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Abstract

Mutations in members of the mitogen-activated protein kinase (MAPK) pathway are extensively 

studied in epithelial malignancies, with BRAF mutations being one of the most common 

alterations activating this pathway. However, BRAF mutations are overall quite rare in 

hematological malignancies. Studies over the past decade have identified high-frequency 

BRAFV600E, MAP2K1, and other kinase alterations in two groups of MAPK-driven hematopoietic 

neoplasms: hairy cell leukemia (HCL) and the systemic histiocytoses. Despite HCL and 

histiocytoses sharing common molecular alterations, these are phenotypically distinct 

malignancies that differ in respect to clinical presentation and suspected cell of origin. The 

purpose of this review is to highlight the molecular advancements over the last decade in the 

histiocytic neoplasms and HCL and discuss the impact these insights have had on our 

understanding of the molecular pathophysiology, cellular origins, and therapy of these enigmatic 

diseases as well as perspectives for future research directions.

The mitogen-activated protein kinase (MAPK) pathway has a long association with human 

neoplasia. A key member in this pathway is the BRAF serine/threonine kinase belonging to 

the RAF family of serine/threonine kinases, which also includes ARAF and RAF1. RAF 

kinases transduce mitogenic signals from the cell membrane to the nucleus and regulate 

MEK-ERK signaling. Of the RAF kinases, BRAF is most frequently mutated in cancer with 

BRAFV600E accounting for 90% of activating mutations (Wellbrock et al. 2004). Similarly, 

the neoplastic cells of the systemic histiocytoses (SHs) and hairy cell leukemia (HCL) have 

nearly universal ERK overexpression suggesting constitutive activation of MAPK signaling 
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in these distinct hematological neoplasms (Fig. 1; Badalian-Very et al. 2010; Tiacci et al. 

2011; Haroche et al. 2012).

Although quite rare in hematological disorders overall, BRAF mutations are strikingly 

enriched in two sets of diseases: classical HCL (cHCL) (Tiacci et al. 2011; Arcaini et al. 

2012; Swerdlow et al. 2017) and SH—Langerhans cell histiocytosis (LCH) (Badalian-Very 

et al. 2010) and Erdheim–Chester disease (ECD) (Haroche et al. 2012). Furthermore, 

additional sequencing efforts identified recurrent mutations in MAP2K1 (MEK1) in variant 

HCL (vHCL) (Waterfall et al. 2014), LCH (Brown et al. 2014; Chakraborty et al. 2014), 

ECD, and other non-LCH neoplasms (Diamond et al. 2016; Durham et al. 2016). 

Interestingly, BRAFV600E is frequently present in cHCL (~100%) (Tiacci et al. 2011) and 

LCH and ECD (50%–60%) (Badalian-Very et al. 2010; Haroche et al. 2012); meanwhile, 

MAP2K1 mutations are present in vHCL (~50%) (Waterfall et al. 2014; Durham et al. 

2017a) and SH (~25%) (Figs. 1–5; Brown et al. 2014; Chakraborty et al. 2014; Diamond et 

al. 2016; Durham et al. 2016). However, despite their common molecular alterations, these 

are distinct malignancies with different clinical presentations and biology. Nonetheless, the 

discovery of recurrent BRAFV600E and MAP2K1 mutations in both malignancies has guided 

new therapeutic approaches, as well as an opportunity to explore how a common genetic 

event gives rise to these enigmatic diseases (Fig. 1; Haroche et al. 2013; Hyman et al. 2015; 

Tiacci et al. 2015; Diamond et al. 2016, 2018, 2019; Durham et al. 2019). This review 

discusses the amalgamation of diverse kinase alterations uncovered in SH and HCL during 

the last decade and underscore how new insights have refined our understanding of these 

disorders as clonal neoplasms with constitutive MAPK and PI3K-AKT activation. We will 

also highlight how our concepts of the cellular origins of the MAPK-driven hematological 

neoplasms and molecular therapeutics have started evolving.

OVERVIEW OF HISTIOCYTIC NEOPLASMS

Histiocytic neoplasms are a heterogeneous group of disorders broadly classified as LCH and 

non-LCH that share the common pathological features of infiltration and accumulation of 

neoplastic histiocytes in tissues with nearly universal ERK activation and an accompanying 

inflammatory milieu (Badalian-Very et al. 2010; Haroche et al. 2012; Swerdlow et al. 2017; 

Ozkaya et al. 2018). However, a revised classification recategorized LCH and non-LCH into 

the following: “L” Langerhans group [LCH, ECD, disseminated juvenile/adult 

xanthogranuloma (JXG/AXG), and indeterminate cell histiocytosis (ICH)]; “C” group 

(cutaneous JXG/AXG and Rosai–Dorfman–Destombes disease [RDD]); “R” group 

(noncutaneous RDD) (Table 1; Emile et al. 2016).

LANGERHANS CELL HISTIOCYTOSIS

Historical Perspective

The first historical descriptions of LCH patients occurred in case series. Hippocrates 

reported a patient with a nonfatal disease with painful skull lesions ~400 BC, a presentation 

that could be consistent with LCH (Donadieu and Pritchard 1999). Later, Hand–Schüller–

Christian described patients with rash, lytic bone lesions, and diabetes insipidus (DI) and 

Letterer–Siwe discussed a fatal disseminated disease (Hand 1893; Schüller 1915; Christian 
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1919; Letterer 1924; Siwe 1933). Afterward, Farber characterized single lytic bone lesions 

as “eosinophilic granulomas” (Farber 1941). However, Lichtenstein noted a similar 

histology in these clinically diverse descriptions and posited they constitute a common 

syndrome he called “histiocytosis X,” with the “X” indicating uncertain cellular origin 

(Lichtenstein 1953). Eventually, Nezelof utilized electron microscopy and reported Birbeck 

granules in both LCH lesions and epidermal Langerhans cells (LCs), leading to the 

hypothesis that LCH arises from pathologically activated LCs (Nezelof et al. 1973; Lampert 

1998; Arceci 1999).

Clinical Presentation

LCH has diverse manifestations from self-resolving, single-organ lesions to multi-organ 

disease, which is associated with 10%–20% mortality (Arceci 1999; McClain et al. 2004). 

Bone (75%) and skin (34%) are the most commonly involved organs with lytic bone lesions 

frequently involving the skull (Table 1; Guyot-Goubin et al. 2008; Stålemark et al. 2008). 

Besides skin, LCH may arise in any mucosal tissue (gingiva, gastrointestinal tract) 

(Broadbent et al. 1994; Guyot-Goubin et al. 2008). “High-risk” LCH includes diffuse 

infiltration or focal lesions of spleen, liver, or bone marrow with a 5-yr survival rate of 84% 

compared to 99% in “low-risk” LCH (Gadner et al. 2013). LCH may also involve the central 

nervous system (LCH-CNS), presenting with mass lesions, diabetes insipidus, or progressive 

neurodegenerative symptoms (LCH-ND) arising decades after initial presentation (Grois et 

al. 1998, 2010; Héritier et al. 2018).

Pathologically, LCH is characterized by lesions composed of clonal, pathological 

“histiocytes” with reniform (coffee-bean-shaped) nuclei and abundant, pink cytoplasm with 

immunoreactivity for CD1a and langerin (CD207) and pathognomonic Birbeck granules 

(Table 1; Nezelof et al. 1973; Favara et al. 1997; Chikwava and Jaffe 2004; Swerdlow et al. 

2017). Histology also shows a milieu of pathologic dendritic cells (DCs) and recruited 

inflammatory cells (lymphocytes, eosinophils, and macrophages) (Laman et al. 2003; 

Senechal et al. 2007; Allen et al. 2010; Berres et al. 2014).

JUVENILE/ADULT XANTHOGRANULOMA

Clinical Presentation

JXG/AXG was originally described in the early 1900s and was believed to be endothelium 

derived and was named “nevoxanthoendothelioma” (McDonagh and McDonagh 1912). 

JXG/AXG is usually self-limiting with dermal lesions in most patients; but 4% present with 

disseminated disease (Weitzman and Jaffe 2005; Allen and Parsons 2015). Histologically, 

JXG/AXG shows xanthomatous histiocytes with admixed multinucleated and Touton giant 

cells that are immunoreactive for CD68, CD163, CD14, fascin, and Factor XIIIa with 

variable positivity for S100 and no immunoreactivity for CD1a or CD207 (Table 1; 

Weitzman and Jaffe 2005; Diamond et al. 2014; Haroche and Abla 2015; Swerdlow et al. 

2017).
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ERDHEIM–CHESTER DISEASE

Clinical Presentation

ECD is a rare, systemic, non-LCH disease with around 800 reported cases in the literature 

that was first described as a “lipoid granulomatosis” in 1930 by Erdheim and Chester. ECD 

has diverse clinical manifestations ranging from localized presentations (bone-only disease) 

to multisystem disease that are extensively discussed elsewhere (Chester 1930; Weitzman 

and Jaffe 2005; Diamond et al. 2014; Haroche and Abla 2015; Estrada-Veras et al. 2017; 

Haroche et al. 2017; Cohen-Aubart et al. 2018). The diagnosis of ECD requires combining 

the histological criteria and the appropriate clinical and radiological setting (Weitzman and 

Jaffe 2005; Diamond et al. 2014; Haroche and Abla 2015; Swerdlow et al. 2017). 

Radiographically, bilateral and symmetric diaphyseal and metaphyseal osteosclerosis of the 

legs is observed in most patients. Histologically, ECD shows xanthomatous histiocytes with 

surrounding fibrosis, as well as admixed multinucleated giant cells with immunoreactivity 

for CD68, CD163, CD14, fascin, and Factor XIIIa and negativity for CD1a and CD207 

(Table 1; Weitzman and Jaffe 2005; Diamond et al. 2014; Haroche and Abla 2015; 

Swerdlow et al. 2017).

ROSAI–DORFMAN–DESTOMBES DISEASE

Clinical Presentation

RDD is a rare, non-LCH hematological disorder known as “sinus histiocytosis with massive 

lymphadenopathy” that was first described by Destombes, Rosai, and Dorfman (Destombes 

1965; Rosai and Dorfman 1969, 1972; Haroche and Abla 2015). RDD has heterogeneous 

clinical manifestations and can occur as an isolated disorder or in association with 

hereditary, autoimmune, or neoplastic conditions. The majority of RDD patients present 

with classical (nodal) RDD that primarily manifests as bilateral, massive, and painless 

cervical lymphadenopathy with or without fever, night sweats, and weight loss. However, 

43% of patients develop extranodal RDD with 19% showing multisystem RDD, and 

prognosis has been correlated with the number of extranodal systems affected with a 

detailed clinical discussion reviewed elsewhere (Haroche and Abla 2015; Abla et al. 2018). 

Histologically, the abnormal, xanthomatous histiocytes of RDD demonstrate abundant 

emperipolesis of erythrocytes, lymphocytes, and plasma cells. The abnormal histiocytes are 

immunoreactive for CD14, CD68, CD163, and S100 with negativity for CD1a and CD207 

(Table 1; Weitzman and Jaffe 2005; Haroche and Abla 2015; Swerdlow et al. 2017; Durham 

2019).

INDETERMINANT CELL HISTIOCYTOSIS

Clinical Presentation

ICH is a rare, non-LCH neoplasm first described in 1985 that predominantly involves the 

skin and is characterized by the presence of dendritic cells that are morphologically and 

immunophenotypically like LCH. However, ICH shows a dense dermal infiltration of 

neoplastic histiocytes admixed with lymphocytes without significant eosinophilic infiltration 

and is immunoreactive for CD68, S100, and CD1a but not for CD163 and CD207. 
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Therefore, unlike LCH, ICH lacks CD207 and Birbeck granules (Table 1; Woodet al. 1985; 

Rezk et al. 2008).

MOLECULAR PATHOPHYSIOLOGY OF HISTIOCYTIC NEOPLASMS

Prior to the molecular era, the determination of whether SHs were reactive or neoplastic was 

unclear and constituted a historical debate (Arceci et al. 1998; Degar and Rollins 2009). 

Furthermore, the cellular heterogeneity of histiocytoses and the limitations of molecular 

technology precluded classification of SHs as neoplasms (Merad et al. 2002; Senechal et al. 

2007; da Costa et al. 2009). However, the dawning of the molecular era revealed a series of 

activating kinase alterations involved in MAPK, PI3K-AKT, and RTK signaling within the 

SHs (Figs. 2–4).

RAF Isoforms

The discovery of BRAF mutations in the histiocytoses occurred after BRAFV600E was 

reported in 57% of LCH (Badalian-Very et al. 2010) and 54% of ECD (Haroche et al. 2012). 

Later studies uncovered BRAFV600E in JXG/AXG, RDD, and ICH but were not prevalent in 

SHs other than LCH and ECD (O’Malley et al. 2015; Techavichit et al. 2017; Fatobene et al. 

2018; Durham et al. 2019). Besides BRAFV600E, SH case reports have revealed other 

activation segment BRAF mutations (BRAFV600D; BRAFV600insDLAT) (Satoh et al. 2012; 

Kansal et al. 2013). Additionally, a BRAF splicing mutation (BRAF c.1511_1517 + 2 

duplication) was reported (Héritier et al. 2017). Furthermore, activating, in-frame deletions 

in BRAF exon 12 (encodes the β3-αC loop critical for kinase activation) and numerous 

BRAF fusions have been described in SHs (Figs. 2, 3A, 4A; Chakraborty et al. 2016; Lee et 

al. 2017; Zarnegar et al. 2018; Durham et al. 2019). Other whole-exome sequencing (WES) 

studies have revealed activating ARAF mutations in LCH (Nelson et al. 2014) and non-LCH 

(ECD; JXG/AXG; RDD) along with RAF1 mutations in ECD (Figs. 2, 3A; Diamond et al. 

2016, 2019; Durham et al. 2019).

MAP2K1/MAP2K2

In BRAFV600E-negative histiocytoses, NGS studies found MAP2K1 to be a second 

recurrently mutated gene locus in LCH (Brown et al. 2014; Chakraborty et al. 2014) and 

non-LCH (ECD, JXG/AXG, and RDD) (Diamond et al. 2016; Garces et al. 2017). 

Functionally, the MAP2K1 mutations occurred within mutational hotspots and clustered in 

the amino-terminal regulatory domain (exon 2) and amino-terminal kinase domain (exon 3) 

resulting in MAPK activation (Chakraborty et al. 2014; Nelson et al. 2015; Diamond et al. 

2016; Garces et al. 2017). Additionally, ECD sequencing found recurrent MAP2K2Y134H in 

the MEK2 kinase domain that activated MAPK signaling (Figs. 2, 3B; Diamond et al. 2019; 

Durham et al. 2019).

RAS Isoforms

The RAS isoforms encode small GTPases that regulate the MAPK and PI3K-AKT signaling 

pathways. First, NRAS mutations were found in single cases of LCH and ECD (Ozono et al. 

2011; Diamond et al. 2013). Afterward, studies confirmed that NRAS/KRAS mutations are 

recurrent in SH and affected the GTP-binding domains leading to constitutive MAPK 
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activation (Figs. 2, 3C; Emile et al. 2014; Diamond et al. 2016; Shanmugam et al. 2016; 

Garces et al. 2017; Lee et al. 2017; Durham et al. 2019).

Extracellular-Signal-Regulated Kinases (ERK) Isoforms

As the molecular age continued to interrogate BRAFV600-negative histiocytoses, rare 

mutations started to emerge in the ERK isoforms. An activating MAPK1D321N affecting the 

ERK2 carboxy-terminal-docking domain surfaced in JXG and showed in vitro sensitivity to 

ERK inhibition but not RAF or MEK inhibition (Chakraborty et al. 2017). Another WES 

study of LCH found MAPK3V121M in the ERK1 kinase domain and MAPK7R400L affecting 

the ERK5 carboxy-terminal domain with both mutations influencing MAPK signaling (Figs. 

2, 3D; Durham et al. 2019).

PI3K Isoforms

The PI3K isoforms include phosphatidylinositol-4,5-bisphosphate-3-kinase catalytic subunit 

alpha (PIK3CA) and catalytic subunit delta (PIK3CD), members of the PI3K-AKT signaling 

pathway. Recurrent PIK3CA mutations were first revealed in ECD (Emile et al. 2014) and 

then in LCH (Héritier et al. 2015). Later studies primarily identified PIK3CA mutations as 

recurrent events in ECD with rare PIK3CD mutations in JXG and LCH. PIK3CA mutations 

clustered in the α-helical and kinase domains leading to PI3K-AKT activation (Figs. 2, 3E; 

Chakraborty et al. 2014; Diamond et al. 2016; Durham et al. 2019).

Receptor Tyrosine Kinases

Continued sequencing of histiocytoses implicated the RTKs. A WES study found a case of 

ERBB3-mutated LCH (Chakraborty et al. 2014). Later studies uncovered recurrent ALK and 

NTRK1 fusions in ECD and JXG/AXG (Diamond et al. 2016; Lee et al. 2017). Then, a large 

WES/NGS study evaluated 270 histiocytoses patients and discovered recurrent, activating 

mutations in CSF1R, the RTK critical for monocyte and macrophage development, which 

was enriched in JXG/AXG but found across histiocytoses; and this study was really the first 

time that activating CSF1R mutations have been implicated in cancer. Additionally, other 

RTK alterations were uncovered in JXG/AXG (KIT, JAK3, ALK, MET, and CSF3R) and in 

LCH (TEK), as well as the first RET and NTRK3 fusions in the histiocytoses (Figs. 2, 3F–

G, 4; Cai et al. 2019; Durham et al. 2019).

ETV3-NCOA2 Fusions

ETV3-NCOA2 fusions were described in ICH and then reported in one LCH case (Brown et 

al. 2015; Lee et al. 2017). These fusions involve exons 1–4 of ETV3 and exons 14–23 of 

NCOA2. This leads to the preservation and fusion of the carboxy-terminal transcriptional 

activation domains of NCOA2 to the amino-terminal ETS domain of ETV3 (Fig. 4D; Wang 

et al. 2012; Mesquita et al. 2013; Brown et al. 2015), and prior studies of NCOA2 gene 

fusions have demonstrated that the AD1 and CID domains in the carboxyl terminus are 

required for the transformation of NCOA2 fusion proteins (Figs. 2, 4D; Carapeti et al. 1998; 

Deguchi et al. 2003; Strehl et al. 2008; Sumegi et al. 2010; Wang et al. 2012; Brown et al. 

2015; Durham 2019). However, extensive functional characterization of the role of the 

ETV3-NCOA2 fusion in SH pathogenesis is warranted.
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Overall, the molecular age demonstrates most SH patients harbor diverse alterations in 

MAPK, PI3K-AKT, and RTK pathway genes supporting that histiocytoses are clonal, 

hematopoietic neoplasms with many molecularly directed therapeutic targets.

CELLULAR-ORIGIN STUDIES IN HISTIOCYTOSES

Identification of MAPK mutations has provided a molecular etiology for the SHs and a tool 

to trace potential precursor cells in these neoplasms. Thus, there has been an accumulation 

of evidence building on Nezelof’s historical proposal of a pathological hematopoietic 

precursor for LCH (“pathological LCs”) that has initiated new cellular origin studies into the 

SHs (Nezelof and Basset 2001). Gene expression studies in LCH and non-LCH have 

documented SH lesions have expression profiles of myeloid-derived precursors and not 

epidermal LCs (Allen et al. 2010; Diamond et al. 2016). Additionally, BRAFV600E was 

traced to CD34+ hematopoietic stem/progenitor cells (HSPCs) in studies of high-risk 

pediatric and adult multisystem LCH and ECD patients but not in patients with single-

system or low-risk, multifocal LCH (Berres et al. 2014; Milne et al. 2017; Durham et al. 

2017b).

Furthermore, several groups have generated murine models with enforced BRAFV600E-

expression in langerin+ cells resulting in formation of localized LCH-like lesions and in 

CD11c+ cells resulting in a more aggressive phenotype similar to high-risk LCH (Berres et 

al. 2014; Mass et al. 2017). Notably, xenotransplantation studies using CD34+ HSPCs from 

histiocytosis patients gave rise to genetically and phenotypically accurate xenografts, which 

provided functional evidence of the self-renewal capacity of kinase-altered HSPCs in SH 

patients (Durham et al. 2017b). Cumulatively, current evidence led to the proposal of a 

revised model of histiocytosis pathogenesis, the misguided myeloid differentiation model, in 

which the developmental stage at which an ERK-activating alteration arises determines the 

clinical manifestations. Thus, the cell of origin of at least a proportion of SH patients resides 

in the HSPC compartment prior to committed monocyte or dendritic cell differentiation 

(Milne et al. 2017; Durham et al. 2017b).

Additional murine studies into alternate cells of origin demonstrated that mosaic expression 

of BrafV600E in yolk sac–derived, erythro-myeloid progenitors (EMPs), the cell of origin of 

murine tissue–resident macrophages (e.g., microglia and Kupffer cells), led to clonal 

expansion and the accumulation of ERK-activated microglia in the CNS of these models. 

These mice developed a severe, late-onset neurodegenerative disorder but lacked the 

systemic accumulation of histiocytes outside the CNS as was seen in models with BrafV600E 

expression in HSC-derived cells. Therefore, these results illustrate yolk sac–derived EMPs 

can be a potential cell of origin in the histiocytoses (Gomez Perdiguero et al. 2015; Mass et 

al. 2017). Thus, more than one immediate cellular precursor and the potential for alternate 

cells-of-origin exist for SHs. However, more investigation is required.

MOLECULARLY BASED HISTIOCYTOSIS THERAPY

Over the past 5 years, SH therapy has dramatically changed with the emergence of targeted 

therapy and the first U.S. Food and Drug Administration (FDA)-approved SH treatment 
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(Fig. 6A,B) resulting in an improved prognosis for ECD (5-yr survival of 43% in 1996 but 

83% currently) (Veyssier-Belot et al. 1996; Cohen-Aubart et al. 2018).

Because 50%–60% of SH patients harbor BRAFV600E (Badalian-Very et al. 2010; Haroche 

et al. 2012), a vemurafenib phase II clinical trial studied BRAFV600-mutated ECD and LCH 

and demonstrated a nearly 100% metabolic response rate, as did several case series. As a 

result, the U.S. FDA–approved vemurafenib for use in BRAFV600-mutated ECD in 

November 2017 (Fig. 6A; Haroche et al. 2013, 2015; Cohen-Aubart et al. 2014; Hyman et 

al. 2015; Borys et al. 2016; Bhatia et al. 2018; Diamond et al. 2018). Although BRAF 

inhibition generally achieves robust and durable responses in BRAFV600-mutated 

histiocytoses, the LOVE study showed 75% of patients who discontinued vemurafenib 

relapsed in 6 mo but were able to recapture their prior responses when restarted on BRAF 

inhibitors (vemurafenib; dabrafenib) (Cohen Aubart et al. 2017; Vaglio and Diamond 2017). 

Additionally, BRAF inhibitor resistance in the SH is rare and has only been reported in one 

instance where a dabrafenib-treated BRAFV600E-mutated ECD patient acquired a KRAS 
mutation, which responded to trametinib (Nordmann et al. 2017).

It is important to note that the extreme sensitivity and durability of response of SH to 

vemurafenib are quite unique across cancers. Although BRAFV600E mutations are seen in 

~8% of all cancer types overall, very few cancers have been shown to have high response 

rates to BRAF inhibitors as single agents as has been seen in SHs (for review, see 

Holderfield et al. 2014; Crispo et al. 2019). The largest experience with BRAF inhibition has 

been in the setting of BRAFV600E-mutant metastatic melanoma in which BRAF inhibition is 

most commonly combined with MEK inhibition to improve efficacy and durability of 

response and reduce side effects from single-agent BRAF inhibition. But even with this 

approach, although 63%–76% of all patients with advanced BRAFV600E-mutant melanoma 

derive clinical benefit from combined BRAF/MEK inhibition, median progression-free 

survival lasts only about 9 mo and 90% of patients develop resistance within 1 yr (for 

review, see Crispo et al. 2019). Currently, BRAF inhibitors are FDA-approved for the 

therapy of BRAFV600E-mutant metastatic melanoma, either alone or in combination with 

MEK inhibitors, and there are three BRAF/MEK inhibitors approved for this setting 

(vemurafenib/debrafinib, dabrafenib and trametinib, and encorafenib plus binimetinib). In 

addition, BRAF inhibitors are approved in three specific settings for thyroid cancers: (1) 

vemurafenib for BRAFV600E-mutant advanced radioactive iodine-refractory thyroid cancer, 

(2) dabrafenib for BRAFV600E-mutated metastatic papillary thyroid cancer, and (3) 

debrafenib plus trametinib for the treatment of locally advanced or metastatic anaplastic 

thyroid cancer with a BRAFV600E mutation and no satisfactory locoregional treatment 

options.

Accumulating molecular knowledge in BRAFV600-negative SH led to investigations into 

MEK inhibitors (cobimetinib; trametinib) (Diamond et al. 2016, 2019; Cohen Aubart et al. 

2017, 2018) with the cobimetinib phase II clinical trial showing an 89% overall response 

rate (ORR) by positron emission tomography (PET)-computed tomography (CT) with 

fluorodeoxyglucose (FDG) tracer irrespective of disease site. As a result, the U.S. FDA 

granted “Breakthrough Therapy Designation” to cobimetinib in the treatment of BRAFV600-

negative histiocytoses (Fig. 6A; Diamond et al. 2019).
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Moreover, molecular discovery of ALK, NTRK1, and RET fusions, as well as CSF1R 
mutations in diverse histioctyoses, have stimulated investigations into other targeted 

therapies. These studies have provided in vitro functional data or clinical reports supporting 

the use of ALK inhibitors (crizotinib; alectinib), the RET-specific inhibitor selpercatinib, 

NTRK inhibitors, and CSF1R-inhibitors (pexidartinib) in SHs (Fig. 6B; Diamond et al. 

2016; Lee et al. 2017; Taylor et al. 2018; Chang et al. 2019; Durham et al. 2019). Therefore, 

the molecular age has provided many exciting therapeutic options for SH patients, but 

molecularly targeted therapies beyond BRAF and MEK inhibitors need to be scrutinized in 

future clinical trials. Also, questions about the optimal dosing, treatment duration, and 

therapy response assessments require further study, especially in pediatric SH patients.

HAIRY CELL LEUKEMIA

Clinical Presentation

HCL was originally named “leukemic reticuloendotheliosis” and described based on the 

existence of numerous “hairy” surface projections (Bouroncle et al. 1958). Classical HCL is 

a rare, mature B-lymphocytic neoplasm comprising 2% of lymphoid leukemias. Meanwhile, 

vHCL is a similar mature B-lymphocytic neoplasm with variant clinical, cytological, and 

immunophenotypical features and is 10% as common as cHCL (Swerdlow et al. 2017; 

Maitre et al. 2019).

Patients with HCL commonly present with weakness, fatigue, bleeding, and fever, and the 

immunophenotypical profile has emerged as the key component to distinguish cHCL and 

vHCL. Therefore, HCL is a group of hematological malignancies consisting of cHCL, 

IGHV4–34+ cHCL, and vHCL that are morphologically similar with subtle pathological 

differences but have distinct clinical and laboratory features, immunophenotypes, and 

molecular characteristics that are compared in Table 2 (Tiacci et al. 2011; Waterfall et al. 

2014; Dietrich et al. 2015; Falini et al. 2016; Swerdlow et al. 2017; Thompson and Ravandi 

2017; Durham et al. 2017a; Maitre et al. 2019). Furthermore, newly discovered molecular 

features (Fig. 5; Table 2) assist in further characterization of the pathophysiology and 

therapeutic options for cHCL and vHCL and have been correlated with other HCL risk 

stratification parameters as detailed in Table 3 (Arons et al. 2009; Forconi et al. 2009; Xi et 

al. 2012; Poret et al. 2015; Falini et al. 2016; Swerdlow et al. 2017; Durham et al. 2017a; 

Maitre et al. 2019).

Pathophysiology

Genomic Profiling—In 2011, WES of cHCL uncovered BRAFV600E as the driving 

genetic event in ~97% of cHCL (Tiacci et al. 2011; Waterfall et al. 2014; Dietrich et al. 

2015; Durham et al. 2017a). Occasional BRAFV600E-negative cHCL patients were shown to 

have BRAF exon 11 mutations (BRAFD449E; BRAFF468C) (Figs. 1C, 5) that were predicted 

but not proven to be activating (Tschernitz et al. 2014). Meanwhile, another WES study 

evaluated vHCL and IGHV4–34+ cHCL and found activating MAP2K1 mutations in ~50% 

of these cases (Figs. 1D, 5; Waterfall et al. 2014; Dietrich et al. 2015; Durham et al. 2017a). 

Therefore, through MAPK pathway activation by BRAF and MAP2K1 mutations, the 
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neoplastic hairy cells demonstrate increased proliferation and survival (Tiacci et al. 2011; 

Waterfall et al. 2014; Dietrich et al. 2015; Durham et al. 2017a).

Recently, the discovery of co-occurring genetic alterations that may cooperate with 

BRAFV600E in cHCL and MAP2K1 mutations in vHCL have provided further insights into 

their pathogenesis. Alterations in genes involved in cell cycle regulation (CCND1; 

CDKN1B/p27; CCND3), NF-κB pathway and B-lymphocyte differentiation (KLF2), the 

spliceosome (U2AF1), and epigenetic regulation (KMT2C/MLL3, KDM6A, CREBBP, 

ARID1A) are potentially key players in the pathophysiology of cHCL or vHCL but will 

require further study to elucidate their mechanistic roles (Fig. 5A,B; (Waterfall et al. 2014; 

Clipson et al. 2015; Dietrich et al. 2015; Piva et al. 2015; Falini et al. 2016; Jallades et al. 

2017; Durham et al. 2017a; Maitre et al. 2018, 2019).

Gene Expression and Methylation Profiling—The molecular era has refined 

epigenetic advancements, which has yielded new insights into the peculiar clinical-

pathological features of cHCL, whereas few notable studies have investigated IGHV4–34+ 

cHCL or vHCL. The methylation and gene expression profiles in cHCL supported the 

constitutive activation of the MAPK pathway. Also, hypomethylation and overexpression of 

genes that inhibit matrix metalloproteinase activity and hypermethylation and 

underexpression of chemokine receptors critical for B-lymphocyte migration to peripheral 

lymphoid organ follicles result in neoplastic hairy cells homing to bone marrow, splenic red 

pulp, and hepatic sinusoids rather than splenic white pulp and lymph nodes. Additionally, 

cHCL showed hypomethylation and overexpression of genes that stimulate fibronectin 

production and may contribute to the bone marrow reticulin fibrosis and poor bone marrow 

aspiration in cHCL (Basso et al. 2004; Arribas et al. 2019). Furthermore, overexpression of 

TGFB1, which stimulates neoplastic hairy cells to produce TGF-β, has been posited as a 

reason for the inhibition of normal hematopoiesis in cHCL (leukopenia; monocytopenia) 

(Basso et al. 2004; Swerdlow et al. 2017). Meanwhile, other studies support LST1 
(leukocyte transcript 1) and ACTB (actin β) genes are enriched in and important for the 

formation of actin-containing, circumferential “hairy” membrane projections characteristic 

of HCL (Pettirossi et al. 2015; Falini et al. 2016).

Cellular Origins of cHCL—Through the discovery of BRAFV600E in cHCL, a biomarker 

for the evaluation of the cell of origin of cHCL appeared. Although epigenetic profiling 

suggests cHCL is derived from transformed, postgerminal center B-lymphocytes (Basso et 

al. 2004; Falini et al. 2016; Arribas et al. 2019), recent cellular-origin studies reported that 

the HSCs in cHCL harbor the BRAFV600E mutation. Furthermore, xenografting of purified, 

BRAFV600E-mutated HSCs into immuno-deficient mice resulted in stable engraftment, 

which functionally demonstrated the self-renewal capacity of BRAFV600E-mutant HSCs in 

cHCL. However, the transplanted mice did not develop the complete cHCL phenotype, and 

this raises the question as to whether or not a permissive epigenetic background and 

acquisition of cooperating genetic alterations are required for phenotypically accurate cHCL 

(Chung et al. 2014; Falini et al. 2016). Therefore, more functional studies and murine 

modeling are required to attain a faithful cHCL animal model.
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TREATMENT

HCL patients should be treated when symptomatic or when presenting with one of these 

hematological parameters: hemoglobin <11 g/dL; platelet count <100,000/μL; or ANC 

<1,000 cells/μL. Meanwhile, asymptomatic cHCL patients are to be managed with 

observation/surveillance (Grever et al. 2017; Andrasiak et al. 2018; Maitre et al. 2019).

Chemotherapy

First-line treatment in cHCL patients involves purine analog (PNA) monotherapy (cladribine 

or pentostatin) because large studies have shown 76%–83% of patients achieved a complete 

response (CR) and 31%–33% a partial response (PR) (Dearden et al. 2011; Cornet et al. 

2014; Else et al. 2015; Maitre et al. 2019). Additionally, a phase II trial of 

chemoimmunotherapy with cladribine followed by rituximab demonstrated a CR of 100% 

and has high efficacy as a first-line therapy. However, special cases do arise and include 

patients with symptomatic cHCL and a febrile infection requiring infection management 

prior to PNA treatment (INF-α before PNA). Also, pregnant cHCL patients should be 

treated with interferon (IFN) (Fig. 6C; Maitre et al. 2019).

Second-line chemotherapy is necessary for the 50% of cHCL patients who relapse during 

the first 5 yr following first-line chemotherapy, and the consensus on treatment options is 

stratified based on duration of the first CR (CR > 5 yr; CR = 2–5 yr; CR < 2 yr) (Fig. 6C; 

Else et al. 2011, 2015; Burotto et al. 2013; Cornet et al. 2014; Chihara et al. 2016; Sadeghi 

and Li 2018; Maitre et al. 2019).

First-line chemotherapy in symptomatic vHCL patients has no current consensus; however, a 

combination of cladribine/rituximab is the common treatment used when managing vHCL 

(Fig. 6D; Kreitman et al. 2013; Maitre et al. 2019).

Targeted Therapy

The molecular era spawned the discovery of BRAFV600E in >97% of cHCL and the first 

molecular target in these neoplasms (Fig. 6A; Tiacci et al. 2011; Dietrich et al. 2012; Falini 

et al. 2016). The first clinical trials of vemurafenib in relapsed/refractory cHCL showed an 

ORR approaching 100% with 35%–40% CRs, and the median relapse-free survival was ~19 

mo (CR patients) and 6 mo (PR patients) (Tiacci et al. 2015; Falini et al. 2016; Maitre et al. 

2019). Thus, the most promising therapeutic options for relapsed/refractory cHCL include 

targeted therapeutics: BRAF inhibitors in BRAFV600E-mutated cHCL (Hyman et al. 2015; 

Tiacci et al. 2015); BRAF/MEK inhibitor combinations in BRAFV600E-mutated cHCL; 

recombinant immunoconjugates targeting CD22 (moxetumomab pasudotox), which has 

promising preliminary results in a phase I clinical trial (91% ORR, including 59% with CRs) 

(Kreitman et al. 2018; Maitre et al. 2019); and the first-in-class Bruton tyrosine kinase 

(BTK) inhibitor ibrutinib approved for treating relapsed/refractory B-cell malignancies (e.g., 

chronic lymphocytic leukemia [CLL]/small lymphocytic leukemia [SLL]) (Fig. 6C; Byrd et 

al. 2015; Sarvaria et al. 2016; Maitre et al. 2019). Furthermore, clinical trials utilizing 

moxetumomab pasudotox, ibrutinib, and ibrutinib/venetoclax are suggested for the treatment 

of relapsed/refractory vHCL (Fig. 6D; Bohn et al. 2017; Maitre et al. 2019). Future 
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directions for molecular treatments in HCL should include trials combining BRAF/MEK 

inhibitors in cHCL, MEK inhibitors in vHCL and IGHV4–34+ cHCL, CDK4/6 inhibitors in 

CCND3-mutated vHCL, and ibrutinib in both cHCL and vHCL (Maitre et al. 2019).

Mechanisms of Vemurafenib Resistance

As in metastatic melanoma, the dramatic clinical efficacy of vemurafenib in refractory/

relapsed cHCL has now shown relapse, which suggests the development of resistance 

mechanisms (Tiacci et al. 2015; Falini et al. 2016). However, knowledge of the vemurafenib 

resistance mechanisms in cHCL has just begun to emerge. For example, resistance in two 

patients treated in a phase II cHCL clinical trial was secondary to acquired mutations in 

KRAS/NRAS following treatment with vemurafenib, which induce reactivation of the 

MAPK pathway through RAF1 (Trunzer et al. 2013; Tiacci et al. 2015; Durham et al. 

2017a). Another patient experienced complete, de novo vemurafenib resistance, and 

genomic analysis of his pretreatment sample revealed a gain-of-function mutation in IRS1 
(IRS1P1201S) that functionally activated PI3K-AKT signaling. Furthermore, this patient had 

heterozygous deletions of NF1 and NF2 that functionally induced vemurafenib resistance in 

vitro (Whittaker et al. 2013; Shalem et al. 2014; Durham et al. 2017a). Nonetheless, more 

functional and sequencing studies are required to better elucidate and catalog cHCL 

vemurafenib-resistance mechanisms.

Frequency and Implication of BRAF Mutations in Hematologic Malignancies outside of 
HCL and SH

In contrast to the very high frequency of BRAFV600E mutations in HCL and SH, BRAF 

mutations are far rarer in more common hematologic malignancies. Outside of HCL and SH, 

recurrent BRAF mutations have been reported in 4%–10% of multiple myeloma (Andrulis et 

al. 2013; Lohr et al. 2014), 2%–5% of patients with CLL (Jebaraj et al. 2013; Leeksma et al. 

2019), and 1%–2% patients with acute myeloid leukemia (AML) (Papaemmanuil et al. 

2016). To date, the only formal evaluation of the use of BRAF inhibition in BRAF-mutant 

hematologic malignancies outside of HCL and SH was the use of vemurafenib for nine 

patients with BRAFV600E-mutant multiple myeloma as part of the VE-BASKET Study (Raje 

et al. 2018). The best confirmed overall response rate in this cohort was 33% with two 

patients achieving partial remissions. In the single published report of an AML patient 

treated with a BRAF inhibitor, a refractory AML patient was treated with combined 

dabrafenib/trametinib with only a very transient response (Wander et al. 2017). It is 

important to note that in CLL and myeloma, BRAF mutations are often subclonal. 

Moreover, in CLL, BRAF mutations frequently occur outside of the V600 residue (most 

commonly at the G466, D594, and K601 residues). Given the use of vemurafenib and 

dabrafenib for BRAFV600E/K-mutant diseases specifically, the therapeutic implications of 

BRAF inhibition with approved BRAF inhibitors has an unclear role in CLL and has never 

been evaluated.

CONCLUDING REMARKS

Molecular advancements over the past decade helped unravel the molecular 

pathophysiology, cellular origins, and therapeutic targets in the MAPK-driven hematological 
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neoplasms. Since the description of BRAFV600E in SH and cHCL (Badalian-Very et al. 

2010; Tiacci et al. 2011; Haroche et al. 2012), there has been an onslaught of molecular 

progress linking diverse kinase alterations activating MAPK, PI3K-AKT, and RTK signaling 

to the histiocytic neoplasms, as well as MAP2K1 mutations in IGHV4–34+ cHCL and 

vHCL (Figs. 1–5). These recent discoveries have refined the current pathological 

understanding of the histiocytoses as clonal, myeloid neoplasms with constitutive activation 

of MAPK and PI3K-AKT signaling and confirm HCL belongs to the MAPK-driven, 

hematological neoplasms. Furthermore, molecular progress has re-imagined therapeutic 

options for patients with these disorders (Fig. 6). Additionally, many biomarkers are now 

available that have enhanced our biological understanding of the cellular pathogenesis and 

ontogeny of the SH and HCL. However, our functional genomic conceptualization of the 

molecular pathogenesis and histogenesis of SH and HCL are just emerging with many 

aspects still enshrouded in mystery requiring systematic dissection with studies employing 

single-cell molecular and epigenetic analyses, as well as preclinical models. Finally, as the 

molecular era continues to unfold, future studies to elucidate why HCL and SH share 

common MAPK alterations but are phenotypically distinct neoplasms with differing clinical 

presentations, pathophysiology, and suspected cellular origins are a desperately needed 

dimension of investigation.
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Figure 1. 
Overview of the mitogen-activated protein kinase (MAPK)-driven hematopoietic neoplasms 

with common molecular alterations but divergent phenotypes. (A) Diagram demonstrating 

the divergent hematopoietic development of histiocytic neoplasms and hairy cell leukemia. 

(B) Diagram of the MAPK and PI3K-AKT signaling pathways with description of the 

activation of the RAS proteins (HRAS, KRAS, and NRAS) with annotation of the signaling 

proteins affected by genetic alterations in the histiocytic neoplasms, classical hairy cell 

leukemia, IGHV4–34+ classical hairy cell leukemia, and hairy cell leukemia variant. (C) 

Timeline of the discovery of recurrent BRAFV600E mutations in the MAPK-driven 
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hematological neoplasms. (D) Timeline of the discovery of recurrent MAP2K1 mutations in 

the MAPK-driven hematological neoplasms. LCH, Langerhans cell histiocytosis; ECD, 

Erdheim–Chester disease; JXG/AXG, juvenile xanthogranuloma/adult xanthogranuloma; 

RDD, Rosai–Dorfman–Destombes disease; ICH, indeterminate cell histiocytosis; cHCL, 

classical hairy cell leukemia; vHCL, hairy cell leukemia variant; IGHV, immunoglobulin 

heavy chain variable; HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, 

common myeloid progenitor; GMP, granulocyte–monocyte progenitor; MDP, monocyte–

dendritic cell progenitor; CLP, common lymphoid progenitor; Pro-B, pro-B-lymphocyte; 

RTK, receptor tyrosine kinase.
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Figure 2. 
Summary of diverse kinase alterations discovered in the histiocytic neoplasms. (A) Pie chart 

illustrating a composite of the known kinase alterations in Langerhans cell histiocytosis. (B) 

Pie chart showing a composite of the known kinase alterations in non-Langerhans cell 

histiocytoses. (C) Pie charts demonstrating the published kinase alterations in the four 

discussed subcategories of the non-Langerhans cell histiocytic neoplasms.
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Figure 3. 
Summary of the diverse kinase mutations in histiocytic neoplasms. (A) Protein diagrams 

cataloging the published somatic mutations described in the RAF isoforms (BRAF, ARAF, 

and RAF1 [CRAF]). (B) Protein diagrams cataloging the somatic mutations discovered in 

MEK1 and MEK2. (C) Protein diagrams cataloging the somatic mutations uncovered in the 

RAS isoforms (KRAS and NRAS). (D) Protein diagrams cataloging somatic mutations 

described in ERK1, ERK2, and ERK5. (E) Protein diagrams cataloging somatic mutations 

involving the PI3K isoforms (PIK3CA and PIK3CD). (F) Protein diagrams documenting 
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somatic mutations recently discovered in the receptor tyrosine kinases. (G) Protein diagram 

cataloging somatic mutations in CSF3R. LCH, Langerhans cell histiocytosis; ECD, 

Erdheim–Chester disease; JXG/AXG, juvenile xanthogranuloma/adult xanthogranuloma; 

RDD, Rosai–Dorfman–Destombes disease; ICH, indeterminate cell histiocytosis.
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Figure 4. 
Summary of the diverse kinase fusions in histiocytic neoplasms. (A) Illustrations of 

recurrent BRAF fusions discovered in the histiocytic neoplasms. (B) Illustrations of the 

recurrent NTRK1 fusions uncovered in non-Langerhans cell histiocytoses and an NTRK3 
fusion in Langerhans cell histiocytosis. (C) Illustrations of recurrent ALK fusions described 

in the non-Langerhans cell histiocytic neoplasms. (D) Illustration of the recurrent ETV3-
NCOA2 fusion discovered in both Langerhans cell histiocytosis and non-Langerhans cell 

histiocytosis. (E) Illustration of the recurrent NCOA4-RET fusion recently discovered in 

non-Langerhans cell histiocytosis.
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Figure 5. 
Summary of genetic alterations in hairy cell leukemia. (A) Histogram of driver and co-

occurring mutations reported in classical hairy cell leukemia. (B) Histogram of driver and 

co-occurring mutations described in hairy cell leukemia variant. (C) Protein diagram 

mapping somatic mutations involving BRAF that have been uncovered in classical hairy cell 

leukemia. (D) Protein diagram mapping somatic mutations in MEK1 discovered in hairy cell 

leukemia variant and IGHV4–34+ classical hairy cell leukemia. cHCL, Classical hairy cell 

leukemia; vHCL, hairy cell leukemia variant; IGHV, immunoglobulin heavy chain variable.
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Figure 6. 
Therapeutic advancements achieved during a progressive molecular age for MAPK-driven 

hematopoietic neoplasms. (A) Timeline documenting the targeted therapeutic achievements 

in the histiocytic neoplasms and hairy cell leukemia over the past decade. (B) Diagram 

summarizing the molecular targeted therapies that have or may demonstrate clinical efficacy 

in the histiocytic neoplasms. (C) Diagram of a composite therapeutic algorithm for the first-

line, second-line, and relapsed/refractory treatment of classical hairy cell leukemia based on 

current advancements during the molecular age. (D) Diagram of a composite therapeutic 
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algorithm for the first-line and relapsed/refractory treatment of hairy cell leukemia variant 

founded on current molecular progress. SH, Systemic histiocytoses; ECD, Erdheim–Chester 

disease; cHCL, classical hairy cell leukemia; vHCL, hairy cell leukemia variant; FDA, Food 

and Drug Administration; PNA, purine analog; IFN, interferon; BTK, Bruton tyrosine 

kinase; CR, complete response.
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