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Abstract

Background—The COVID-19 pandemic caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) presents with a spectrum of clinical manifestations from 

asymptomatic or mild, self-limited constitutional symptoms to a hyperinflammatory state 

(“cytokine storm”) followed by acute respiratory distress syndrome (ARDS) and death.

Objective—To provide an evidence-based review of the associated pathways and potential 

treatment of the hyperinflammatory state associated with SARS-CoV-2 infection.

Recent findings—Dysregulated immune responses have been reported to occur in a smaller 

subset of those infected with SARS-CoV-2 leading to clinical deterioration 7 to 10 days following 

initial presentation. A hyperinflammatory state referred to as “cytokine storm” in its severest form 

has been marked by elevation of IL-6, IL-10, TNF-alpha and other cytokines and severe CD4+ and 
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CD8+ T-cell lymphopenia and coagulopathy. Recognition of at-risk patients could permit early 

institution of aggressive intensive care, antiviral and immune treatment to reduce the 

complications related to this pro-inflammatory state. Several reports and ongoing clinical trials 

provide hope that available immunomodulatory therapies could have therapeutic potential in these 

severe cases.

Conclusion—This review highlights our current state of knowledge of immune mechanisms and 

targeted immunomodulatory treatment options for the current COVID-19 pandemic.
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INTRODUCTION

The COVID-19 pandemic caused by the novel severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) presents an enormous challenge for public health and 

clinicians globally. Increased understanding of the immunopathogenesis of SARS-CoV-2 

infection as well as ongoing clinical trials of host target drugs such as hydroxychloroquine, 

direct antivirals, convalescent plasma and other immunomodulatory agents hold promise for 

future evidence-based and targeted therapies to reduce the morbidity and mortality of the 

most vulnerable populations.

While infection is often asymptomatic or associated with mild to moderate self-limiting 

symptoms such as fever, dry cough, myalgia and fatigue (1–6), a subset of patients with 

severe SARS-CoV-2 infection develop a clinically severe hyperinflammatory state or 

cytokine storm (CS) for which pulmonary involvement such as acute respiratory distress 

syndrome (ARDS) is a cardinal feature (1, 7). Further, a subgroup of previously healthy 

children has been diagnosed with a multi-system inflammatory syndrome associated with 

acute SARS-CoV-2 infection that appears distinct from the adult CS (8).

While the individual components of CS are varied, interleukin-6 (IL-6) has emerged of 

particular interest in the context of SARS-CoV-2 infection after being identified as the most 

significant predictor of mortality in recent retrospective studies of patient survival in 

COVID-19 (1). Herein, we review the current understanding of the origin and mechanisms 

of cytokine storm associated with SARS-CoV-2 infection with focus on the identification 

and implication of IL-6 and other proinflammatory cytokines and pathways in CS-driven 

ARDS and discuss the potential utility of anti-IL-6 and other cytokine targeting 

immunomodulatory biologics for the treatment of this critically ill population.

Search strategy and selection criteria

We searched PubMed for peer-reviewed articles published between Jan 1st 2000 and April 

18th 2020 (date of last search) with the terms (“IL-6” OR “interleukin-6” OR “cytokine”) 

AND (“sepsis” OR “SIRS” OR “systemic inflammatory response syndrome” OR “non-

infectious systemic inflammatory response syndrome” OR “ARDS” OR “acute respiratory 
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distress syndrome” OR “cytokine storm” OR “inflammatory response” OR “septic shock” 

OR “critically ill” OR “organ dysfunction” OR “infection”) AND (“ICU” OR “intensive 

care unit” OR “ED” OR “emergency department”). A second search was oriented on 

treatment with the terms (“IL-6” OR “interleukin-6” OR “IL-1” OR “interleukin-1” OR 

“TNF” OR “tumor necrosis factor” OR “interferon gamma” OR “STING” OR “interferon 

pathway”) AND (“sepsis” OR “SIRS” OR “systemic inflammatory response syndrome” OR 

“ARDS” OR “acute respiratory distress syndrome” OR “cytokine storm” OR “inflammatory 

response” OR “septic shock” OR “critically ill” OR “organ dysfunction” OR “infection”) 

AND (“IL-6 inhibitor” OR “interleukin-6 inhibitor” OR “JAK-STAT” OR “tocilizumab” OR 

“humanized IL-6R antibody” OR “anakinra” OR “IL-1 inhibitor”). Please refer to 

Supplement Figure 1 for details concerning the number of articles entered in PubMed with 

the “cytokine storm” keywords.

All recent articles on COVID-19/SARS-CoV-2 were reviewed including pre-prints from 

bioRxiv and medRxiv as a more real-time resources, but realizing the lack of peer review 

limitation. In order to carefully include the proposed trials for COVID-19, we researched the 

ClinicalTrials.gov/trials website.

Articles published in English were selected and reviewed. There was a focus on clinical 

trials, meta-analysis, randomized controlled trials and systematic reviews as well as novel 

and significant studies. Finally, we also identified several new references from those listed in 

the reviewed articles. Please note that although there is increasing information about the 

SARS-CoV-2 virus and its immune consequences, the majority of the literature available on 

COVID-19 disease and SARS-CoV-2 infection originates from the onset of the pandemic, in 

China, with various publications from disease phenotype to immunopathogenesis and 

follow-up.

OVERVIEW OF SEPSIS AND IMMUNE DYSREGULATION

The release of large quantities of proinflammatory cytokines is termed cytokine storm (CS) 

and is associated with a variety of infective precipitants and other hyperinflammatory states 

(9, 10). Virally associated causes of particular relevance are the 2003 severe acute 

respiratory syndrome (SARS) coronavirus Infection (SARS-CoV) that infected over 8000 

globally, primarily in Asia and Canada (Toronto) with an 11% mortality rate (11–14), and 

the 2012 Middle East respiratory syndrome coronavirus (MERS- CoV) with a reported case 

fatality rate of 35% (15–17). While SARS-CoV-2 belongs to the same Betacoronavirus 
genus as SARS-CoV and MERS, the case fatality associated with both SARS-CoV and 

MERS significantly exceeds that of SARS-CoV-2 and the numbers of cases worldwide 

associated with SARS-CoV and MERS are much lower (18). Genomic evidence suggests 

that SARS-CoV and SARS-CoV-2 share the same human cell receptor for host entry, the 

angiotensin-converting enzyme 2 (ACE2) (19). SARS-CoV-2 binds with increased affinity to 

the ACE2 receptor compared to SARS-CoV, a possible explanation for the widely 

community transmission from asymptomatic hosts (18).

The clinical correlates of increased inflammation or CS are persistent hypotension, hypo or 

hyperthermia and end-organ dysfunction while the laboratory features include 
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haematological anomalies (leukocytosis or leukopenia, thrombocytopenia and disseminated 

intravascular coagulation with high fibrinogen, triglycerides and ferritin), elevated IL-2R 

(CD25), elevated IL-6 and general markers of end-organ dysfunction (such as elevated 

creatinine, deranged liver function tests, etc.) (10). The CS clinical phenotype is variable and 

regroups systemic signs of inflammation, multi-organ failure and mortality (20).

The hyperinflammatory state associated with severe viral infection shares significant 

features with cytokine storm and genetic factors associated with hemophagocytic 

lymphohistiocytosis (HLH) have been identified suggesting these conditions may in fact be 

part of the same spectrum (21). HLH is caused by an abnormal regulation of activated 

macrophages and lymphocytes leading to a hyperinflammatory state (21). Interferon-gamma 

(IFN-γ) is an important cytokine responsible for the organ damage leading to mortality in 

HLH (20). Other cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-

α), IL-1 and IL-18 are also increased during HLH (22). Several genes that play a role in the 

pathway of natural killer (NK) cells and CD8+ T-cells have been described as causal for the 

development of the familial form of HLH. Some examples include the LYST mutation 

described in the Chediak-Higashi syndrome, the RAB27A mutation in the Griscelli 

syndrome as well as other mutations in perforin (PRF1). The main clinical and laboratory 

manifestations of HLH are fever, cytopenia, coagulopathy, liver dysfunction, 

hyperferritinemia, decreased or absent NK cells function, increased soluble CD25 (IL-2R) 

and presence of hemophagocytosis on bone marrow biopsy or other organs (21). The 

secondary form of HLH has been described in influenza during the 2009 H1N1 pandemic, 

the largest cohort describing 9 cases with a mortality rate of 89% (8/9 cases) (23). The 

macrophage activation syndrome (MAS) has similar clinical features to HLH and is 

considered a related disorder that occurs primarily in patients with rheumatologic diseases 

(24). The excessive inflammatory response described in MAS is characterized by an 

increased IL-1β with successful reports on the use of anakinra, an IL-1 receptor antagonist 

(25, 26). In a cohort of 19 adult patients with secondary HLH/MAS, 63.1 % (12/19) had 

systemic infections as precipitating causes (27). This group used anakinra in 12/19 patients 

and reported 4 deaths among those patients treated with anakinra (27).

The concept of shared immunological features between HLH, MAS and CS has been 

entertained with extensive discussion that these diseases could be part of an overlapping 

immunopathology with shared but also distinctive triggers and genetic features (20). To 

assess the possible genetic predisposition of individuals with no past medical history to 

develop HLH secondary to severe H1N1 influenza, Schulert and al. performed whole-exome 

sequencing (WES) in 14 patients, 13 of whom had evidence of hemophagocytosis at 

autopsy, and detected 5 heterozygous variants in LYST (two of whom also had a 

heterozygous PRF1 mutation) (27).

Pediatric multisystem inflammatory syndrome

Children appear protected from SARS-CoV-2 infection and are more likely to be 

asymptomatic or have less severe infection compared to their adult counterparts (28, 29). 

However, more recently, a pediatric multi-system inflammatory syndrome has been 

described that appears distinct from the adult CS associated with acute SARS-CoV-2 
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infection and may follow mild or asymptomatic SARS-CoV-2 infection in previously 

healthy children. This illness has been reported in children aged from early childhood to 

adolescence, has Kawasaki-like features, and has been reported in areas with a high SARS-

CoV-2 prevalence in children exposed to positive COVID-19 family members. In multiple 

cases, the child had positive SARS-CoV-2 serology but negative SARS-CoV-2 PCR. Deaths 

of at least three children associated with this syndrome have been reported in the United 

States and United Kingdom (8). Children with this syndrome have presented with similar 

features to Kawasaki disease (29, 30) with high fever, rash, conjunctivitis, diarrhea and 

shown evidence of myocardial involvement with elevated troponins, arrhythmia, shock, 

abnormal echocardiographic vascular findings and coronary artery aneurysms. They have 

shown evidence of a hyperinflammatory state with elevated ferritin, triglycerides and D-

dimers. Treatments have included high dose intravenous immunoglobulin and aspirin as 

suggested for Kawasaki’s disease (30). Currently, the specific immunopathogenic link to 

SARS-CoV-2 infection and the role of adjunctive immunomodulatory and anti-cytokine 

therapy in this syndrome is unknown.

The immunopathogenesis of cytokine storm in the setting of a viral respiratory tract 
infection

The airway epithelium is part of the first line of defense in presence of an airborne viral 

pathogen recognized as a pathogen-associated molecular pattern (PAMPs) and/or damage-

associated molecular pattern (DAMPs) that bind to pattern recognition receptors (PRRs) 

such as toll-like receptors (TLRs) on the surface of macrophages (9). The resident activated 

alveolar macrophages, after several intracellular signaling cascades, generate tumor necrosis 

factor (TNF), interleukin-1β (IL-β) and IL-6 and trigger a systemic inflammatory response 

(Figure 1) (31). This simultaneously prompts a well-coordinated local innate response 

composed of specific enzymes (defensins, mucins, lysozymes), nitric oxide (NO), reactive 

oxygen species (ROS), platelet activating factor and other cytokines (32). Other key 

components of the innate immunity against viral infection are the type I interferons (IFNs). 

In contrast with findings on the influenza virus, severe COVID-19 patients have minimal 

peripheral quantities of type 1 IFNs but increased IFNs and IFNs genes in the 

bronchoalveolar environment, a discovery associated with cytokine storm development in a 

mouse model of SARS-CoV infection (33). Further, in vitro, SARS-CoV-2 failed to produce 

interferon expression in infected cells (34) indicating a dampened early innate immune 

response (35).

Monocytes and macrophages play a central role and a disruption in the mononuclear 

phagocyte compartment is considered to increase the COVID-19 related hyperinflammation 

(36, 37). Also, an increase in the CD14+CD16+ monocytes producing IL-6 has been noted 

in the peripheral blood of COVID-19 critically-ill patients (38, 39). Bruton’s tyrosine kinase 

(BTK), an intracellular kinase, also appears to have a role in monocytes and macrophage 

activation and specifically in infection clearance by macrophages (40).

IL-1β is produced after the inflammasome (especially NLRP3), activated by AIM2 sensing 

foreign DNA, induces the formation of caspase-1 that cleaves pro-IL-1β into IL-1β (Figure 

2). In a study using single-cell RNA sequencing in the peripheral blood mononuclear cells 
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(PBMCs) of 10 COVID-19 patients compared with 5 healthy controls, the authors reported 

an increased quantity of CD14++ monocytes with inflammatory gene expression and CD14+

+ IL-1β+ monocytes in the early recovery stages of SARS-CoV-2 (41). IL-1β is also 

implicated in the activity of nuclear factor kappa-light-chain-enhancer of activated B-cells 

(NF-ΚB) inducing the synthesis of various inflammatory genes of mediators such as IL-6 (9). 

Thus, a reduction in IL-1β activity would reduce IL-6 production (42).

Following initial escape of the innate response, recognition of virus promotes the migration 

of pulmonary dendritic cells to the lymph nodes for presentation of antigen to passing T-

cells for the development of more robust antigen- specific T and B-cell adaptive response. 

During this response, soluble mediators play a role in cellular function and signal 

transduction by binding to specific receptors on the surface of target cells. For example, 

CD8+ T-cells produce excessive amounts of TNF-α and IFN-γ causing direct tissue 

damage, while activated CD4+ T-cells, in the presence of transforming growth factor β 
(TGF-β) and IL-6, will differentiate into the T helper 17 (Th 17) cell subset, important for 

extracellular pathogen elimination and auto-immunity (Figure 1) (43). The defining 

cytokines secreted by Th17 cells are IL-17A and IL-17F that primarily target macrophages, 

dendritic cells, endothelial cell and fibroblasts to increase the production of IL-1, IL-6 and 

TNF-α (43). In this particular setting, IL-6 will also inhibit the TGF-β dependent 

development of CD4+ regulatory T-cells (Treg), a critical mediator of immune tolerance 

with a major role in regulating the effector T-cell response (44).

In the setting of CS syndromes, over-activation of effector CD4+ and CD8+ T-cells and 

production of cytokines and chemokines generate an uncontrolled hyperinflammatory injury 

at the tissue level resulting in local and distant injury (13). Increased inflammation is 

associated with peripheral blood lymphopenia, a significant drop in the lymphocyte to 

neutrophil ratio and CD4+ T-cell dysfunction in observational studies but the mechanisms 

for these changes are unclear (38, 45, 46). In one of the first studies describing the post-

mortem pathological findings in one COVID-19 patient, peripheral flow cytometry indicated 

a reduced CD4+ and CD8+ cell count but an increased proportion of activation markers such 

as HLA-DR and CD38 as well as an increased concentration of Th17 cells (47).

THE PLEIOTROPIC ROLE OF INTERLEUKIN-6 (IL-6) IN INFLAMMATORY 

AND VIRAL RESPONSES

IL-6 is secreted by a plethora of immune and stromal cells including monocytes, 

macrophages, endothelial cells, B and T-cells, hepatocytes, keratinocytes, adipocytes, 

dendritic cells and fibroblasts. IL-6 exerts effects on a similarly broad array of cellular 

targets expressing the functional IL-6 receptor (IL-6R) such as T-cells, B-cells, vascular 

endothelial cells, monocytes, and hepatocytes (44, 48). As may be expected, such diversity 

of targets translates into functional pleiotropy including the synthesis of acute phase proteins 

in the liver, such as C-reactive protein (CRP) which is a surrogate for IL-6; the decreased 

production of proteins such as albumin; the differentiation of B-cells into plasma cells; 

hematopoiesis and other metabolic and neurologic processes (44, 48). CRP is an acute phase 
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reactant that binds the phospholipid component of microorganisms and damaged cells that is 

frequently used as a screening marker of infection and/or inflammation (31).

IL-6 affects cellular immunity, with both pro- and anti-inflammatory functions. IL-6 genetic 

knockout mice present with varied impairments of inflammatory response including a well-

documented increased susceptibility to microbial infection, while humans expressing 

defective IL-6 receptors experience a hyperimmunoglobulin E syndrome (HIES)-like 

disorder which clinically manifests as dermatitis and recurrent (staphylococcal and mycotic) 

infections highlighting the important role that IL-6 likely plays in the diverse pathways of 

IgE mediated allergy and microbial defence (49).

Contrasting inflammatory functions of IL-6 are mediated through its modality of receptor 

binding. Classical binding of IL-6 to the membrane-bound IL-6 receptor (IL-6R) leads to 

glycoprotein 130 (gp130) dimerization, Janus kinase (JAK) 1 signalling and activation, 

among others, of the classical RAS/RAF/MAPK pathways leading to anti-inflammatory 

responses (Figure 3) (50). While all human cells display preformed, inactive gp130 receptors 

on their cell surface, this receptor remains inactive without the presence of IL-6R which is 

only expressed on certain cell types (51). However, pro-inflammatory functions have been 

found to be mediated through binding of soluble IL-6R, termed trans-signalling, with 

important ramifications for potential therapeutic targeting (52). It has been shown that an 

important source of soluble IL-6R is shredded from cells undergoing ADAM17-mediated 

apoptosis which controls mononuclear phagocyte recruitment, leading to amplified 

inflammatory response (53). The pro-inflammatory responses of IL-6 are mediated by trans-

signaling while the anti-inflammatory functions are probably realized by classic signaling 

(Figure 3) (50). Selective blockage of this trans-signaling pathway is likely to have the 

beneficial effect of blocking inflammation without the undesirable off-target effects of broad 

immune suppression.

The role of IL-6 and other mediators in the response to SARS-CoV-2 infection

A multitude of markers for COVID-19 disease severity have been proposed such as CD4+ 

and CD8+ T-cell lymphopenia (3, 5, 54) as well as global lymphopenia. Homing of 

lymphocytes to the lungs is significantly increased in non-survivors compared to survivors 

(1). A number of publications now highlight that an increase of IL-6 correlates with severe 

response to SARS-CoV-2; defined as the development of sepsis, ARDS, requirement for 

mechanical ventilation and death (1, 3, 5, 7, 46, 54–56). The clinical and immunological 

parameters associated with in-hospital mortality in COVID-19 patients are reported in Table 

1. The structural N protein of coronaviruses performs an essential role during host cell entry 

as well as virus particle assembly and release (11). The N protein from the SARS-CoV 

activates the transcription factor NF-κB and, subsequently, the expression of IL-6 in human 

airway epithelial cells, providing a biologically plausible explanation for the role of IL-6 in 

SARS-CoV-2 infection immune pathogenesis (11).

In a cohort of 60 hospitalised SARS-CoV-2 patients, IL-6 concentrations were 163 ± 153 

pg/mL for the group with mild symptoms and 517 ± 796 pg/mL for the patients with severe 

presentation (ICU admitted) (57). A summary of the observations from studies of IL-6 in 

hospitalised COVID-19 patients is presented in Table 2. IL-6 may be both a biomarker and a 
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potential therapeutic target for hospitalised patients with COVID-19 which is an attractive 

concept in the absence of alternative direct acting antiviral strategies.

Importantly, proposed clinical cut-off values for IL-6 in this setting have started to emerge 

with > 80 pg/ml determined to predict respiratory failure in a study with 40 COVID-19 

patients in which 13 required medical ventilation (4) and > 100 pg/ml in patients with 

detectable serum SARS-CoV-2 nucleic acid was found to correlate with mortality (N=17/48) 

(55). However, other authors have reported specificity at much lower concentrations with a 

retrospective study of 43 COVID-19 patients from China indicating that severe cases could 

be predicted using an IL-6 value greater than 24.3 pg/mL (sensitivity of 73.3% and a 

specificity of 89.3%) (56). While studies with larger sample sizes are urgently required to 

determine the true IL-6 cut-off associated with severe disease, ICU admission and mortality, 

these initial results are promising. The presented data is limited by its retrospective nature 

and uncertainty if IL-6 levels can be ascertained by clinical laboratories in an expedited 

fashion to guide therapy in real-time.

Lessons from IL-6 and other proinflammatory states including sepsis

IL-6 levels are considered to be undetectable or below 10 pg/mL (with some inter-test 

variability) in heathy controls (12, 58, 59). Conversely, mean IL-6 levels at presentation 

appear highest in severe sepsis (51.4 pg/mL) compared to patients that do not develop severe 

sepsis (36.5 pg/mL; p < 0.03) in a study of community-acquired pneumonia (60). This 

response is highly specific for severe disease and some studies indicate a role in disease 

progression, demonstrating up to a four-fold decrease in IL-6 three days after initial 

diagnosis. Moreover, IL-6 values appear to drop abruptly in survivors while remaining 

higher in non-survivor groups (59–61). Nonetheless, IL-6 currently represents one of the 

best characterised markers of disease severity and an early rise in IL-6 is associated with 

sepsis, organ failure and death (62–64).

Assigning discrete cut-off values for IL-6 to enable its use as a clinical diagnostic tool has 

remained ill-defined due to variations in the literature. Song et al. demonstrated in 142 

patients that an IL-6 cut-off value of 52.60 pg/mL and 348.9 pg/mL was associated with a 

diagnostic and prognostic value, respectively, in patients with SIRS (65). In contrast, in 

another SIRS cohort (N=177), a cut-off of 75 pg/mL for sepsis and 145 pg/mL for septic 

shock was defined (61). Thus, even if further clarification is required, the literature 

demonstrates that elevated IL-6 values are associated with sepsis or septic shock 

development (59, 66–68). This is also supported by a 2016 meta-analysis of 2680 critically-

ill patients from 22 studies - the use of IL-6 was of moderate diagnostic capacity and 

relatively high specificity in defining sepsis from other SIRS (69) and, thus, IL-6 may be of 

utility to confirm infectious causation in patients with complex presentation while 

considering the limitation in terms of availability of IL-6 levels. The specific IL-6 values 

from critically ill patients are represented in Table 3.

Lessons from IL-6 response in CAR T-cell associated cytokine release syndrome

There are similarities between the immunopathology of sepsis-associated cytokine storm 

and the cytokine release syndrome (CRS), a well described complication of chimeric antigen 
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receptor T-cell (CAR T-cell) therapy or hematopoietic cell transplantation (HCT). While 

these terms should not be used interchangeably, CRS was described as part of the cytokine 

storm syndromes [14]. The CRS is a cytokine-mediated systemic inflammatory disease that 

groups signs and symptoms of multiple organ damage ranging from mild constitutional 

symptoms (grade 1) to end-organ damage (grade 4) [23, 24]. Multiple grading systems for 

CRS have been provided in the literature and a commonly used one is presented in Table 4. 

In the case of CRS, the cytokines are released directly by the infused CAR T-cells or by 

other immune cells such as macrophages in response to the cytokines produced by the CAR 

T-cells [25]. In some series of CRS, serum IL-6 levels correlated with the activation of 

potent T lymphocytes and CAR T-cell expansion, predicting subsequent therapeutic 

response and tumour control (70, 71). Humanized IL-6R inhibitors such as tocilizumab have 

been integrated into CAR T-cell treatment protocols to pre-emptively manage CRS.

ROLE OF BIOLOGICAL IMMUNOTHERAPIES IN SARS-CoV-2

Targeting IL-6

The use of biomarkers such as IL-6 and downstream CRP to recognise early the 

hyperinflammatory state of SARS-CoV-2 infection has been proposed as a trigger point for 

employing immunological therapies. Importantly, many such immunotherapies are already 

available for different treatment indications including those that target the IL-6 and IL-6R. 

Tocilizumab is a humanized anti-IL-6R antibody engineered by grafting the 

complementarily determining regions (CDR) of a mouse anti-human IL-6R antibody into a 

human IgGk to create a human antibody with a human IL-6R binding site. Critically for the 

opposing pro- and anti-inflammatory functions previously discussed, tocilizumab binds to 

both membrane-bound and soluble IL-6R for total inhibition of IL-6 signal transduction 

(Figure 3). The main side effects of completely blocking IL-6 signaling are neutropenia, 

thrombocytopenia and liver enzyme abnormalities (72). Serious infections have been 

reported in patients treated long term with tocilizumab so caution should be used (73). 

Nonetheless, tocilizumab is FDA approved for not only rheumatoid arthritis for which it was 

originally developed and provides beneficial relief of this largely Th17-driven disease, but, 

more recently, for severe or life-threatening (grade 3 or 4) CRS associated with CAR T-cell 

therapy (Table 4) with a dramatic reversal of the clinical manifestations (20). For CRS, 

initial studies dosed patients at 8 mg/kg and 12 mg/kg infused intravenously over 60 minutes 

with up to three additional doses if needed (minimum 8 hours between consecutive doses) 

(74). Responders were defined as patients with symptom resolution within 14 days.

Because of the proposed benefits of using tocilizumab in patients with CAR T-cell induced 

CRS and the described similarities between CRS and CS following infection, randomized 

trials are recruiting in COVID-19. In certain centres, tocilizumab has been employed in a 

compassionate access fashion in critically severe COVID-19 patients. A retrospective study 

from China (N=21) which used tocilizumab 400 mg intravenous drip (single dose) with or 

without lopinavir/ritonavir and methylprednisolone demonstrated improvement in fever, 

hypoxemia, CRP levels and pulmonary CT imaging, without adverse events (75). The mean 

CRP levels before the drug were 75.06 ± 66.80 mg/L and decreased to 38.13 ± 54.21 mg/L 

at day one, 10.61 ± 13.79 mg/L at day three and 2.72 ± 3.60 mg/L at day five (75). The 
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mean IL-6 level prior to the first dose of tocilizumab was 132.38 ± 278.54 pg/ml (75). 

Although follow-up IL-6 levels were not subsequently ascertained in this study, the pre-

treatment IL-6 concentration aligns with severe disease cut-offs in those studies mentioned 

earlier. Of immense importance for monitoring, increased serum IL-6 may be expected after 

initial treatment with tocilizumab (76). Indeed, it is considered that the usual IL-6R 

mediated consumption of IL-6 is altered by the bound between tocilizumab and IL-6R and 

that the IL-6 level during tocilizumab treatment probably reflects disease activity (76). 

Furthermore, in this study, IL-6 was also significantly increased in 20 healthy volunteers 7 

days after a single dose of tocilizumab (3.0 +/− 0.6 pg/mL at baseline and 9.3 +/−1.0 pg/mL 

at day 7) (76). Therefore, it is proposed that post tocilizumab use, monitoring of CRP may 

be a more appropriate assay for monitoring inflammation (44, 76). A French center has also 

shared their experience with tocilizumab 8 mg/kg (up to two doses) in 30 severe SARS-

CoV-2 patients defined as requiring more than 6 L/min oxygen therapy with rapid changes in 

oxygen needs (increase of more than 3 L/min in 12 hours) and having a more than 5 days 

disease diagnosis (77). The authors found that, when compared with a matched control 

group, the drug decreased the need for mechanical ventilation and ICU admission (23/30) 

(77). Finally, in an observational study from the United States, 153 patients with severe 

COVID-19 (defined as patients requiring supplemental oxygen and critical disease) were 

treated with an 8 mg/kg intravenous tocilizumab dose (maximum 800 mg). When compared 

to the non-severe group, survival rates were similar (p=0.11) (78).

In light of these promising results, the FDA has approved a randomized, double-blinded, 

placebo-controlled phase III clinical trial (COVACTA) with 55 locations in North America 

and Europe. This trial aims to test the efficacy and safety of intravenous tocilizumab in 

patients with severe SARS-CoV-2 infection (NCT04320615). Similarly, a multicenter, 

randomized controlled trial was started in China to test the efficacy and safety of 

tocilizumab in the treatment of patients with COVID-19 pneumonia and elevated IL-6 levels 

(ChiCTR2000029765). The Italian Regulatory Drug Agency (AIFA) has approved a 

multicenter, single-arm, open-label, phase 2 study (TOCIVID-19) where all the patients will 

be treated with tocilizumab 8 mg/kg intravenously (up to a maximum of 800 mg per dose), 

the primary goal being to assess the mortality rate after the first month (EudraCT: 2020–

001110-38). There are currently more than 20 registered COVID-19 associated tocilizumab 

trials (Table 5). A study registered in Greece proposes to individualise immunomodulatory 

treatment including tocilizumab or anakinra in COVID-19 depending on their cytokine 

profile (NCT04339712).

Sarilumab, a monoclonal antibody to IL-6 receptor, is also being investigated in COVID-19 

trials. A French multicenter randomized controlled trial (CORIMUNO-SARI) aiming to 

assess the efficacity and safety of sarilumab versus standard of care is ongoing 

(NCT04324073). Two additional industry driven clinical trials (NCT04315298, 

NCT04327388) aiming to assess the efficacy and safety of sarilumab in COVID-19 

hospitalized patients are recruiting. While the clinical outcome data for sarilumab is lacking, 

the comparative response with tocilizumab will be of interest given the longer half-life of 

sarilumab and greater affinity for the IL-6R (72).
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Siltuximab, a chimeric monoclonal antibody targeting IL-6 directly and preventing binding 

to both soluble and membrane bound IL-6 receptors, is FDA approved for the multicentric 

Castleman’s disease (79). There are currently 3 European trials recruiting COVID-19 

diagnosed patients (NCT04322188, NCT04329650, NCT04330638).

Targeting IL-1β

IL-1β leads to an increase in body temperature, lung inflammation and fibrosis (36). 

Increased levels of IL-1β were noted in patients diagnosed with SARS-CoV (80) and similar 

to IL-6, were associated with increased mortality in sepsis (9). Anakinra is a non-

glycosylated human decoy interleukin-1 receptor antagonist (IL-1Ra) that binds to the type 1 

IL-1 receptor and inhibits IL-1α and IL-1β signal transduction (81). This drug is FDA 

approved for rheumatoid arthritis and neonatal-onset multisystem inflammatory disease 

(NOMID) (82) and suggested in the treatment algorithm for secondary HLH/MAS (83).

A recent study found that the serum I L-1β levels were undetectable in 100% (N=17) of the 

patients with severe or moderate SARS-CoV-2 infection (5), an expected result considering 

the mechanism of action of this exocrine cytokine. Anakinra was used in a cohort from Italy 

to treat 29 adult patients diagnosed with COVID-19 related moderate-to-severe ARDS and 

hyperinflammation (defined as serum CRP ≥100 mg/L, ferritin ≥900 ng/mL, or both) (84). 

Survival was 90% compared to 56% in a standard treatment group (N=16) (p=0.009) (84). 

Other improvements included a reduction in CRP and a decrease in mechanical ventilation 

use. Post-treatment inflammatory relapse was not reported and the treatment was well 

tolerated (84).

Further, the post-hoc analysis of a phase III randomized control trial studying the use of 

anakinra in severe sepsis indicated a significant improvement in survival of septic patients 

with features of macrophage activation syndrome (MAS) in the absence of any severe 

adverse reactions (26). CORIMUNO-ANA is a trial that aims to determine the efficacy of 

anakinra in SARS-CoV-2 infected patients (NCT04341584). Anakinra will be administered 

twice daily as decreasing doses of intravenous infusions (400 mg on day one, two and three; 

200 mg on day four and 100 mg on day five). Canakinumab is a human anti-IL-1β 
monoclonal antibody that blocks IL-1β interaction with the IL-1 receptor for which there is 

currently one registered observational study (NCT04348448).

Targeting TNF-α and Interferon-γ

Similar to IL-1β, TNF-α has a direct role in acute systemic inflammation and is increased in 

patients with severe SARS-CoV-2 infection (2, 5, 85). However, this finding is not consistent 

among the different studies (54). Besides the observational reports that indicate an increase 

in the levels of this cytokine, a direct pathogenic mechanism of cellular viral entry involving 

the shedding of the coronavirus’ functional receptor, the angiotensin-converting enzyme 2 

(ACE2), was studied. This process of binding and shedding of the ACE2 is coupled with 

TNF-α production and the production of a TNF-α-converting enzyme (TACE) (86). Thus, it 

has been suggested that an anti-TNF drug could not only inhibit TNF-α directly but also 

down-regulate the expression and shedding of the ACE2. Also, some studies showed a 

decrease in sepsis related mortality with anti-TNF treatment (9).
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There are multiple commercialised anti-TNF biologics. Adalimumab is a recombinant 

human IgG1 monoclonal antibody that specifically binds to human tumor necrosis factor 

alpha (TNF-α) and blocks its interaction with the p55 and p75 cell surface TNF receptors. 

This drug could be potentially useful in managing severe COVID-19 manifestations. To 

analyze the benefits of an anti-TNF-α treatment in COVID-19, a randomized-controlled trial 

of adalimumab injection in severe COVID-19 patients has been registered 

(ChiCTR2000030089).

Similar to TNF, the major pro-inflammatory cytokine IFN-γ is also increased in the cytokine 

storm associated with COVID-19. IFN-γ was particularly well described in SARS-CoV 

patients (12) and may be targeted by emapalumab for which a comparative multicentre 

randomized clinical trial is also underway in combination with anakinra (NCT04324021).

Targeting IL-17

Another cytokine that could have a role in the cytokine storm caused by COVID-19 is IL-17. 

This was not a cytokine of interest in the recent SARS-CoV-2 studies and the only study that 

characterized IL-17 in COVID-19 found normal levels using a flow cytometry method (54).

As described in this review, IL-17 stimulates the production of pro-inflammatory cytokines 

such as IL-1β, IL-6 and TNF-α. Secukinumab is a human IgG1K monoclonal antibody that 

binds to IL-17A (inhibits the interaction with the IL-17 receptor) and is currently used for 

plaque psoriasis and several rheumatological conditions (87). The further rational for 

inhibiting IL-17 is that it is a proximal target to IL-1 and IL-6 and, hence, could reduce 

neutrophil recruitment to the lungs and prevent organ dysfunction in ARDS. To our 

knowledge, there are no ongoing trials involving this drug.

Targeting JAK

Targeting the Th17 pathway, research on murine models showed promising results with the 

use of fedratinib, a JAK2 inhibitor. In this study, the drug decreased the expression of IL-17. 

As IL-6 and IL-23 are signals for Th17 cell initial differentiation and effector function 

through the JAK2-STAT3 pathway, the use of this inhibitor could decrease the pro-

inflammatory function of Th17 (88). This drug is currently FDA approved for myelofibrosis 

(89). To our knowledge, there are no current registered trials involving this drug.

As mentioned, the cell-surface ACE2 receptor is needed for coronavirus endocytosis and one 

of the regulators of this process is the AP2-associated protein kinase 1 (AAK1), part of the 

numb-associated kinase (NAK) family (90). AAK1 inhibitors have been shown to prevent 

virus infections by disrupting viral cell invasion. Baricitinib is an oral JAK inhibitor (JAK1/

JAK2, JAK1/JAK3, JAK1/tyrosine kinase 2 (TYK2) and JAK2/TYK2) but also an AAK1 

inhibitor, having direct antiviral activity, that is currently FDA approved for rheumatoid 

arthritis resistant to anti-TNF drugs (91). Several trials are ongoing to confirm its safety and 

efficacy and it is also being investigated in combination therapy with remdesivir 

(NCT04340232, NCT04321993, NCT04320277). Remdesivir, an adenosine analogue with 

demonstrated antiviral activity against a broad range of RNA virus families, has been used in 

a randomized, placebo-controlled trial showing a decrease in time to recovery (15 versus 11 
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days) and a trend towards decrease in mortality (92). This drug gained an FDA approval for 

use in children and adults with severe COVID-19.

Ruxolitinib is a JAK1 and JAK2 inhibitor that mediates the signaling of numerous cytokines 

such as IL-6, IFN-γ and growth factors with essential roles in immune function and 

hematopoiesis. This drug is FDA approved for myelofibrosis, hydroxyurea resistant 

polycythemia vera and steroid-refractory acute graft-versus-host disease (93). A multicenter, 

single-blinded, randomized trial (1:1) of 44 patients with COVID-19 showed a tendency (not 

statistically significant) towards improvement in clinical outcomes in the ruxolitinib group 

(94). Several larger clinical trials from North American and Europe are ongoing (Table 5).

Another attractive drug is tofacitinib that has been shown to inhibit the in vitro activity of 

JAK1/JAK2, JAK1/JAK3 and JAK2/JAK2 and thus decrease the related cytokines. 

According to the FDA, it can be used for rheumatoid arthritis, psoriatic arthritis and 

ulcerative colitis (73). There is one planned Italian trial that aims to assess the advantage of 

early administration of tofacitinib in SARS-COv2 related interstitial pneumonia 

(NCT04332042).

Serious bacterial, mycobacterial, fungal and viral infections have been reported with the use 

of JAK inhibitors. This potential off-target effect of these drugs combined with the decreased 

interferon innate response can lead to severe complications and caution should be used in the 

SARS-CoV-2 context with theoretical benefit for the anti-JAK molecules that have more 

specific targets.

Other targeted immunomodulatory therapies and combination therapies

As described, the production of cytokines and chemokines by macrophages is regulated by 

the BTK. Thus, inhibition of this protein could be a promising strategy for reducing 

COVID-19 related complications with therapeutic inhibition of BTK in patients with 

lymphoid malignancies resulting in decreased proinflammatory cytokines.

Company sponsored trials with acalabrutinib, a small-molecule inhibitor of BTK enzymatic 

activity, that aim to study its efficacy and safety compared to best supportive care in 

hospitalized patients with COVID-19 are currently listed and will begin recruitment shorty 

in the United States and Europe (Table 5).

By sensing self or pathogenic cytosolic double-stranded DNA (dsDNA), the cyclic 

guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthetase (cGAS) 

stimulator of interferon (IFN) genes (STING) plays an important role in innate immunity 

and tumor development (95). STING is expressed in T-cells, monocytes, NK cells, and 

dermal fibroblasts and cGAS-STING signaling promotes the production of IL-6 and the 

downstream activation of STAT3 (95). The STING-IFN-β pathway is triggered by the 

binding of cGAS to STING that leads to IFN regulatory factor 3 (IRF-3) phosphorylation 

and subsequent transcription of the gene encoding interferon-β (IFNB) (96). The JAK 

receptors and their specific pathways are activated by the IFN-β binding to its receptor. The 

regulation of STING and other proinflammatory cytokine genes is also achieved with the 
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synthesis and release of interferons. Thus, this pro-inflammatory loop can be obstructed by 

JAK inhibition (96).

Combination therapy with lopinavir-ritonavir, ribavirin and IFN-p-1b compared with 

lopinavir-ritonavir monotherapy was evaluated in an intention to treat multicenter, 

randomized phase 2 clinical trial from China. The primary endpoint was the time before a 

negative nasopharyngeal swab (RT-PCR) in SARS-CoV-2 patients with the median time 

reported for the combination group (N=86) being 7 days and the time in control group 

(N=41) was 12 days (p=0.0010) (97). Anti-Coronavirus Therapies (ACT) COVID-19 is a 

clinical trial that aims to evaluate the combination of chloroquine and azithromycin with 

subcutaneous injection of IFN-β1b for SARS-CoV-2 prevention by assessing admission to 

intensive care, mechanical ventilation and/or death (NCT04324463).

The complement system is also a potential therapeutic target in SARS-CoV-2 infection. 

Complement is key to the innate immune response to all viruses and complement inhibition 

is a potential treatment for severe SARS-CoV-2 infection by reducing the severity and end-

organ consequences of the innate immune response (98, 99). A recent mouse model 

suggested that complement activation through C3 exacerbates SARS-CoV associated ARDS 

and that C3-deficient mice infected with SARS-CoV showed less respiratory decline (100). 

Lung biopsy samples from patients with SARS-CoV-2 associated ARDS showed evidence 

of complement activation with C3 fragment deposition and associated increased serum 5a 

levels (98). However, there is little clinical data on the potential role of complement 

activation and its role in ARDS associated with SARS-CoV-2. There are now several 

proposed and ongoing studies examining the role of C5 inhibitors such as eculizumab and 

ravulizumab (Table 5).

Convalescent plasma

Given the lack of evidence-based treatment and the novelty of this disease, convalescent 

plasma (CP) has reemerged as an emergency intervention passive immunization strategy 

aiming to decrease morbidity and mortality in critically ill COVID-19 patients (101, 102). 

This treatment has been shown favourable during the SARS-CoV infection with a decrease 

in hospital stays and mortality compared to controls (103, 104). Also, a recent systematic 

review, while acknowledging the limited data, indicated that CP is safe, clinically effective 

and can play a role in reducing mortality (105). The described mechanisms of action are 

direct neutralization of the virus aimed at the spike (S) viral protein (106, 107) as well as 

other immunomodulatory and anti-inflammatory functions such as neutralization of 

cytokines, complement and autoantibodies (101). A clinical report on the use of CP in 

critically ill SARS-CoV-2 patients showed a hypothetical benefit with decrease of body 

temperature, increase in respiratory function and ARDS resolution in 4 of the 5 patients 

included (107). In an open-label, multicenter, randomized clinical trial from China, adding 

convalescent plasma to the treatment plan did not result in increased clinical recovery (108). 

Several questions remain unanswered regarding CP and there is a need for larger 

randomized controlled trials to answer these questions but emerging successful reports 

related with its use in severe COVID-19 highlights the intense inflammatory response that 

accompanies this infection.
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CONCLUSION

Severe SARS-CoV-2 infection is associated with cytokine storm producing a 

hyperinflammatory state and a clinical and laboratory picture similar to hemophagocytic 

lymphohistiocytosis that typically occurs 7–10 days following the onset of acute illness. In 

this setting, IL-6 levels correlate with respiratory failure, poor outcomes and mortality. 

Blocking this and other appealing cytokines and signaling pathways at an early stage shows 

promise to target specific and undesirable immune responses in the setting of acute SARS-

CoV-2 infection. Currently, studies examining the combination of direct antiviral agents with 

immunomodulatory therapy are ongoing and will be important in the quest to prevent acute 

respiratory deterioration, ventilation use, morbidity and mortality from SARS-CoV-2 

infection.
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Abbreviations

AAK1 AP2-associated protein kinase 1

ACE2 angiotensin-converting enzyme 2

AIFA Italian Regulatory Drug Agency

AIM2 Absent in melanoma 2

AMP adenosine monophosphate

ARDS Acute respiratory distress syndrome

BRD4 Bromodomain-containing protein 4

BTK Bruton’s tyrosine kinase

CAR Chimeric antigen receptor

CP convalescent plasma

COVID-19 Coronavirus disease 2019

CDR Complementarily determining regions

cGAS cyclic guanosine monophosphate-adenosine 

monophosphate synthetase
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CRP C-reactive protein

CRS Cytokine release syndrome

CS Cytokine storm

CTCAE Common Terminology Criteria for Adverse Events

DAMP Damage-associated molecular pattern

DNA deoxyribonucleic acid

dsDNA double-stranded DNA

ED Emergency department

ELISA Enzyme-linked immunosorbent assay

gp130 glycoprotein 130

FDA Food and Drug Administration

FLT3 fms-like tyrosine kinase 3

GMP guanosine monophosphate

HCT Hematopoietic cell transplantation

HIES Hyper Immunoglobulin E syndrome

HLH hemophagocytic lymphohistiocytosis

ICU Intensive care unit

IL Interleukin

IFN Interferon

IQR Interquartile range

IRF-3 interferon regulatory factor 3

JAK Janus Associated Kinase

LRR leucine-rich repeats

MAPK Mitogen-activated protein kinase

MAS macrophage activation syndrome

MERS Middle East respiratory syndrome

NAK numb-associated kinase

NF-kB nuclear factor kappa-light-chain-enhancer of activated B-

cells
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NK natural killer

NLRP3 NOD-, LRR- and pyrin domain-containing protein 3

NOD Nucleotide-binding and oligomerization domain

NO Nitric oxide

NOMID neonatal-onset multisystem inflammatory

PAMP Pathogen-associated molecular pattern

PBMC peripheral blood mononuclear cells

pg/ml picogram/milliliter

PRRs pattern recognition receptors

RNA Ribonucleic acid

ROS Reactive oxygen species

SARS Severe acute respiratory syndrome

SARS-CoV-1 SARS-associated coronavirus 1

SIRS Systemic inflammatory response syndrome

STAT signal transducer and activator of transcription

STING stimulator of interferon genes

TACE TNF-α-converting enzyme

TGF-β transforming growth factor β

Th 17 T helper 17

TLRs Toll-like receptors

TNF Tumour Necrosis Factor

Treg regulatory T-cells

TYK2 tyrosine kinase 2

WES whole-exome sequencing
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Inflammatory cytokines and chemokines, including IL-6, IL-1β and TNF-α, are 

significantly elevated in patients with severe SARS-CoV-2 infection suggesting that 

cytokine storm may play a role in the SARS-CoV-2 severity, morbidity and mortality.
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IL-6 has major effects on cellular immunity, with both pro- and anti-inflammatory 

functions.
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Several recent publications have shown that an increase in the pro-inflammatory cytokine 

IL-6 correlates with disease severity, defined as sepsis, ARDS or mechanical ventilation 

and mortality in SARS-CoV-2.
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As with the development of any novel diagnosis and as increased levels of IL-6 are 

associated with sepsis and septic shock, clinical cut-offs must be defined.
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Clinical trials are urgently warranted to evaluate a therapeutic strategy targeting upstream 

and downstream pathways in SARS-CoV-2. The effective dose and the ideal 

administration timing of the immunomodulatory drugs remain under investigation.
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Figure 1: COVID-19 Immunological mechanisms for cytokine storm and possible role of 
biologics
When SARS-CoV-2 pathogen-associated molecular pattern (PAMPs) and/or Damage-

associated molecular patterns (DAMPs) bind to toll-like receptors (TLRs) on the surface of 

resident alveolar macrophages, they become activated and secrete tumor necrosis factor 

(TNF), interleukin-1β (IL-1β) and IL-6. In increased levels, these cytokines will be the 

hallmark of the cytokine storm responsible for the acute respiratory distress syndrome 

(ARDS) and cytokine storm (CS) in COVID-19. The different targets of biologics are 

illustrated in the figure. Specifically, the downstream effect IL-6 can be blocked with 

tocilizumab, sarilumab or siltuximab and the effects of IL-1β with anakinra or canakinumab.
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CD8+ T-cells produce IFN-γ causing direct tissue damage, while activated CD4+ T-cells, in 

the presence of transforming growth factor β (TGF-β) and IL-6, will differentiate into the T 

helper 17 (Th 17) cell subset, responsible for secreting IL-17A and IL-17F who, among 

numerous roles, target macrophages, dendritic cells, endothelial cell and fibroblasts to 

increase the production of IL-1, IL-6 and TNF.

ACE2, Angiotensin converting enzyme 2; ARDS, DAMP, damage-associated molecular 
patterns; PAMP, pathogen-associated molecular pattern; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2; TNF, tumour necrosis factor; TMPRSS2, 
transmembrane protease, serine 2.
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Figure 2: The implications of the STING pathway in coronavirus
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthetase 

(cGAS) stimulator of interferon (IFN) genes (STING) pathway is activated by sensing 

foreign cytosolic DNA (obtained after reverse transcription from the SARS-CoV-2). cGAS 

catalyzes the generation of cyclic GMP-AMP (cGAMP) that binds and activates STING in 

the ER (endoplasmic reticulum) leading to the expression of IFNs and other cytokines. 

IL-1β is produced after the NLRP3 inflammasome, activated by AIM2 sensing foreign 

DNA, induces the formation of caspase-1 that will cleave pro-IL-1β into IL-1β.

AMP, adenosine monophosphate; ATP, Adenosine triphosphate; cGAMP, cyclic GMP-AMP; 

DNA, deoxyribonucleic acid; GMP, guanosine monophosphate; GTP, Guanosine 

triphosphate; cGAS, cyclic GMP-AMP synthetase; ER, endoplasmic reticulum; IFN, 

interferon; RNA, ribonucleic acid; STING, stimulator of interferon.
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Figure 3: Classic and trans-signaling IL-6R
a. and b. Different signaling pathways stimulated by IL-6. Binding of IL-6 to the membrane-

bound or soluble IL-6 receptor (IL-6R) leads to gp130 dimerization and Janus kinase 1 

(JAK1) - STAT 3 signalling and activation leading to gene expression of inflammatory 

cytokines. This pathway is only represented in a. and replaced by the word “SIGNAL” in b.
a. Classic signaling, which is restricted to several cell types, is initiated through binding of 

IL-6 to the membrane IL-6R and forms a complex with gp130.
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b. Trans-signaling is driven by IL- 6 in all gp130-expressing cells. Pro-inflammatory 

functions have been found to be mediated through binding of soluble IL-6R shredded from 

cells undergoing ADAM17-mediated apoptosis.

c. and d. IL-6 blockade therapy using a humanized anti-IL-6 receptor monoclonal antibody

A humanized anti-IL-6R antibody blocks IL-6-mediated signaling pathway by inhibiting 

IL-6 binding to the membrane (c.) and soluble (d.) receptors.

gp130, glycoprotein 130; IL, Interleukin; IL-6R, IL-6 receptor; sIL-6R, soluble IL-6R; JAK, 

Janus Associated Kinase; STAT, signal transducer and activator of transcription.
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