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Abstract

Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging 

viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-

Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating 

that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious 

diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir 

hosts often show little evidence of disease is not completely understood. Differences in the host 

immune response, especially within the innate compartment, have been suggested to be involved 

in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the 

early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we 

will discuss the mechanisms through which NK cells interact with viruses, their contribution 

towards maintaining equilibrium between the virus and its natural host, and their role in disease 

progression in humans and other non-natural hosts.

Preface

Emerging viral diseases pose an ongoing threat to mankind, especially in a globalized and 

highly interconnected world. A prime example of such a threat is the current COVID-19 

pandemic, with more than eight million confirmed cases and over 420,000 deaths worldwide 

at the time of this publication [1]. All of the diseases with the greatest potential to cause a 

public health emergency, as identified by the World Health Organization, are driven by 

viruses of zoonotic origin [2]. These include viruses that cause haemorrhagic fever (e.g. 

Ebola, Marburg, Dengue, and Lassa viruses), highly pathogenic respiratory coronaviruses 

(e.g. those causing MERS and SARS), and other viruses (e.g. Nipah, Zika, and 

Chikungunya).
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These zoonotic viruses are extremely diverse in nature, as some are transmitted through 

vectors such as mosquitoes or ticks (e.g. Dengue, Tick-borne encephalitis), whereas human-

to-human is the main mode of transmission for others (e.g. Ebola, SARS-Cov2). Some 

zoonotic viruses have a wide range of natural hosts (e.g. Huaiyangshan, West Nile), whereas 

others are restricted to specific species such as bats (e.g. Marburg, Hendra) (Table 1). 

However, most zoonotic viruses have shared characteristics, such as being single-stranded 

RNA (ssRNA) viruses, and causing mild or asymptomatic infections in its natural host 

animal, while provoking profound pathologies in humans [3]*. Understanding the immune 

mechanisms that allow animal reservoirs to tolerate these viruses will shed light into how 

viral zoonotic infections progress to severe illness in humans. This review describes the role 

of Natural killer (NK) cells, a critical component of early antiviral immunity, in the 

establishment of tolerance to viral infections in natural hosts, as well as their role in the 

development of disease in non-natural hosts.

Natural killer cells in innate immunity

NK cells are lymphocytes of the innate immune system with the unique ability to rapidly 

destroy virally infected cells and tumors without previous sensitization [4,5]. They play a 

critical role in the control of viral infections, as deficiencies in the NK cell compartment are 

associated with increased susceptibility to certain viral infections in humans [6-8]. Unlike T 

and B cells, NK cells do not express a rearranged antigen receptor, but instead express a 

wide array of germline-encoded receptors, which can be activating or inhibitory [4,9]. NK 

cells are “educated” through their inhibitory receptors to recognize “self” (e.g. ligands 

normally present on healthy cells, such as MHC class I molecules) [9,10]. In contrast, 

activating receptors can recognize “non-self” pathogen components (e.g. viral ligands, 

proteins, or peptides expressed during infection) or stress signals (e.g. NKG2D ligands 

expressed during injury, infection, or tumorigenesis) [9,10]. NK cells also express activating 

Fc receptors (e.g. CD16), which helps them recognize antibody-coated target cells and clear 

them via antibody-dependent cell-mediated cytotoxicity (ADCC) [11]. Moreover, during 

viral infection, pro-inflammatory cytokines (e.g. IFN-α, IL-12, and IL-2/15) can directly 

activate NK cells [12-14]. When engaging a potential target, all these signals are integrated 

to determine whether the NK cell will kill, make cytokines, and proliferate. Upon activation, 

NK cells can release granzymes and perforin to lyse infected target cells, produce effector 

cytokines such as IFN-γ to alert the surrounding tissue of infection, and in some cases 

undergo robust proliferation [4,8,15-17]*.

NK cells throughout evolution: keeping an eye on the viral niche

NK cells, along with other lymphocytes such as T and B cells, likely arose in a common 

vertebrate progenitor around 500 million years ago [18]. The antiviral and antitumoral 

activities of NK cells (or NK-like cells) have been described across many non-mammalian 

species, including lampreys [18,19], fish [20,21], amphibians [22,23], reptiles [24] and birds 

[25,26]. The transcription factors that define the NK cell lineage (e.g. Id2, Nfil3, Eomes), as 

well as molecules required for their cytotoxic potential (e.g. Rab27a, Prf1), are 

evolutionarily conserved [18]. However, unlike with T and B cell receptors derived from 

gene rearrangement, where antigen recognition is largely shared from fishes to mammals 
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[27], antigen recognition through NK cell receptors is evolutionarily diverse. Fish, birds, 

reptiles, and amphibians are predicted to express different classes of NK cell receptors, such 

as the novel immune-type receptors (NITRs) in fish, chicken Ig-like receptors (ChIRs) in 

birds, and Xenopus Ig-like receptors (xILRs) in amphibians [28]. Mammalian NK cells on 

the other hand typically recognize their targets through killer cell Ig-like receptors (KIRs), 

killer cell lectin-like receptors (KLRs) and leukocyte Ig-like receptors (LILRs) [28].

NK cells are diverse on a population level, as each cell stochastically expresses a unique 

combination of activating and inhibitory receptors [29]. Furthermore, although the genes 

encoding NK cell receptors (NKR) can be present as a single copy and exhibit low 

polymorphism in some mammals, they can be highly polymorphic and expanded into 

superfamilies (likely by gene duplication) in closely related species [28,30,31]. Such 

interspecies variability (with the Klrk gene encoding the NKG2D receptor being an 

exception) makes NKRs some of the most rapidly evolving gene families in eukaryotes [28]. 

These features may be responsible for the unique responsiveness of NK cells to variations in 

genetic and environmental factors that impact the host immune response to viral infections. 

Interestingly, other forms of innate immune sensing such as Toll-like receptors (TLRs), RIG-

I-like receptors (RLRs) and NOD-like receptors (NLRs), which recognize pathogen-

associated molecular patterns, are remarkably conserved down to invertebrates [29,32].

The striking diversity of NKRs suggests an intense selective pressure from the pathogens 

they encounter, especially viruses. This co-evolution of the NKR repertoire with the viral 

interface is arguably best studied in the mouse and human NK cell response to 

cytomegalovirus (CMV) [33-35]. CMV is a species-specific herpesvirus that persists 

through latency in healthy hosts, and thought to intimately interact with the host immune 

system. To avoid CD8+ T cell recognition, human and mouse CMV (HCMV and MCMV, 

respectively) possess multiple genes encoding immunoevasins that interfere with antigen 

presentation by degrading, retaining, or preventing the assembly of MHC class I on the cell 

surface of infected cells [36]. However, because downregulation of MHC class I causes 

CMV-infected cells to be susceptible to NK cell recognition of “missing self”, CMV has 

evolved MHC class I-like proteins as a decoy to engage inhibitory NKRs and tune down NK 

cell reactivity [37]. As perhaps an evolutionary countermeasure, activating NKRs 

recognizing the same decoy ligands have appeared in mouse and human genomes that allow 

for NK cell recognition of CMV-infected cells [33]. Examples of this host-pathogen 

evolutionary adaptation include the inhibitory Ly49I and activating Ly49H receptor pair in 

mice, which both recognize the MCMV m157 glycoprotein [38], and the inhibitory NKG2A 

and activating NKG2C receptors in humans, which both recognize the viral UL40 peptides 

presented on the nonclassical MHC class I molecule HLA-E [39,40]. In further evidence of 

this evolutionary ‘tug-of-war’ between host and virus, MCMV strains isolated from wild 

mice have been shown to exhibit high polymorphism in its m157 gene, and HCMV isolates 

that promote strong NKG2C engagement are far rarer than those inducing weak activation in 

humans [41,42]*. Thus, both mouse and human immune systems have evolved remarkably 

similar molecular mechanisms of viral control of CMV using different families of NKRs, 

representing a strong example of convergent evolution.
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Innate immunity in reservoirs of zoonotic viruses

Animals with the greatest potential to transmit zoonotic diseases to humans include 

mammals such as bats, primates, and rodents [3]. While ecological and biological factors 

certainly play a role in the transmission of zoonotic diseases, a growing body of evidence 

suggests that transmission across species may occur because these animals possess a more 

permissive innate immune response allowing them to carry a high viral burden (Figure 1).

The example of bats

Bats are reservoirs to Ebola and Marburg viruses, Hendra and Nipah viruses, and SARS 

coronaviruses, among others [43,44]. Their roosting behaviour, ability to fly, widespread 

distribution, and consumption as bushmeat makes them especially well-positioned to 

transmit zoonotic viruses to humans [45]. Despite having a high metabolic rate associated 

with the energetic cost of flight, bats have unusually long lifespans [46]. Consistent with this 

energetic demand, genes involved in oxidative phosphorylation and DNA damage response 

are under positive selection in bats [47]. In turn, bats may have fine-tuned their response to 

high cellular stress in order to avoid overt inflammatory responses, which has been 

hypothesized to provide a unique niche for certain viruses. Indeed, bat cells show dampened 

activation of the NLRP3 inflammasome during viral infection, and the production of 

interferons (IFNs) following viral entry is rapid but more transient and lower in magnitude 

compared to other mammals [45,48]. Moreover, interferon-stimulated genes (ISG) such as 

ISG15 may have been positively selected for in certain bat species, and some IFN gene 

families are greatly expanded [47,49,50]. Altogether, it is believed that quick control of viral 

infections and reduced induction of pro-inflammatory cytokines have allowed bat viruses to 

rapidly co-evolve with their host without provoking major immune-mediated pathologies 

[51].

Type I IFNs provide a strong activating signal for NK cells, and a dysregulation in the IFN-

NK cell axis in bats could have detrimental consequences. Recently, ISG15 has been shown 

to boost the cytolytic activity of NK cells [52], which may contribute to control of viral 

replication in bats. Interestingly, the bat genome does not encode for KIR genes, but shows 

an amplification of LILR and KLR genes, especially NKG2A/B [30,50]*. Six of these 

NKG2A/B genes putatively encode activating and inhibitory interaction motifs 

simultaneously, adding an extra layer of complexity to the regulation of NKRs in bats. 

Although NK cells have been characterized in bat peripheral blood using cross-reacting 

antibodies [53], their functionality and responsiveness against bat viruses have not been 

tested. Altogether, the current evidence suggests that the NK cell activation threshold in bats 

may be tightly controlled to avoid detrimental immune responses.

Lessons from monkeys

Primates are a reservoir for Chikungunya and Yellow Fever virus (YFV), among others [3]. 

Furthermore, although Human Immunodeficiency Virus (HIV) is now restricted to humans, 

it is thought to have originated from the Simian Immunodeficiency Virus (SIV) [54]. 

Whereas some monkey species are tolerant to SIV (e.g. sooty mangabeys (SM)), other 

related species are susceptible (e.g. rhesus macaques (RM)), which allows for comparative 
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analyses of the respective immune response in natural and non-natural hosts. SM pDCs have 

been shown to produce less IFN-α in response to SIV and YFV infection, in part due to 

dampened TLR7 signaling [55,56]*. Lower levels of such pro-inflammatory cytokines in 

serum may be partly responsible for the diminished NK cell activation and proliferation 

observed in SM compared to RM and humans [55,57]. Interestingly, it has been reported that 

SM NK cells respond more rapidly to SIV infection than RM NK cells, suggesting that, as 

with bats, early control of viral infection by the innate immune system prevents aberrant 

immune responses later on [58]*.

Turning to rodents for answers

Rodents are reservoirs to Lassa fever virus and a wide range of hantaviruses. Although the 

rodent immune system is arguably as extensively studied as the human, relatively little is 

known about the immune mechanisms promoting viral tolerance in wild natural hosts. 

Syrian hamsters are tolerant to certain hantaviruses, such as Sin Nombre Virus (SNV), but 

succumb to the closely related Andes Virus (ANDV), with symptoms remarkably similar to 

the human manifestation of the disease [59-61]. Although comparative analyses are scarce, 

ANDV appears to avoid early innate immune recognition and elicit a stronger immune 

response later on [59,62]. Priming with poly I:C or SNV protects hamsters from ANDV-

driven pulmonary disease, suggesting that rapid IFN responses may allow for viral control 

while avoiding later immunopathology [63], similar to bats. ANDV produces severe 

lymphopenia, and immunosuppressants make hamsters susceptible to SNV [60,64], 

highlighting the critical role of immune responses for keeping the virus in check. 

Interestingly, T cell depletion does not alter the course of disease in ADNV and SNV-

infected hamsters, suggesting that perhaps innate lymphocytes, such as NK cells, may play a 

role in the pathology (or avoidance of pathology) of hantavirus diseases [61,65].

The careful study of the immune system in reservoirs of zoonotic diseases will certainly 

offer insights into how these animals carry high viral loads while remaining asymptomatic. 

A growing body of evidence suggests that differences in the innate immune system, 

particularly in viral recognition and induction of pro-inflammatory cytokines, may explain 

such phenomenon (Figure 1). Since NK cells are key players in the integration and 

amplification of these signals, some animal reservoirs may have adapted their NKR 

repertoire and functionality to avoid excessive immune activation leading to 

immunopathology. As such, a deeper understanding of the NK cell response to zoonotic 

viruses in its natural host may shed light into their role in disease pathology in humans.

NK cells and viral diseases of zoonotic origin

NK cells have been proposed to contribute to immunopathology in some zoonotic diseases, 

while having protective effects against other viral infections. Here, we will discuss their role 

in the progression of diseases caused by SARS coronaviruses and some Haemorrhagic fever 

viruses (HFVs). This data is summarized in Table 1 and Figure 2, alongside with other 

relevant viral diseases of zoonotic origin, including Zika, West Nile, and Nipah. Finally, we 

will examine their contribution to the protection conferred by vaccines against zoonotic 

viruses.
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SARS coronaviruses

The coronaviruses MERS-CoV, SARS-Cov, and SARS-Cov2 have caused three global 

outbreaks in the past two decades, with the latter being the causative agent behind the 

current COVID-19 pandemic. Negative outcomes have been associated with aberrant 

immune responses and subsequent lung pathology. MERS-CoV induced high levels of 

inflammatory cytokines associated with strong myeloid responses (e.g. IL-β, IL-6, and 

IL-8), but failed to induce early type I IFNs [66-68]. Common human coronaviruses induce 

strong type I IFN responses compared to SARS and MERS, which may account for their 

lower fatality rate [67,69]. Interestingly, IFN-α production anecdotally correlated with 

survival of MERS patients, as did serum levels of IFN-γ [70]. Although definitive data is 

lacking, these studies suggest that early IFN production (e.g. IFN-γ production by NK cells) 

may contribute to viral control in these patients. Conversely, delayed recognition and 

responses may result in virus-mediated cytopathy and aberrant production of highly 

inflammatory cytokines leading to lung pathology.

All three coronaviruses mentioned above have been documented to provoke severe 

lymphopenia and lower circulating NK cell numbers in some patients, although the exact 

role of NK cells in disease pathology is not clear [71-73]. Although mouse models of SARS 

infection suggest that lymphocytes do not play a major role in pathology, these models do 

not accurately replicate disease progression in humans [74,75]. Given our understanding of 

viral infections in hamsters and macaques, we would argue that developing more relevant 

animal models is key to studying virus-immune interactions, and immune-mediated 

pathobiology. Currently, one US-based company has obtained approval from the FDA to use 

NK cell-based immunotherapy as a potential treatment for COVID-19, with others following 

suit [76,77]. Although the available data indicates that NK cell-targeted therapy may have 

beneficial effects on virus control and disease progression early on, these data also suggest 

that NK cells can exacerbate the severity of the disease at later time points. Thus, extreme 

caution should be exercised when designing such treatment strategies, and there should not 

be a rush to haphazardly implement such cellular treatments without careful design.

Haemorrhagic fever viruses

HFVs are a diverse group of viruses with the common denominator of causing fever and 

severe bleeding, although disease severity is highly variable. HFVs include arenaviruses 

(e.g. Lassa virus), filoviruses (e.g. Ebola virus), flaviviruses (e.g. Dengue virus) and 

hantaviruses. Here we attempt to summarize the NK cell response to representative 

examples of these viruses.

I. Ebola—Ebola virus-infected cells have been shown to be resistant to NK cell-mediated 

killing [78,79]**. Ebola is known to potently inhibit type I IFN induction in infected 

myeloid cells, and IFN-α and IL-12 are difficult to detect in infected individuals [78,80-82]. 

In contrast, viral-like particles (VLPs) of Ebola, which contain no RNA or inhibitory 

proteins, are able to readily activate DCs, and promote NK cell cytotoxicity and IFN-γ 
production [79,83]. These findings suggest that NK cells can more efficiently target Ebola-

infected cells when they receive the proper cytokine signals. Indeed, transfer of VLP-primed 
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NK cells provided almost complete protection against lethal Ebola challenge in mice, where 

protection was dependent on cytotoxicity and not on IFN-γ production by NK cells [79].

Ebola can evade NK cell recognition through additional mechanisms. VLP-treated NK cells 

recognize Ebola-infected cells through NKp30 and possibly NKG2D; however, Ebola uses 

its glycoprotein to conceal NKp30 and NKG2D ligands expressed on the surface of infected 

cells, thereby shielding them from NK cell killing [84]. Interestingly, while the glycoprotein 

also impairs MHC class I presentation and thus recognition by the T cells, engagement of 

inhibitory NKRs can still occur. Altogether, these VLP studies suggest that NK cells can 

recognize viral proteins present in the VLP, but additional evasion proteins in the Ebola 

genome can impair NK cell activation. The direct mechanisms and relevance of these Ebola 

immunoevasins in human infections remain to be determined.

Ebola infections are also characterized by profound lymphopenia, lymphocyte apoptosis, 

and extensive cellular damage. Do NK cells directly (via cytotoxicity) or indirectly (via IFN-

γ secretion) contribute to these phenotypes? One study suggested that NK cells can 

contribute to pathology by migrating to infected organs and killing infiltrating T cells [85]. 

Furthermore, IFN-γ was markedly elevated in serum samples from patients that succumbed 

to haemorrhagic shock, but not in those who survived [86,87]. IFN-γ mRNA levels in 

PBMCs were surprisingly similar in both patient groups, suggesting that translation into 

IFN-γ protein may be exacerbated in those that led to fatality, a step-wise mechanism for 

IFN-γ production that has been recently characterized in NK cells [88].

II. Dengue—NK cells and IFN-γ production appear to be important for Dengue virus 

control, as NK cell depletion and IFN-γ blockade led to high viremia and virus-mediated 

pathology in humanized mouse models [89]*. Furthermore, NK cells have been suggested to 

recognize and lyse Dengue-infected cells in vitro through activating receptors such 

KIR2DS2 (proposed to recognize NS3 peptides in the context of HLA-C0102) and NKp44 

(proposed to recognize Dengue envelope protein) [90,91]. However, despite a strong IFN 

response and potent NK cell activation, viral replication can reach high levels in patients and 

in vitro [92-95]. Rather than directly impeding the engagement of NK cell activating 

receptors, like Ebola, Dengue instead can evade NK cell targeting by upregulating HLA 

molecules on infected cells [96]. Indeed, blocking HLA in vitro restores NK cell 

degranulation against DENV-infected cells, and NK cell cytotoxicity is diminished at early 

disease stages when viral titers are highest [95,97]. The upregulation of HLA molecules by 

Dengue suggests that inhibitory NKRs are engaged during NK cell surveillance of infected 

cells, which is supported by the observation that expression of inhibitory KIR2DL1, 

KIR3DL1, and KIR2DL5 are more prevalent in Dengue-infected patients than healthy 

controls [98]. Furthermore, KIR3DL1 has been suggested to directly recognize Dengue 

NS1-derived peptides presented on HLA-B57 [99]. However, given that KIR3DL1 can 

already directly recognize endogenous peptides presented on HLA-Bw4, whether NS1-

derived peptides can directly alter NK cell function in vivo is unknown.

After an initial febrile phase, Dengue viral titers dwindle and a latter critical phase ensues 

which can progress into serious complications, including haemorrhage and fatal shock 

[100,101]. This latter critical phase is likely immune-mediated. NK cell activation and IFN-
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α titers were higher in haemorrhagic patients compared to milder symptomatic patients, 

suggesting that these cellular and soluble immune components may directly contribute to 

pathology at these later stages [93,99,102]. By comparison, infection with Chikungunya 

virus elicits similar initial symptoms, but very rarely results in fatal haemorrhage and shock. 

Furthermore, whereas NK cells only increased in number late during Dengue infection, their 

numbers increased early during Chikungunya infection [95]. Lastly, NK cells from Dengue-

infected patients produced more IFN-γ but were less cytotoxic than those from 

Chikungunya patients [95]. Many other factors beyond the specific immune components 

herein presented distinguish the pathologies driven by these viral infections. Nonetheless, 

the available data suggest that NK cells may play a role in the onset of haemorrhagic 

complications.

III. Lassa fever—Lassa virus has previously been described to evade NK cell killing by 

maintaining high levels of MHC class I on infected cells while inhibiting expression of 

NKG2D ligands [103,104]. Indeed, expression of the inhibitory NKR KIR2DL2 has been 

associated with increased fatality rate [105]. Although NK cells can be activated by Lassa 

virus-infected cells, they do not produce IFN-γ [104,106]. The reduced inflammatory profile 

may partly explain the lower occurrence of haemorrhage and mortality in comparison with 

other HFVs. Interestingly, NK cells will proliferate to a greater degree in Lassa-infected 

monkeys that recover from the infection, but are reduced in number in those that succumb to 

the virus [106]. Whether NK cell proliferation provides protection against Lassa virus has 

not been formally addressed.

Altogether, it is tempting to speculate that although NK cells provide critical protection in 

the early phases of HFV infection, the exacerbated NK cell response observed in the later 

stages contributes to the onset of haemorrhagic complications.

Vaccinating through the NK cell compartment

Among the biggest challenges we face with zoonotic viruses is the lack of effective vaccines. 

To date, only vaccines against rabies, tick-borne encephalitis, Japanese encephalitis, yellow 

fever, and recently Ebola, are available. Rabies infection leads to delirium and certain death 

if untreated, but vaccination after suspected exposure effectively controls the infection 

[107,108]. Interestingly, in prime-boost studies (where three doses are recommended for full 

protection), NK cells are among the first and strongest responders during each re-vaccination 

dose [109]*. IFN-γ production and degranulation predominantly occurred through an 

ADCC mechanism, suggesting that protective antiviral NK cell responses may depend on 

rabies-specific antibodies generated following vaccination [109].

An effective vaccine against Ebola developed in Canada was recently approved for use in the 

US and Europe [110-112]. A systems vaccinology approach revealed a correlation between a 

strong NK cell activation signature and development of an antibody response to this Ebola 

vaccine [113]. Furthermore, and similar to the rabies vaccine, NK cells from Ebola-

vaccinated individuals mounted an antibody-dependent response against Ebola glycoprotein, 

where IFN-γ production and degranulation correlated in magnitude with neutralizing 

antibody titers [114].
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Currently, two recombinant rabies-based vaccines are being developed against Marburg and 

Lassa viruses [115,116]**. Although these vaccines provided almost complete protection 

from viral challenge, the antibodies generated were non-neutralizing. Instead, these virus-

specific antibodies elicited strong NK cell-mediated ADCC against infected cells expressing 

the viral glycoprotein used for vaccination. Blocking Fc receptors on NK cells or directly 

depleting NK cells decreased killing of target cells, and immunized mice lacking the Fc 

receptor became susceptible to viral challenge [115,116]. Altogether, these studies highlight 

the critical role of NK cells in conferring protection through vaccination against zoonotic 

diseases.

Concluding Remarks

NK cells are critical for the control of viral infections. The receptors they use to recognize 

virally infected cells have rapidly evolved to adapt to the viral niche in each species. Indeed, 

some animal reservoirs of emerging viruses (e.g. bats) have exquisitely complex and 

expanded NK cell receptor repertoires. Emerging viruses may persist in their natural hosts 

by avoiding the induction of strong pro-inflammatory responses. In turn, natural hosts may 

have evolved enhanced interferon responses to prevent pathology. When this equilibrium is 

disturbed, or transmission occurs, the virus can cause severe disease in closely-related or 

unrelated species (Figure 1).

Although some emerging viruses can evade NK cell recognition by dampening type I IFN 

signalling, others increase the expression of inhibitory ligands while downregulating 

activating ligands for NK cell receptors in the infected cells. Furthermore, while NK cells 

contribute to viral clearance early during infection, exacerbated or prolonged NK cell 

activation at later stages of infection may contribute to severe immunopathology. The 

complex interaction of viral ligands with NK cells is the result of a frenetic arms-race 

between host and pathogen (Figure 2). While this delicate equilibrium has developed over 

millennia and will likely continue for many more, we hope that new insights into the biology 

of antiviral NK cells will tilt the balance in our favour.
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Highlights

• Emerging viruses avoid immune recognition by dampening early pro-

inflammatory responses.

• Natural hosts of zoonotic viruses have developed enhanced interferon 

responses.

• NK cells are critical for early antiviral control but may contribute later to 

immunopathology.

• Viruses evade NK cell recognition by engaging inhibitory receptors and 

downregulating activating ligands.

• NK cells may contribute to protection through vaccination against zoonotic 

diseases.
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Figure 1. The immune response against zoonotic viruses in natural reservoirs compared to 
humans.
Top: Zoonotic viruses can directly pass from natural hosts (e.g. bats, mice, monkeys) to 

humans, or be transmitted through intermediate hosts or vectors (e.g. mosquitoes, cattle). 

Middle and bottom: Some natural reservoirs have evolved enhanced interferon responses 

while reducing pro-inflammatory mediators. Increased NKR complexity and diversity, and 

improved NK cell responsiveness may also contribute to viral persistence while keeping the 

host asymptomatic. When zoonotic viruses jump to novel hosts such as humans, a slower 

interferon response and impaired early NK cell activation may lead to poor virus clearance, 

aberrant immune responses, heighten inflammation, and profound pathology.
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Figure 2. Mechanisms of NK cell evasion or activation by zoonotic viruses.
Left: Zoonotic viruses can avoid interferon responses by blocking PRR sensing, inhibiting 

interferon production, and dampening interferon receptor signalling. These viruses also 

evade NK cell recognition by upregulating ligands for inhibitory NKR, downregulating or 

shielding activating NKR ligands, and inducing anti-inflammatory cytokines. Right: When 

activating signals (green arrows) outweigh inhibitory signals (red flat-end arrows), NK cells 

become activated and secrete pro-inflammatory cytokines (e.g. IFN-γ), release cytotoxic 

granules to kill target cells, and undergo proliferation. See also Table 1 for a complete list of 

references. PRR, pattern recognition receptors. NKR, NK cell recognition receptors.
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