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Abstract
Perturbation of organellar axonal transport is increasingly recognized as an important contributor
in a number of neurodegenerative diseases. Although the specificity of this impairment remains to
be elucidated, growing evidence suggests that in certain disease conditions, mitochondria are
affected primarily by transport defects. Many hypotheses have been formulated to explain the
pathogenic mechanisms involved in amyotrophic lateral sclerosis (ALS). The mutations described
so far in genetic forms of ALS (familial ALS, fALS) affect proteins involved in a wide variety of
cellular mechanisms, including free radical scavenging, energy metabolism, axonal transport,
RNA processing, DNA repair, vesicular transport, and angiogenesis. Here we review the current
knowledge on mitochondrial transport and its role in ALS.

Introduction
Neurons are polarized cells with extensive processes that connect the soma with the synaptic
sites at the cell periphery. Cellular organelles, such as mitochondria and vesicles, are
constantly being transported along neurites. Organelles must migrate from their sites of
biogenesis in the cell body to the distal portions of axons and dendrites (anterograde
transport) to provide their functions to the cell periphery. A similar transport runs in the
opposite direction to move organelles out of the peripheral regions of the axon (retrograde
transport). This transport is especially relevant in motor neurons, which have long axons that
can extend for up to a meter to reach the farthest nerve endings. Thus, any disturbance of
axonal transport may have severe consequences on neuronal function and survival. An
increasing number of reports link axonal transport impairments with diseases affecting
motor neurons, such as amyotrophic lateral sclerosis (ALS) (28), a devastating
neurodegenerative disease affecting the upper and lower motor neurons, resulting in
paralysis and premature death (3).

Mitochondria are enriched at sites of high ATP utilization and Ca2+-buffering demands,
such as cell bodies, nodes of Ranvier, and synaptic terminals. Thus, alterations in
mitochondrial transport can cause local energy depletion and Ca2+ imbalance and may
trigger synaptic dysfunction and loss.

Both morphologic and functional mitochondrial abnormalities have been described in ALS
patients and in laboratory models of the disease (43), whereas disruption of axonal transport
has been described in ALS patients (88), and both fast and slow axonal transport are
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impaired in the ventral roots of mutant Cu,Zn-superoxide dismutase (SOD1) transgenic mice
(21,56,106,109,115).

We review the contribution of mitochondrial damage in ALS, focusing on mitochondrial
axonal transport abnormalities in motor neurons. We first discuss the involvement of axonal
transport defects in motor neuron diseases and review the evidence supporting mitochondrial
transport defects in SOD1-fALS, including unpublished observations from our laboratory.
We then summarize the current knowledge of mitochondrial transport mechanisms in
relation to potential mechanisms whereby mutant SOD1 could disrupt them and outline the
potential consequences of this impairment on motor neuron function and survival.

Axonal Transport Defects in Neurologic Diseases
Evidence for the involvement of axonal transport defects in the pathogenesis of neuropathies
comes from the identification of various pathogenic mutations in proteins involved in
transport (30). One example is a mutation in the p150glued subunit of dynactin that has been
described in a family with distal spinobulbar muscular atrophy, a progressive autosomal
dominant lower motor neuron degenerative disease (81). Interestingly, mRNA levels of
dynactin 1 are significantly reduced in a distal spinobulbar muscular atrophy mouse model
(54), a decrease that also is observed in motor neurons of sporadic ALS patients (50).
Another progressive neuropathy is caused by dominant missense mutations in the
cytoplasmic dynein heavy chain 1 gene (Loa and Cra1 mutant mice) and associated with
impaired axonal transport (42). Although sensory neuropathy rather than motor neuron
disease may be responsible for the phenotype of these mutant mice (19,31), intriguingly,
recent studies demonstrated that Loa mice extend the survival of ALS mice (47,56).

In another example, mutations in kinesin KIF5A cause a dominant inherited spastic
paraparesis (hereditary spastic paraplegia; HSP), possibly by disrupting microtubule-
dependent axonal transport of neurofilaments (68). Interestingly, mutations in the kinesin
motor protein KIF1B isoform β, which transports synaptic vesicle precursors, cause axonal
transport defects in one form of Charcot-Marie-Tooth (CMT) neuropathy (119). Among the
various mutations that cause peripheral motor and sensory neuropathy in CMT, mutations in
mitofusin 2 impair mitochondrial fusion and transport in neurons (4).

Recessive mutations in the gigaxonin gene cause giant axonal neuropathy, a progressive
neurodegenerative disorder associated with abnormal accumulations of intermediate
filaments in a variety of cell types. Gigaxonin promotes the proteasome-dependent
degradation of microtubule-associated proteins, including MAP1B, MAP8, and tubulin
cofactor B (111), and therefore influences microtubule stability. Mutations in the small heat-
shock proteins Hsp22 and Hsp27 lead to the formation of aggregates that can interfere with
axonal transport and cause lower motor neuron degeneration in hereditary motor neuropathy
type 2 and distal hereditary neuropathy/CMT2F, respectively (2,32,48).

Taken together, these observations strongly support the view that perturbation and
impairment of axonal transport is a common pathogenic cause of neuronal degeneration in a
wide variety of motor neuron diseases, including ALS.

Mitochondrial Morphologic Abnormalities in ALS
Mitochondria with abnormal morphology, which includes fragmented network, swelling,
and increased cristae, have been observed in the soma and proximal axons of motor neurons
in the anterior horns of patients with sporadic ALS (sALS) (89). Among the pathologic
features observed in the neuronal processes and soma of motor neurons of mice carrying the
G93A (23) and the G37R SOD1 mutations (110) are membrane vacuoles derived from
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degenerating mitochondria. In G93A mice, the onset of the disease is immediately preceded
by a rapid increase in degenerating mitochondria, with little motor neuron death (7,52,58).
Interestingly, these abnormal mitochondria first appear distally, at the neuromuscular
junction (NMJ) (39). Thus, mitochondrial alterations may represent a triggering factor for
distal axonal degeneration and denervation, in both ALS patients and animal models (34).

Morphologic alterations of mitochondria were observed in a well-characterized motor
neuron–like cell model (NSC34 cells) (13) expressing G93A SOD1 (71,84). In
undifferentiated NSC34 cells, these abnormalities were studied in the cell soma. They
affected mitochondria, but not other organelles, and were present in NSC34 cells expressing
only mutant but not wild-type (WT) SOD1 (84). To analyze mitochondrial morphology,
NSC34 cells stably expressing WT or SOD1 mutants can also be induced to differentiate, as
shown in the example in Fig. 1A. Preliminary unpublished data from our laboratory suggest
that mutant, but not WT, SOD1s induce mitochondrial fragmentation along neurites. These
changes, which must be further characterized, could be the consequence of altered
mitochondrial dynamics, such as transport, fusion, and fission mechanisms, which regulate
number, distribution, size, and shape of mitochondria (76).

Mitochondrial Function and Axonal Transport in ALS
Early deficits in the metabolic activity of mitochondria in fALS-SOD1 mice have been
described and therefore support a direct role of mitochondria dysfunction in motor neuron
degeneration and ALS pathogenesis (69). Mitochondrial dysfunction, such as altered Ca2+

homeostasis (12), decrease in mitochondrial respiration and ATP synthesis
(9,10,37,52,57,70,71), alteration of mitochondria-related gene expression (114), and
increase in reactive oxygen species (40,86), have been reported both in in vitro and in vivo
models of ALS. We have found that, in G93A SOD1 transgenic mice, a significant decrease
in mitochondrial Ca2+ capacity in brain and spinal cord is observed early on in the course of
the disease (24). Because one of the main functions of mitochondria is buffering Ca2+

released into the cytosol of excitable cells (8) and motor neurons have a particularly low
Ca2+ buffering capacity (100), altered mitochondrial Ca2+ capacity may play a pathogenic
role in lower motor neurons. Indeed, Ca2+-mediated glutamate excitotoxicity has been
proposed as one of the potential mechanisms for the motor neuron–selective death in ALS
(87). Moreover, mutant SOD1 has been shown to increase the formation of damaging
hydroxyl radicals (108,113) and peroxynitrite derivatives (5), which caused inhibition of the
mitochondrial electron-transport chain (82,117). Intracellular free radical species are known
to affect mitochondrial proteins and DNA and to inhibit the activities of specific
mitochondria enzymes (83).

It has been shown that mitochondria and lysosomes accumulate in proximal axons of the
anterior horn neurons in ALS patients (88), suggesting s block of axonal trafficking into
proximal neurons. Moreover, the presence of metabolically dysfunctional mitochondria
could also be a consequence of poor recycling or degradation of abnormal mitochondria due
to impaired axonal transport. In support of this view, decreased retrograde transport was
described in G93A SOD1 mice at an early stage of disease, coincident with NMJ
degeneration and muscle weakness (62).

To study mitochondrial transport in SOD1 mutant motor neurons, we induced differentiation
in NSC34 cells stably expressing WT or mutant SOD1, and analyzed mitochondrial axonal
transport by live imaging. The results indicate that both anterograde and retrograde
mitochondrial transport are affected in mutant SOD1, but not in WT-expressing cells (Fig.
1B). Recently, De Vos and colleagues (27) reported impaired organelle transport in mutant
SOD1-expressing neurons. Both anterograde and retrograde transport were altered for
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membrane-bound organelles, which are vesicles transporting a variety of proteins along the
axons to the synapses, whereas only anterograde transport was affected for mitochondria.
These data would suggest that mutant SOD1 targets mitochondrial anterograde transport
machinery or its regulatory signaling mechanisms. Alternatively, mutant SOD1 may
decrease mitochondrial membrane potential (12), which has been shown to determine
direction of movement (72); thus, mitochondria with low membrane potential are sent
mainly to the soma for recycling or degradation.

These findings strongly support the rationale for a more in-depth investigation of the
pathogenic and functional significance of mitochondrial axonal transport impairment, not
only in the context of isolated motor neurons, but also at a more complex organism level.

Mitochondrial Dynamics in Neurons
Mitochondria must be positioned strategically at neuronal sites where the metabolic demand
is high, such as active growth cones, nodes of Ranvier, and synapses (17,61). In this section,
we briefly review the current knowledge of the mechanisms of mitochondrial dynamics,
because each step of its complex regulation could be a pathogenic target in ALS, as outlined
later.

In isolated hippocampal neurons, at any given time, ~10–30% of mitochondria are subject to
fast axonal transport, whereas the remaining neurons are temporarily arrested (63).
Mitochondria are transported along cell processes with variable speed, as their movement is
“saltatory”, which means that they stop and go in response to physiologic events (17) and
intracellular signaling (14). Neuronal mitochondrial distribution is regulated by local
regulation of the stopping events of fast transport in response to changes in the local Ca2+

gradient (105,112). The direction of mitochondrial transport has been proposed to correlate
with their bioenergetic state: mitochondria with normal membrane potential tend to move
toward the periphery (anterograde movement), whereas loss of membrane potential results
in increased retrograde transport (72).

Mitochondrial Anterograde and Retrograde Axonal Transport
Long-distance, fast transport of mitochondria requires microtubules tracks organized with
their plus ends directed toward the nerve terminals. In addition, cargo transport requires
kinesin motors for anterograde transport and dyneins for retrograde transport (46). For short-
range, slow movements in areas devoid of microtubules mitochondria can also use myosin
motors acting along actin axes (64) (Fig. 2).

Mitochondria are associated with members of the kinesin-1 superfamily. At least three
mitochondria-binding kinesins have been identified: KIF1B (77), KIF5B (99), and KLC3
(118). The genetic ablation of kinesin heavy-chain KIF5B results in clustering of
mitochondria and lysosomes in the cell body of mouse neurons (99). Kinesin-1 mutations in
Drosophila motor neurons inhibits both anterograde and retrograde transport, and results in
large axonal swellings filled with accumulated organelles, possibly including damaged
mitochondria targeted for autophagy (80). This suggests a functional interdependence
between kinesin-1 and dynein (65).

The activity of kinesins and their binding to mitochondria is dynamic and depends on the
degree of phosphorylation of specific kinesin residues localized mainly at the kinesin light
chain (KLC) (25,26,60). Kinesin-1 is phosphorylated by glycogen synthase kinase 3b
(GSK3β) (74), which inhibits its activity. Furthermore, GSK3β phosphorylates KLC, which
leads to release of kinesin-1 from their cargos (25). The phosphorylation of GSK3β is
controlled by Akt, which inhibits GSK3β by phosphorylation (51).
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The specificity of mitochondrial transport depends on the correct combination of motors and
linkers, and two recently discovered cargo adaptor proteins (Miro-1 and Milton) are
implicated in the specific linkage of mitochondrial to kinesin-1 (36,38). The current view is
that the mitochondrial rho-like GTPase Miro-1, which resides on the external side of the
outer membrane, anchored by a carboxy-terminal transmembrane domain (41), binds to the
mitochondria-specific adaptor protein Milton, which in turn is linked to the kinesin-1 heavy
chain (38). Interestingly, Miro-1 possesses GTPase and Ca2+ binding domains, and
mutations in these domains have been shown to cause a dominant-negative phenotype
characterized by aggregation of mitochondria in the perinuclear region and increased
apoptosis in cultured cells (36). Therefore, Miro-1 has the potential for being an important
regulator of mitochondrial motility in neurons, working as a sensor of local concentrations
of Ca2+. It was recently demonstrated that Ca2+ induces Miro-1 directly to interact with the
motor domain of kinesin-1, preventing kinesin attachment to the microtubules (105).

Syntaphilin (SNPH) is an outer-membrane mitochondrial protein that can bind to
microtubules and controls docking of mitochondria along the axons and near the synapses
(53). Alteration of mitochondria positioning along neurites, as observed when deleting
syntaphilin, caused local defects in Ca2+ homeostasis and synaptic dysfunction (53).

Mitochondrial Fusion and Fission
Mitochondria form a highly dynamic and interconnected network that undergoes continuous
remodeling through rounds of organelle fusion and fission (15).

Mitochondrial fusion requires the coordinated coalescence of both the outer membrane
(OM) and inner membrane (IM). In mammals, OM fusion is mediated by the GTPases
mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) (18), whereas IM fusion is mediated by the
dynamin-related GTPase OPA1, which is an intermembrane-space protein associated with
the IM (20). Loss of Mfn1, Mfn2, and OPA1 results in fragmented mitochondria (18,20) and
embryonic lethality (18).

Fis1 regulates mitochondrial fission in mammalian cells and dynamin-related protein 1
(Drp1). Fis1 is an OM protein that is thought to recruit Drp1-discrete sites on the
mitochondrial membrane (93). Drp1 is a GTPase that couples the energy liberated from GTP
hydrolysis to mitochondrial membrane constriction (91). Silencing of Drp1 in cells results in
a loss of mitochondrial fission, causing excessive tubulation and hyperelongated
mitochondria (6).

Mitochondrial fusion and fission have been proposed to be implicated in several
neurodegenerative diseases, such as Charcot-Marie-Tooth and autosomal dominant optic
atrophy, which are associated with mutations in some of the proteins described earlier
[reviewed in (35)]. Although deregulation of fusion and fission has not yet been studied in
ALS, the presence of fragmented, smaller mitochondria in ALS motor neurons (Fig. 1) (27)
predicts that fusion and fission mechanisms may be affected.

Methods for Studying Mitochondrial Dynamics in Neurons
The discovery of fluorescent dyes that accumulate inside mitochondria and the use of
fluorescent proteins targeted to mitochondrial compartments (Fig. 3A), together with the
development of live imaging microscopy techniques, has greatly improved our knowledge
of mitochondria dynamics (Fig. 3B). The generation of a transgenic mouse with fluorescent
mitochondria coupled with the use of emerging in vivo imaging techniques allows a
“dynamic” approach (i.e., to track mitochondria over prolonged periods, ranging from
minutes to hours). A neuron-specific inducible mitoYFP mouse was recently described (16),
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in which transgene expression is driven by a tetracycline-regulated forebrain-specific
calcium/calmodulin-dependent kinase II (CaMKII) promoter (Fig. 4). In another recent work
(73), a mitoCFP mouse was generated and used to track mitochondrial movement in the
peripheral nerves with time-lapse photography. These mice expressing mitochondrial
fluorescent proteins that do not interfere with mitochondrial function, such as mitoCFP, can
be crossed with disease models to investigate mitochondrial dynamics ex vivo, in cultured
neurons, and in vivo.

Potential Mechanisms of Mutant SOD1 Interference with Mitochondrial
Transport

The work by De Vos and colleagues (27) and our unpublished data indicate that
mitochondrial axonal transport is impaired in mutant SOD1 neurons. Mutant SOD1 can
potentially affect mitochondrial transport by multiple, nonexclusive mechanisms, resulting
in dysfunctional mitochondria that can no longer reach the cellular sites where they are most
needed. First, abnormal accumulation of mutant SOD1 around or inside mitochondria could
trigger mitochondrial damage and metabolic dysfunction. Second, aggregates of mutant
SOD1 with other abundant axonal proteins, such as neurofilaments, could physically block
axonal transport or disrupt the cytoskeleton, or both, thereby impairing mitochondria ability
to move normally. Mutant SOD1 could also interact with molecular motors or cargo
adaptors or both involved in mitochondrial axonal transport. Finally, mutant SOD1 could
interfere with cell-signaling pathways that regulate cytoskeleton stability and motor activity
(Fig. 5).

As described earlier, ample evidence indicates that mutant SOD1 affects normal
mitochondria function (69). However, the molecular mechanisms underlying the
mitochondrial damage remain to be identified. One possibility involves aberrant interactions
of mutant SOD1 with mitochondrial proteins, resulting in disruption of their normal folding
or import (29,67). Thus, it was reported that mutant SOD1 interacts with proteins that may
affect mitochondria directly or indirectly, including Hsps (78), members of the Bcl-2 family
(22,79), and components of the protein translation machinery (55,59). We and others
demonstrated that in yeast (96,107), rats (78), and in transgenic mice expressing WT or
mutant human SOD1 (44,49,67,70,79,104), a substantial amount of SOD1, estimated at
between 1 and 2% of total SOD1, is localized in various mitochondria compartments. It has
been suggested that mutant SOD1 preferentially accumulates within mitochondria of
neuronal tissues (67,79,104). The accumulation of mutant SOD1 occurred before the
appearance of mitochondria vacuolization, which suggests that the leakage or translocation
of mutant SOD1 into mitochondria may be the primary event triggering their further
degeneration (49).SOD1 mutants associate with mitochondria isolated from spinal cord and
motor neuronal cells to a much greater extent than WT SOD1 or endogenous SOD1 (33,66),
suggesting that this accumulation may represent a common toxic property of various SOD1
mutants.

In NSC-34 cells, SOD1 mutants localized into mitochondria and caused mitochondrial
impairment, even when a relatively low level of mutant protein was expressed (33,71).
Mitochondrial localization of SOD1 was essential for mutant SOD1-mediated neurotoxicity
in another motor neuron–like cell model of fALS, but no effects were observed when SOD1
mutants were targeted to nuclei or the endoplasmic reticulum (98). Our unpublished data
from NSC34 neuronal cells stably overexpressing either cytosol-targeted or mitochondria-
targeted SOD1 (WT, G93A, and G85R) suggest that SOD1 targeted to mitochondria is
sufficient to cause cell toxicity similar to that of untargeted SOD1, under a variety of stress
conditions (I. Hervias and G. Manfredi, unpublished observations). Furthermore,
overexpression of human copper chaperone for SOD1 (CCS) in G93A SOD1 mice highly
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enriched the amount of mutant SOD1 within mitochondria and caused a remarkably
accelerated disease phenotype accompanied by very early mitochondrial abnormalities (92).
Because of the effects of mutant SOD1, mitochondria may become bad cargos for the
transport machinery and deliver a reduced ATP supply to molecular motors, resulting in
abnormal mitochondrial dynamics. However, a lack of ATP locally available to the motors
would not be sufficient to explain the apparently selective impairment of anterograde
transport in ALS motor neuron axons (27). Therefore, it is likely that factors other than
bioenergetic impairment contribute to mitochondrial motility defects.

Aberrant SOD1 aggregation affects cytoskeleton integrity and may also hinder
mitochondrial transport. Indeed, neurofilament proteins inclusions appear in the axons of
motor neurons (115). Abnormal activation of p38 or cdk5/p35 kinases or both by mutant
SOD1 can phosphorylate neurofilaments and impair their transport. Axonal transport was
impaired in the ventral roots of G93A mice coincidental with the appearance of
neurofilament inclusions and vacuoles in the proximal axons and soma of motor neurons
(115). Perturbations of normal transport can affect mitochondria distribution along neurites
and around synapses, which are highly dependent on mitochondria to maintain their
structure and function.

It is likely that SOD1 also interacts with components of the mitochondrial transport
machinery and that these aberrant interactions lead to dysfunctional mitochondrial
dynamics. Topologically, all of the proteins involved in mitochondrial transport and
dynamics hold the potential to interact with mutant SOD1, because we have demonstrated
that SOD1 resides both on the cytosolic side of the outer membrane and in the
intermembrane space (104).

Kinesin-1, the principal motor for mitochondrial anterograde transport, is an interesting
candidate for interaction with mutant SOD1, because it has been shown to play an important
role in retrograde movement of organelles (80), although mitochondrial transport was not
investigated specifically in this study. In particular, the heavy-chain kinesin family-5B
(KIF5B) has been implicated in mitochondrial and membrane-bound organelle transport in
axons (45). Therefore, aberrant SOD1-kinesin-1 interactions may underlie both anterograde
and retrograde transport defects in motor neurons in a nonmitochondria-specific manner.
However, mutant SOD1 interactions with specific mitochondrial cargo adaptors would point
toward a specific alteration of transport. For example, interactions of SOD1 with either
Milton or Miro-1, two known mitochondrial cargo adaptors, would have an impact on
mitochondrial docking to kinesin heavy chain.

The only mutant SOD1 interaction with the axonal transport machinery demonstrated so far
is with the dynein complex, the motor responsible for retrograde transport (116). These
aberrant interactions between dynein and several SOD1 mutants, but not WT SOD1, which
were also found in ALS transgenic mice, add one more piece to the puzzle and suggest that
the axonal transport machinery is a target of SOD1 toxicity (95).

Our finding of shorter, hyperfragmented mitochondria in the processes of mutant SOD1
neurons (Fig. 1) could be the result of either defective transport, because mitochondria
cannot establish proper contacts with transport-based machinery, or impairment of the
fusion/fission machinery. It has been shown that SOD1 aggregates with Bcl-2 in spinal cord
mitochondria (79), and that members of the Bcl-2 family control mitochondrial fusion (90).
Moreover, mutant SOD1 interacts with the dynein complex, and dynein may also mediate
the recruitment of the fission machinery to mitochondria (102).

Another possibility is that SOD1 may target or activate signaling pathways that affect
anterograde or retrograde motors, mitochondrial transport, and cytoskeleton stability.
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Inflammatory signals from neighboring glial cells (such as TNF-α) can activate p38 stress-
activated protein kinase in mutant SOD1 transgenic mice (1,85). Furthermore, glutamate
levels are increased in mutant SOD1 mice (11) and can activate JNK, p38, and cdk5/p35
kinases (1). Activated p38 not only can phosphorylate and inhibit kinesin-1 activity (26), but
also can phosphorylate neurofilaments (1). Activated JNK can phosphorylate and damage
kinesin-1 (75), and cdk5/p35 can phosphorylate neurofilaments (97) and promote
neurofilament accumulation, a hallmark of ALS pathology.

Mitochondrial Dynamics Impairment Causes Distal Axonopathy in Motor
Neurons

Although the mechanisms leading to impaired transport in SOD1-fALS are still unclear, one
of the potential consequences of transport defects is the failure of mitochondria originating
in the cell body to reach the synaptic terminals and of damaged mitochondria in the
periphery to reach the cell body for degradation. In line with this hypothesis, abnormal
accumulations of mitochondria are found in the somas and proximal axons of motor neurons
in both sALS and fALS (88,89) and at the presynaptic end of the NMJ in G93A mice
(39,101).

If healthy mitochondria do not reach the synaptic terminals, energy starvation, disruption of
Ca2+ homeostasis, and degeneration are likely consequences occurring at these cellular sites.
As outlined earlier, mitochondria and synapses are functionally linked: defective synaptic
transmission is associated with a loss of mitochondria from axon terminals (94,103).
Reciprocally, synaptic activity modulates the dynamics and distribution of mitochondria in
dendrites (61).

A recent study in Drosophila showed NMJ degeneration and muscle atrophy occurring
when mitochondria accumulate in the cell body because of mutations that inactivate the
mitochondrial cargo adaptor Miro-1 (41). In ALS, the presence of abnormal, vacuolated,
mitochondria at the NMJ of mutant SOD1 mice, early in the course of the disease, correlates
with the beginning of denervation (39) and suggests that defective maintenance of
mitochondria in the periphery of the neuron may be a primary pathogenic event. This view
is consistent with the notion that ALS is a dying-back type of neuropathy that initiates and
progresses from the distal to the proximal portions of the motor neurons (34) and causes
paralysis even in the absence of cell body degeneration in the spinal cord (39).

Another potential effect of impaired mitochondrial transport is the loss of fusion and fission
activity, because both of these processes depend on mitochondrial motility. Thus, defective
transport could determine not only mislocalization of mitochondria along the axon and the
synaptic terminals, but also an alteration of the normal balance between fusion and fission,
which is crucial for maintaining healthy mitochondria (15).

The effects of SOD1 mutations on mitochondrial transport must be further investigated, but
the data described so far suggest the following model, schematized in Fig. 6. Defects in
anterograde transport preclude the arrival of healthy mitochondria to distal regions of the
axon (27), whereas impaired retrograde transport of aged and dysfunctional mitochondria
fails to move them toward the cell body, either to fuse with upcoming healthy mitochondria
or to be degraded by autophagy (116). The ultimate consequence of this scenario is the
accumulation of damaged mitochondria in motor neuron terminals.
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Concluding Remarks
As outlined earlier, numerous lines of evidence suggest that mitochondria are affected in the
course of motor neuron degeneration and that mitochondrial dysfunction may actively
participate to the demise of motor neurons. Impaired mitochondrial energy production can
have potentially catastrophic consequences, especially in neurons with long processes that
rely heavily on axonal transport. Mitochondrial dysfunction may also have consequences
that go well beyond the energy defect, involving mishandling of Ca2+ and the activation of
apoptotic pathways. Emerging evidence indicates that mitochondrial dysfunction correlates
with impaired mitochondrial dynamics and suggests that failure to position healthy
mitochondria in critical sites of energy utilization may play a significant role in the
pathogenesis of motor neuron diseases. Therefore, a better comprehension of the molecular
basis of mitochondrial dynamics impairment in ALS will likely have an important impact on
the development of therapeutic strategies.

Acknowledgments
We thank the Robert Packard Center for ALS Research “The New York Community Trust”; NIH/NINDS (R01-
NS051419 to G.M.); and the Muscular Dystrophy Association (to J.M. and G.M.).

Abbreviations

ALS amyotrophic lateral sclerosis

ATP adenosine triphosphate

CaMKII calcium/calmodulin-dependent kinase II

CFP cyan fluorescent protein

CMT Charcot-Marie-Tooth

Drp dynamin-related protein

fALS familial ALS

Fis1 fission 1

GSK3β glycogen synthase kinase

Hsp heat-shock protein

HSP hereditary spastic paraplegia

IM inner membrane

JNK c-Jun N-terminal kinase

KIF kinesin superfamily

KLC kinesin light chain

MAP microtubule-associated protein

Mfn mitofusin

NMJ neuromuscular junction

NSC neuroblastoma–spinal cord cell line

OM outer membrane

OPA1 optic atrophy type 1

sALS sporadic ALS
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SNPH syntaphilin

SOD1 Cu,Zn-superoxide dismutase

TNF tumor necrosis factor

WT wild-type

YFP yellow fluorescent protein
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FIG. 1. Morphology and transport abnormalities in SOD1-fALS
A well-characterized motor neuron–like cell model (NSC34 cells) is used to study the
effects of mutant SOD1 on mitochondrial dynamics. (A) In this example, neurites in wild-
type neurons contain mostly tubular mitochondria, whereas in mutant SOD1, mitochondria
appear fragmented. Scale bar, 2.5 µm. (B) With live-imaging microscopy, movements of
mitochondria can be followed. Mitochondria move anterogradely (arrows), retrogradely
(arrowheads), or remain stationary. In this example, note the reduction in mobile
mitochondria along mutant SOD1 neurites.
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FIG. 2. Molecular transport machinery involved in mitochondrial transport
Kinesins and dynein/dynactin complex are responsible for the anterograde and retrograde
transport of mitochondria, respectively. Kinesins bind to mitochondria through specific
adaptors, and dynein, through dynactin. Syntaphilin docks mitochondria to the microtubules
and immobilizes them. The polarity of the microtubule (plus and minus end) is indicated.
Myosin, which binds to actin filaments, also can interact with mitochondria and modulate
transport.
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FIG. 3. Targeted expression of fluorescent proteins to mitochondria in vitro
(A) Cortical neuron transfected with mitoGFP. Fluorescent mitochondria fill the neuronal
soma and neurites. Scale bar, 25 µm. (B) Live-imaging microscopy allows the study of
mitochondrial dynamics. Moving mitochondria (arrow), fusion events (arrowhead), and
fission events (asterisk) can be followed up over time in culture. Scale bar, 2.5 µm.
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FIG. 4. Targeted expression of fluorescent proteins to mitochondria in vivo
Expression of mitochondrial fluorescent proteins in transgenic animals allows to investigate
mitochondrial dynamics either ex vivo (cultured dissociated neurons), or in vivo. (A) Spinal
cord section from a mitoYFP transgenic mouse presents some labeled motor neurons. (A′)
Higher magnification of a motor neuron cell body and processes filled with fluorescently
labeled mitochondria. (B and B′) Spinal cord section from a non-transgenic littermate
control mouse. Scale bar, 250 µm in A and B, 25µm in A′ and B′.
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FIG. 5. Mutant SOD1 can perturb mitochondrial dynamics at multiple levels: (a) SOD1
accumulates inside mitochondria and induces mitochondrial damage and metabolic dysfunction
Mutant SOD1 accumulation in the outer membrane and the intermembrane space can
interfere with the fission and fusion machinery; (b) mutant SOD1 can also interact with the
anterograde and retrograde transport machinery; (c) intracellular signaling pathways that
control mitochondrial transport can also be disrupted by SOD1; and (d) mutant SOD1
aggregates can act as physical blocks to axonal transport.

Magrané and Manfredi Page 21

Antioxid Redox Signal. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 6. Model of mitochondrial dynamics impairment in SOD1-fALS
Mutant SOD1 causes impairment of mitochondrial dynamics, by affecting fusion and fission
and transport. In ALS motor neurons, mitochondria become smaller and dysfunctional, and
therefore, ATP supply is reduced, and Ca2+ buffering impaired at synapses. As a
consequence, synapses are lost, and a dying-back process in the axon is initiated, which
leads to a progressive distal axonopathy. NMJ, neuromuscular junction.
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