hand labeling, ordiagnoses by clinicians).68,69

Convolutional neural networks (CNNs) learn information derived from time- and space-

continuous data and have been widely used to address various biomedical problems.70,71 

Mobile accelerometer and gyroscope records exhibit time and space continuity, and deep 

CNNs are a natural route to build models for such data. We constructed a one-dimensional 

CNN using Theano and Lasagne (v.1.0) Python libraries, where the input channels were the 

x, y, z values of acceleration or rotation rates. The DCNN model consists of nine building 

blocks, each consisting of a maximum pooling layer, convolution layer, and batch 

normalization layer (Figure 1B). The features extracted by convolution layers then are put 

into a dense layer for finalized output of PD prediction.

On each occasion when a record was fed into the CNN, the three augmentations mentioned 

in the previous section were executed. This allowed the network to assess more different 

examples. Models for quiet standing and walking periods of records were trained 

independently.

Assembling the Multiple Models’ and Records’ Predictions of the Individuals

For each individual, we took the maximal value across all outbound walking, quiet standing, 

and return walking records, respectively. The outputs of these three types of models were 

stacked together in a random forest learner for the final prediction (Figure 1C). For each 

record, which contained a section of walking and a section of quiet standing, we calculated 

the mean values of the five models for walking and quiet standing, respectively. According 

to the mPower App, participants were instructed to carry out the walking task including two 

sessions of walking (Outbound and Return) interrupted by one session of quiet standing 

(Rest). Some participants might stop after the first walking session, leading to missing quiet 

standing and return walking data in a record. If quiet standing data were missing, we first 

searched for other quiet standing records from the same individual and used the mean 

prediction of those records to replace the missing data. If such a replacement was not found, 

we replaced its predicted score of its outbound walking data if available. If an individual had 

more than one record, we took the maximum or the average value of all records for 

outbound/return walking and quiet standing separately. The final prediction score was 

combined by a random forest learner from prediction scores of the walking and quiet 

standing records of the individual.

Visualization of Features Extracted by DCNN Models via Saliency Maps

To better interpret the information extracted by our PD prediction deep-learning model, we 

drew saliency maps ofthe DCNN model corresponding to the walking records of patients 

and healthy individuals by computing the gradient of the last layer corresponding to the 

input layer. Both negative and positive saliency were computed and visualized (see 

Supplemental Information). The saliency maps show significante stronger signals during 

quiet standing periods, as the example in Figure 4D shows. More examples can be found in 

Figures S7–S12.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Deep convolutional neural networks enable efficient screening of Parkinson’s 

disease

• Temporal and spatial data augmentation improves detection in in-home 

environments

• Interpretable AI shows that deep learning identifies classical parkinsonian 

characteristics

• The method paves a way for future population-level screening of motor-

related disease
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THE BIGGER PICTURE

In-home digital surveillance has been proposed as the future for chronic, 

neurodegenerative disease such as Parkinson’s disease (PD), which can be monitored by 

wearable devices from its motor-related symptoms. However, the disparities between 

uncontrolled in-home environments have introduced obstacles to the population-level 

application of digital screening of PD. In this study, we developed the first-place solution 

in the recent DREAM Parkinson’s Disease Digital Biomarker Challenge, which calls for 

optimal algorithms to extract digital biomarkers of PD from crowd-sourced movement 

records. To combat the spatial and temporal bias in different movement records, we 

applied a variety of data-augmentation methods, which significantly improves the 

performance of the deep-learning model. Besides PD, our method provides a path for 

large-scale population screening and in-home monitoring using wearable devices in other 

related neurodegenerative disorders.
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Figure 1. Walking Test Data Provided in the DREAM PDDB Challenge and Our Deep-Learning 
Model
(A) Example of the walking activities carried out by subjects and accelerometer records 

during the three activities. During the walking test, the velocity of participants is recorded by 

the two sets of sensors implemented in their phones—gyroscope and accelerometer—

represented by a set of free-spinning wells and a rigid body attached to a spring.

(B) The architecture of the convolutional neural network in this study. The numbers at the 

top of the boxes indicate the size of the layers and the numbers of the filters.

(C) The model ensemble method in this study. We trained five models by reseeding the 

training and validation sets, for outbound walking, rest (quiet standing), and return walking, 

respectively. For our final prediction, we assemble the predictions of the 15 modelsof 

outbound/rest/return by random forest and create a final prediction for each individual.

(D) Data-augmentation strategies applied in this study. The original record is first 

normalized by quantile normalization and then applied to three data-augmentation 

operations, namely magnitude perturbation, temporal perturbation, and random rotation.
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Figure 2. Normalization and Data Augmentation Improves the Performance and Stability of the 
Model
(A and B) The dynamics of training and testing loss during 100 epochs of training process 

for models applying no normalization and data augmentation (using raw signal) and both 

normalization and augmentation. Models that achieved the lowest test loss were used as final 

models to avoid underfitting or overfitting to the training set. The lowest test loss achieved 

during training is denoted and marked by red crosses. (A) Loss during training without 

augmentation and normalization.

(B) Loss during training with both normalization and augmentation.

(C) Comparison of the performance of the model without both normalization and 

augmentation (original), with only normalization, with only augmentation, and with both 

operations.

(D). Pairwise AUROC comparison of the performance by models using original records and 

with both augmentation and normalization from 1,000,000 boot-strapping operations. The 

red dashed line denotes a baseline where the performances (AUROCs) of two operations are 

equal to each other.
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Figure 3. Comparison of the Performance of Models Using Records from Different Devices, 
Processing Methods, and Pulling Methods
(A-C) Comparison of AUROCs between models using: (A) either accelerometer and 

gyroscope data; (B) the sum of the squared values of x, y, z axes and 3D data as input; (C) 

different pulling methods: on record level (by record), on individual level using average 

prediction across records of each individual (by mean), and on individual level using 

maximum prediction across all records of each individual (by max) in 5-fold cross-

validations.

(D-F) Pairwise comparison between AUROCs of models mentioned in (A) to (C) in 

bootstrapping. No significant difference between accelerometer and gyroscope input data 

was observed, while more consistent improvement was observed by 3D input than summed 

square and by maximal prediction at the individual level than prediction at record level or 

the mean prediction at the individual level (p < 1 × 10−6).
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Figure 4. Visualization of Deep Convolutional Neural Networks Unveils the Importance of Quiet 
Standing Behaviors during Walking when Detecting Parkinson’s Disease
(A) The comparisons of AUROCs performed by models on walking records during 

outbound walklng (outbound), qulet standing (rest), and return walking (return).

(B) Pairwise comparison between AUROCs achieved by outbound walking (Outbound) and 

quiet standing (Return) models.

(C) Pairwise comparison between AUROCs achieved by return walking (Return) and quiet 

standing (Rest) models. Quiet standing consistently performed better than both outbound 

and return walking (p < 1 × 10−6).

(D) Saliency maps that the trained deep neural network extracted from walking records 

(after padding to 40 s) of both PD patients and healthy controls during outbound walking 

Zhang et al. Page 21

Patterns (N Y). Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Outbound), quiet standing (Rest), and return walking (Return). Ground-truth labels and 

predictions by the machine-learning models are denoted for each rotation-rate signal and 

corresponding saliency map extracted from each signal. On the right, PD characteristics of 

perturbed steps and tremors in comparison with controls are zoomed in to show them in 

detail.
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Figure 5. Demographics of Data at the Individual Level and Model Performances in Different 
Demographic Groups
(A) Gender composition of participants in the mPower walking test.

(B) Age composition of participants in the mPower walking test.

(C) Age and PD patients/healthy controls distribution in male and female participants and 

comparison of AUROCs when our model is performed on either a male or female cohort in 

5-fold cross-validation.

(D) Age and PD patients/healthy controls distribution in ourdataset and comparison of 

AUROCs when our model is performed on participants aged under 45 (<45), aged between 

45 and 70 (45–70), and aged over 70 (≥70) years in 5-fold cross-validation.
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Figure 6. PD Prediction in Groups Separated by Demographic Status
(A) Composition of PD patients with different reported UPDRS Part II scores and PD 

predictions when applying our model to the patients. The red line denotes Pearson’s 

correlation between the self-reported UPDRS Part II score and PD predictions.

(B) Composition of PD patients with different disease duration (years since when they were 

first diagnosed with PD) and PD predictions when applying our model to the patients. The 

red line denotes Pearson’s correlation between the disease duration and PD predictions.

(C) Demographic groups divided by the highest education level the participants ever 

achieved.

(D) Demographic groups divided by employment status.

(E) Demographic groups divided by marital status. Histograms in (C)-(E) denote the 

composition of PD patients and healthy controls in the demographic groups. Predictions of 

our model in each demographic group are presented as violin plots and box plots. The red 

dots denotethe mean prediction of our model for each demographic group.
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Figure 7. Relationship between Model Performance and Training Size/Records of Each 
Individual
(A) The AUROCs achieved by our models as the training size increases from 0 to 1,500 

individuals. The model reached satisfactory performance at around 500 individuals.

(B) The AUROCs achieved by our models as the training size increases from 0 to 19,000 

records. The red line in (A) and (B) shows the lowest fit between AUROC and individuals/

records in the training set.

(C) The distribution of records per individual in our dataset (both PD patients and healthy 

controls) and comparison of AUROCs when our model performs on groups of individuals 

with ≤2, 3–5, 5–10, and >10 total walking records (a walking record here denotes a full 

round of outbound, quiet standing, and return activities). The maximum of the x axis was cut 

to 100 for better display.
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