
Nonparametric analysis of nonhomogeneous multistate 
processes with clustered observations

Giorgos Bakoyannis
Department of Biostatistics, Indiana University, Indiana

Abstract

Frequently, clinical trials and observational studies involve complex event history data with 

multiple events. When the observations are independent, the analysis of such studies can be based 

on standard methods for multistate models. However, the independence assumption is often 

violated, such as in multicenter studies, which makes standard methods improper. This work 

addresses the issue of nonparametric estimation and two-sample testing for the population-

averaged transition and state occupation probabilities under general multistate models with cluster-

correlated, right-censored, and/or left-truncated observations. The proposed methods do not 

impose assumptions regarding the within-cluster dependence, allow for informative cluster size, 

and are applicable to both Markov and non-Markov processes. Using empirical process theory, the 

estimators are shown to be uniformly consistent and to converge weakly to tight Gaussian 

processes. Closed-form variance estimators are derived, rigorous methodology for the calculation 

of simultaneous confidence bands is proposed, and the asymptotic properties of the nonparametric 

tests are established. Furthermore, I provide theoretical arguments for the validity of the 

nonparametric cluster bootstrap, which can be readily implemented in practice regardless of how 

complex the underlying multistate model is. Simulation studies show that the performance of the 

proposed methods is good, and that methods that ignore the within-cluster dependence can lead to 

invalid inferences. Finally, the methods are illustrated using data from a multicenter randomized 

controlled trial.
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1 | INTRODUCTION

Frequently, clinical trials and observational studies involve complex multistate event 

histories. An example is cancer clinical trials where patient event histories typically involve 

three or more clinical states, such as “cancer-free,” “cancer,” and “death.” Another example 

is observational studies on coronavirus disease 2019 (COVID-19) progression. In such 

studies, patients may be hospitalized, then placed to an intensive care unit, on a ventilator, be 

discharged from the hospital, or die. With independent observations, nonparametric 

estimation of the transition probabilities for such multistate processes can be performed 

using the Aalen-Johansen estimator (Aalen and Johansen, 1978). Calculation of confidence 

bands and nonparametric two-sample tests can be performed using the approaches by 

Bluhmki et al. (2018) and Bakoyannis (2020), respectively.

The independent observations assumption is often violated in medical research. This is 

typical in multicenter studies, where the events of individuals within the same center are 

expected to be associated. Such a multicenter study was the European Organization for 

Research and Treatment of Cancer (EORTC) trial 10854, which evaluated the effectiveness 

of the combination of surgery with polychemotherapy compared to surgery alone as a 

treatment for early breast cancer, and involved 15 hospitals (ie, centers/clusters). Another 

example is studies involving multiple family members. For example, in a study of 

COVID-19 progression, members of the same family are expected to have correlated 

outcomes. When the observations exhibit within-cluster dependence, the traditional 

Greenwood standard error estimators for the transition probabilities, the simultaneous 

confidence bands by Bluhmki et al. (2018), and the nonparametric tests by Bakoyannis 

(2020) are not valid.

Several parametric methods have been proposed for the analysis of multistate models based 

on clustered observations (Cook et al., 2004; Li and Zhang, 2015; Yiu et al., 2018). 

However, these methods impose strong parametric assumptions about the underlying 

multistate processes that are expected to be violated in practice. Chen and Zhou (2013) 

proposed a semiparametric random-effects approach for cluster-specific inference about 

nonhomogeneous Markov processes. This approach, which also allows for nonignorable 

missingness, utilizes a Monte Carlo Expectation Maximization (MCEM) algorithm. 

Recently, O’Keeffe et al. (2018) proposed a nonparametric approach for cluster-specific 

inference based on correlated observations from a general multistate model. This approach, 

similar to the Chen and Zhou (2013) method, accounts for the within-cluster dependence by 

incorporating random effects. Estimation in this case relies on numerical integration. There 

are no other nonparametric approaches for clustered multistate data that utilize random 

effects that I am aware of. The current semiparametric and nonparametric proposals for 

clustered observations that utilize random effects (Chen and Zhou, 2013; O’Keeffe et al., 

2018) have several limitations. First, they impose strong parametric assumptions on the 

random effects. Also, these random effects introduce only a restrictive positive within-

cluster association. Second, they tend to be computationally intensive, which may restrict 

their use with larger data sets. Third, they do not establish the asymptotic properties of the 

proposed estimators for the transition probabilities. Moreover, they do not provide 

methodology for confidence bands and nonparametric hypothesis testing. Fourth, they do not 
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consider the case of informative cluster size (ICS), where there is an association between 

cluster size and observed events. Finally, in many applications, population-averaged 

inference is more scientifically relevant than cluster-specific inference. This is the case with 

the EORTC trial 10854. To our knowledge, only Lan et al. (2017) proposed a method for 

nonparametric population-averaged inference about state occupation probabilities in general 

multistate models, allowing for ICS. However, this approach is for current status data and 

not the usual right-censored or left-truncated multistate data. Moreover, the asymptotic 

properties of this method have not been established, and there is no methodology for 

confidence bands and nonparametric tests.

To the best of my knowledge, the issue of nonparametric population-averaged inference for 

event probabilities in general multistate models with cluster-correlated, right-censored, 

and/or left-truncated observations has not been addressed so far. In this work, I address this 

issue by proposing rigorous estimators and methodology for standard error estimation, 

simultaneous confidence bands, and nonparametric two-sample Kolmogorov-Smirnov–type 

tests. The asymptotic properties of the proposed methods are rigorously established using 

modern empirical process theory and closed-form variance estimators are provided. In 

addition, I establish the validity of the nonparametric cluster bootstrap and show how it can 

be used for the calculation of simultaneous confidence bands and P-values. This is 

particularly useful in practice, since it provides a convenient way to conduct inference using 

off-the-shelf software. The proposed methods do not impose restrictive parametric 

assumptions or assumptions regarding the within-cluster dependence. I additionally allow 

for ICS and nonhomogeneous processes that are non-Markov. Simulation studies show that 

the methods perform well and that standard methods for independent observations provide 

severely under-estimated standard errors and confidence bands with a poor coverage rate. 

Finally, the methods are illustrated using data from the multicenter EORTC trial 10854.

2 | NONPARAMETRIC INFERENCE

2.1 | Nonhomogeneous Markov processes

Consider a Markov multistate process {X(t) : t ∈ [0, τ]}, for some τ < ∞, with a finite set of 

states S = {1, … , k} and a subset T ⊂ S that includes the possible absorbing states (eg, 

death). For situations without absorbing states set T = ∅. The Markov assumption will be 

relaxed later in Section 2.6. Let Nℎj(t) be the number of direct transitions from state h to 

state j, for h ≠ j, which occurred by time t (in the absence of right censoring and left 

truncation). Also, let Y ℎ(t) be the at-risk process for state h, with Y ℎ(t) = 1 if the process is at 

state h just before time t, and Y ℎ(t) = 0 otherwise. A key quantity of interest is the transition 

probability which is defined as 

P 0, ℎj(s, t) = Pr(X(t) = j ∣ X(s) = ℎ, ℱs−) = Pr(X(t) = j ∣ X(s) = ℎ), h,j ∈ S, 0 ≤ s < t ≤ τ, where 

ℱs− = σ {Nℎj(u) :0 ≤ u < s, ℎ ≠ j}  is the event history prior to time s. The subindex 0 is 

used to indicate the true (unknown) parameter value. Note that the conditional independence 

from the prior history ℱs− above is the Markov assumption. Another key quantity is the 

cumulative transition intensity which is defined as A0, ℎj(t) = ∫0
t dENℎj(u)

EY ℎ(u)
, ℎ ≠ j, t ∈ [0, τ], 
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with A0, ℎℎ(t) = − ∑j ≠ ℎA0, ℎj(t), by the Kolmogorov forward equation (Aalen et al., 2008). 

The k × k matrix P0(s, t), 0 ≤ s < t ≤ τ, of transition probabilities can be defined based on the 

k × k matrix A0(t) of cumulative transition intensities as P0(s, t) = Π(s, t]{Ik + dA0(u)}, where 

Π is the product integral and Ik is the k × k identity matrix. Finally, the state occupation 

probability is defined as P 0, j(t) = Pr(X(t) = j) = ∑ℎ ∈ TcP 0, ℎ(0)P 0, ℎj(0, t), j ∈ S, t ∈ [0, τ].

2.2 | Clustered observations

Suppose that a study involves n clusters of observations of the Markov process {X(t) : t ∈ [0, 

τ]}, with Mi observations in the ith cluster. The observable data are the possibly right-

censored and/or left-truncated counting processes {Nim,hj(t) : h ≠ j, t ∈ [0, τ]} and at-risk 

processes {Y im, ℎ(t) :ℎ ∈ Tc, t ∈ [0, τ]}, for i = 1, … , n and m = 1, … , Mi. The process 

Nim,hj(t) represents the number of observed direct transitions from state h to state j, h ≠ j, in 

[0, t] (which occurred after the left truncation time and prior to the right censoring time), for 

the mth observation in the ith cluster. The process Yim,h(t) is equal to 1 if the mth 

observation in the ith cluster is at state h and under observation just before time t, and 

Yim,h(t) = 0 otherwise. The corresponding complete (ie, not right-censored and not left-

truncated) counterparts are denoted as Nim, ℎj(t) and Y im, ℎ(t). The processes 

{∑m = 1
Mi Nim, ℎj(t) :ℎ ≠ j, t ∈ [0, τ]} and {∑m = 1

Mi Y im, ℎ(t) :ℎ ∈ Tc, t ∈ [0, τ]} are assumed i.i.d. 

across clusters. However, an arbitrary within-cluster dependence for the individual 

observations is allowed. In this article, it is assumed that the cluster sizes Mi, i = 1, … , n are 

either constant or i.i.d. random positive integers. Furthermore, for the latter case, the 

counting and at-risk processes are allowed to depend on cluster size Mi (informative or 

nonignorable cluster size). For the sake of generality, Mi is treated as random and 

informative in this article. However, the methods presented here are trivially applicable to 

simpler situations where cluster size Mi is either noninformative or fixed. The right 

censoring and left truncation times are assumed to be independent of both multistate process 

of interest and cluster size Mi. Also, the main i.i.d. observations assumption implies that, 

marginally, censoring and truncations times are i.i.d. across clusters. However, between-

cluster heterogeneity (eg, different hospitals can have different censoring distributions, 

conditionally on some hospital-specific random effect) and an arbitrary within-cluster 

dependence are allowed for censoring and truncation.

When cluster size is random and informative, there are typically two populations of interest 

(Seaman et al., 2014). The first one is the population of all cluster members (ACM), eg, the 

population of all teeth in dental studies or the population of all patients in multicenter 

studies. Larger clusters are overrepresented in this population. The second is the population 

of typical cluster members (TCM). This population is formed by selecting one representative 

member from each cluster (eg, a typical tooth from each patient in dental studies or a typical 

patient from each center in multicenter studies). Thus, each cluster is equally represented in 

this population. The population-averaged state occupation probabilities over the ACM 

population are defined, similar to marginal generalized linear models (Seaman et al., 2014), 

as P0, j(t) =
E{M1I(X1m(t) = j)}

EM1
, j ∈ S, t ∈ [0, τ], for a randomly selected cluster member m. 
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These can be seen as weighted averages where larger clusters have a larger influence on 

these probabilities. The population-averaged state occupation probabilities over the TCM 

population are defined as P0, j′ (t) = EI(X1m(t) = j), j ∈ S, for a randomly selected cluster 

member m. In this case, all clusters contribute a single (randomly selected) member and, 

therefore, all clusters have the same weight on the resulting probabilities. The two versions 

of population-averaged transition probabilities can be defined similarly. This leads to the 

population-averaged cumulative transition intensities A0, ℎj(t) = ∫0
t dE{M1N1m, ℎj(u)}

E{M1Y 1m, ℎ(u)}
, h ≠ j, 

with A0, ℎℎ(t) = − ∑j ≠ ℎA0, ℎj(t), and A0, ℎj′ (t) = ∫0
t dEN1m, ℎj(u)

EY 1m, ℎ(u)
, h ≠ j, with 

A0, ℎℎ′ (t) = − ∑j ≠ ℎA0, ℎj′ (t). Based on the corresponding matrices A0(t) and A0′ (t), the 

population-averaged transition probability matrices can be expressed as the product integrals 

(by the Kolmogorov forward equations) P0(s, t) = Π(s, t]{Ik + dA0(u)} and 

P0′ (s, t) = Π(s, t]{Ik + dA0′ (u)}, 0 ≤ s ≤ t ≤ τ. If cluster size is either noninformative or constant 

then P0 = P0′  and P0, j = P0, j′ , for j ∈ S. However, if cluster size is informative, it is expected 

that P0 ≠ P0′  and P0, j ≠ P0, j′ , j ∈ S. If the probability of a particular event over the ACM 

population is higher (lower) than the probability of that event over the TCM population, then 

the proportion of this event is larger (smaller) in larger clusters. This is because a 

population-averaged probability over the ACM population is dominated by larger clusters 

under ICS. Depending on the setting, the difference between the two probabilities may be 

attributed to systematic differences in important individuals’ characteristics between larger 

and smaller clusters of observations. For example, in multicenter studies, patients with more 

advanced disease, and thus more prone to poor health outcomes, may tend to choose (or be 

advised to attend) larger clinics. When clusters are health care facilities or providers, another 

reason for the difference between the two population-averaged probabilities may be 

systematic differences in the performance of facilities or providers with more patients.

In the EORTC10854 trial, the population-averaged probabilities of cancer and death over the 

ACM population provide information about the effectiveness of the combined intervention 

on a typical patient from the population of all patients. In these probabilities, hospitals with 

more patients are naturally overweighted as they account for a larger portion of patients in 

the population. On the other hand, the population-averaged probabilities over the TCM 

population provide information about the effectiveness of the combined intervention on a 

typical patient from a typical hospital setting. These probabilities weight each hospital 

equally and, thus, they are not dominated by hospitals with more patients, which may have 

different performance and/or patient characteristics compared to those with less patients. 

Thus, they provide information about effectiveness on a typical patient from an average 

performing hospital.

2.3 | Estimation of transition probabilities

To nonparametrically estimate the population-averaged transition probability matrices P0 

and P0′ , we first estimate the population-averaged cumulative transition intensity matrices A0 

and A0′ , and then utilize the relationships P0(s, t) = Π(s, t]{Ik + dA0(u)} and 
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P0′ (s, t) = Π(s, t]{Ik + dA0′ (u)}, 0 ≤ s ≤ t ≤ τ. Let Ni ⋅ , ℎj(t) ≡ ∑m = 1
Mi Nim, ℎj(t), for h ≠ j, and 

Y i ⋅ , ℎ(t) ≡ ∑m = 1
Mi Y im, ℎ(t), for ℎ ∈ Tc. In Web Appendix B.2, it is shown that 

A0, ℎj(t) = ∫0
t dEN1 ⋅ , ℎj(u)

EY1 ⋅ , ℎ(u) , h ≠ j. Therefore, a natural estimator of A0,hj(t) is 

An, ℎj(t) = ∫0
t d{∑i = 1

n Ni ⋅ , ℎj(u)}

∑i = 1
n Yi ⋅ , ℎ(u)

, h ≠ j, t ∈ [0, τ]. Similar arguments lead to the conclusion 

that A0, ℎj′ (t) = ∫0
t dE{Mi−1Ni ⋅ , ℎj(u)}

E{Mi−1Yi ⋅ , ℎ(u)}
, h ≠ j, and thus a natural nonparametric estimator of 

A0, ℎj′ (t) is An, ℎj′ (t) = ∫0
t d{∑i = 1

n Mi−1Ni ⋅ , ℎj(u)}

∑i = 1
n Mi−1Yi ⋅ , ℎ(u)

, h ≠ j, t ∈ [0, τ]. Then, the proposed plug-in 

estimators of P0 and P0′  are Pn(s, t) = Π(s, t]{Ik + dAn(u)} and Pn′ (s, t) = Π(s, t]{Ik + dAn′ (u)}, 

where An(t) and An′ (t) are the k × k matrices with off-diagonal elements An, ℎj(t) and An, ℎj′ (t), 
and diagonal elements −∑j ≠ ℎAn, ℎj(t) and −∑j ≠ ℎAn, ℎj′ (t), h = 1, … , k, respectively. In 

the special case with fixed cluster size, Pn = Pn′ . The estimator Pn can be seen as the working 

independence Aalen-Johansen estimator. We call Pn′  the weighted by cluster size working 

independence Aalen-Johansen estimator. The following theorem states the uniform 

consistency of Pn and Pn′ .

Theorem 1. Suppose that conditions C1 to C5 in Web Appendix B.1 hold and define the 
norm ||A|| = supl ∑r |alr| for some matrix A = [alr]. Then, for any s ∈ [0, τ], as n → ∞

sup
t ∈ [s, τ]

Pn(s, t) − P0(s, t) as ∗ 0 and

sup
t ∈ s, τ]

Pn′ (s, t) − P0′ (s, t) as ∗ 0 .

The proof of Theorem 1 can be found in Web Appendix B.2. Note that, even though the 

standard Aalen-Johansen estimator is consistent for P0, the usual standard error estimators 

are invalid with clustered data as they ignore the within-cluster dependence.

Next, the asymptotic distributions of the estimators are studied. Let γihj(s, t) and γiℎj′ (s, t)

denote the influence functions of the estimators Pn, ℎj(s, t) and Pn, ℎj′ (s, t), 0 ≤ s ≤ t ≤ τ, 

respectively. Explicit formulas for the influence functions are provided in Web Appendix A. 

Next, define the estimated process Bn, ℎj(s, ⋅ ) = n−1 2∑i = 1
n γ iℎj(s, ⋅ )ξi, for ℎ ∈ Tc and 

j ∈ S, where ξi, i = 1, … , n, are i.i.d. standard normal random variables, and γ iℎj(s, ⋅ ) is the 

estimated version of γihj(s, ⋅) (see Web Appendix A for details). Similarly, define the 

estimated process Bn, ℎj′ (s, ⋅ ) = n−1 2∑i = 1
n γ iℎj′ (s, ⋅ )ξi, for ℎ ∈ Tc and j ∈ S. These 

estimated processes will be used for the calculation of simultaneous confidence bands. An 

alternative method for inference is the nonparametric cluster bootstrap. Calculation of a 

bootstrap version of Pn and Pn′ , denoted by Pn
∗
 and Pn

′ ∗
, respectively, can be easily performed 
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by randomly sampling n clusters with replacement from the original data set, and then 

calculating the proposed estimators based on the resulting bootstrap data set.

Theorem 2. Suppose that conditions C1 to C6 in Web Appendix B.1 hold. Then, for any 

ℎ ∈ Tc, j ∈ S, and s ∈ [0, τ),

i. n{Pn, ℎj(s, t) − P0, ℎj(s, t)} = n−1 2∑i = 1
n γiℎj(s, t) + op(1) and 

n{Pn, ℎj′ (s, t) − P0, ℎj′ (s, t)} = n−1 2∑i = 1
n γiℎj′ (s, t) + op(1), t ∈ [s, τ]. Moreover, 

the classes of functions {γihj(s, t) : t ∈ [s, τ]} and {γiℎj′ (s, t) : t ∈ [s, τ]} are P-

Donsker;

ii. Bℎj(s, ⋅ ) Gℎj(s, ⋅ ) and n{Pn, ℎj
∗ (s, ⋅ ) − Pn, ℎj(s, ⋅ )} Gℎj(s, ⋅ ) in D[s, τ], 

conditionally on the observed data, where Gℎj(s, ⋅ ) is the limiting process of 

n{Pn, ℎj(s, ⋅ ) − P0, ℎj(s, ⋅ )};

iii. Bℎj′ (s, ⋅ ) Gℎj′ (s, ⋅ ) and n{Pn, ℎj
′ ∗ (s, ⋅ ) − Pn, ℎj′ (s, ⋅ )} Gℎj′ (s, ⋅ ) in D[s, τ], 

conditionally on the observed data, where Gℎj′ (s, ⋅ ) is the limiting process of 

n{Pn, ℎj′ (s, ⋅ ) − P0, ℎj′ (s, ⋅ )}.

The proof of Theorem 2 can be found in Web Appendix B.3. In Web Appendix B.5, 

condition C6 is relaxed. By Theorem 2, n{Pn, ℎj(s, ⋅ ) − P0, ℎj(s, ⋅ )} and 

n{Pn, ℎj(s, ⋅ ) − P0, ℎj(s, ⋅ )} converge weakly to the mean-zero Gaussian processes Gℎj(s, ⋅ )
and Gℎj′ (s, ⋅ ), respectively. The covariance functions of Gℎj(s, ⋅ ) and Gℎj′ (s, ⋅ ) at the time 

points t1 and t2 are E{γ1hj(s, t1)γ1hj(s, t2)} and E{γ1ℎj′ (s, t1)γ1ℎj′ (s, t2)}. These covariance 

functions can be consistently estimated by n−1∑i = 1
n γ iℎj(s, t1)γ iℎj(s, t2) and 

n−1∑i = 1
n γ iℎj′ (s, t1)γ iℎj′ (s, t2), respectively. Theorem 2 also implies that the asymptotic 

distributions of the estimators can be easily approximated by generating realizations of the 

processes Bℎj(s, ⋅ ) and Bℎj′ (s, ⋅ ) (through simulating a large number of sets of standard 

normal variates {ξi}i = 1
n ) or by cluster bootstrap realizations n{Pn, ℎj

∗ (s, ⋅ ) − Pn, ℎj(s, ⋅ )} and 

n{Pn, ℎj
′ ∗ (s, ⋅ ) − Pn, ℎj′ (s, ⋅ )}.

These results can be used for the calculation of pointwise confidence intervals and 

simultaneous confidence bands. For these procedures consider a differentiable 

transformation g, such as g(x) = log{−log(x)}, to ensure that the limits of the confidence 

interval and the confidence band lie in the interval (0,1). For the calculation of confidence 

bands for P0,hj(s, ⋅), ℎ ∈ Tc, j ∈ S, and s ∈ [0, τ), it is useful to consider a weight function 

qℎj(s, t) that converges uniformly (in probability) to a bounded nonnegative function on an 

interval [t1, t2] ⊂ [s, τ]. A choice is qℎj(s, t) = {1 + n−1∑i = 1
n γ1ℎj(s, t)2}−1, where, as argued 

above, n−1∑i = 1
n γ1ℎj(s, ⋅ )2 is consistent for the true asymptotic variance of 

n{Pn, ℎj(s, ⋅ ) − P0, ℎj(s, ⋅ )}. By Theorem 2, the functional delta method, and the continuous 

mapping theorem it follows that supt ∈ [t1, t2] ∣ nqℎj(s, t){g(Pn, ℎj(s, t)) − g(P0, ℎj(s, t))} ∣ and 
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supt ∈ [t1, t2] ∣ qℎj(s, t)g.(Pn, ℎj(s, t)) n{Pn, ℎj(s, t)) − P0, ℎj(s, t)} ∣, have the same asymptotic 

distribution. The 1 − α percentile of this distribution, denoted by cα, can be estimated as the 

sample percentile cα of a large number of simulation realizations of the process 

supt ∈ [t1, t2] ∣ qℎj(s, t)g.(Pn, ℎj(s, t))Bℎj(s, t) ∣. Alternatively, one can use cluster bootstrap 

realizations supt ∈ [t1, t2] ∣ qℎj(s, t)g.(Pn, ℎj(s, t)) n{Pn, ℎj
∗ (s, t) − Pn, ℎj(s, t)} ∣. Based on this cα, a 

1 − α simultaneous confidence band can be calculated as g−1{g(Pn, ℎj(s, t)) ±
cα

nqℎj(s, t)}, t ∈ 

[t1, t2]. In general, simultaneous confidence bands can be unstable toward the earlier or later 

times of the observation interval (Nair, 1984). To avoid this issue in practice it is suggested 

to restrict the domain of the confidence band to a set with limits the 10th and 90th or the 5th 

and 95th percentile of the distribution of transition times from state h to state j. Calculation 

of confidence bands for P0, ℎj′ (s, ⋅ ) can be performed similarly.

2.4 | Estimation of state occupation probabilities

Natural estimators of the state occupation probabilities P0,j(t) and P0, j′ (t) are 

Pn, j(t) = ∑ℎ ∈ Tc{
∑i = 1

n Yi ⋅ , ℎ(0 + )

πn∑i = 1
n Mi

}Pn, ℎj(0, t), j ∈ S, where 

πn = n−1∑i = 1
n Mi

−1∑ℎ ∈ TcY i ⋅ , ℎ(0 + ), and 

Pn, j′ (t) = ∑ℎ ∈ Tc{
∑i = 1

n Mi−1Yi ⋅ , ℎ(0 + )
nπn

} Pn, ℎj′ (0, t), j ∈ S. In these estimators, πn is a 

consistent estimator of the probability of being under observation at time t = 0, denoted as 

π0. Here, it is also assumed that π0 > 0. In the absence of left truncation πn = π0 = 1. In the 

special case with fixed cluster size, Pn, j = Pn, j′ , j ∈ S. Based on Theorem 1, it can be easily 

shown that Pn, j(t) and Pn, j′ (t) are uniformly consistent.

In light of Theorem 2, the state occupation probability estimators are asymptotically linear 

of the form n{Pn, j(t) − P0, j(t)} = 1
n ∑i = 1

n ψij(t) + op(1), j ∈ S, t ∈ [0, τ] and 

n{Pn, j′ (t) − P0, j′ (t)} = 1
n ∑i = 1

n ψij′ (t) + op(1), j ∈ S, t ∈ [0, τ], where the influence functions 

ψij(t) and ψij′ (t) are provided in Web Appendix A. It follows that, n(Pn, j − P0, j) and 

n(Pn, j′ − P0, j′ ) converge weakly to zero-mean Gaussian processes, with covariance 

functions E{ψij(t1)ψij(t2)} and E{ψij′ (t1)ψij′ (t2)}, for t1, t2 ∈ [0, τ]. As with the case of 

transition probabilities, the estimated influence functions can be used to consistently 

estimate these covariance functions. Moreover, the estimated processes n−1 2∑i = 1
n ψij( ⋅ )ξi

and n−1 2∑i = 1
n ψij′ ( ⋅ )ξi and the cluster bootstrap processes n(Pn, j

∗ − Pn, j) and 

n(Pn, j
′ ∗ − Pn, j′ ) can be used to calculate confidence bands, as described for the transition 

probabilities.
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2.5 | Two-sample Kolmogorov-Smirnov–type tests

In many settings, the scientific interest is on comparing the transition probabilities for a 

particular transition, or the state occupation probabilities for a particular state, between two 

groups, say groups 1 and 2. For example, consider a multicenter randomized controlled trial 

where the goal is to assess whether the probability of cancer relapse differs between those 

receiving an experimental treatment and those receiving a control treatment. Depending on 

what is the most relevant population-averaged quantity for the given context, the null 

hypothesis in terms of the transition probability is either H0 : P0,1hj(s, ⋅) = P0,2hj(s, ⋅) or 

H0 : P0, 1ℎj′ (s, ⋅ ) = P0, 2ℎj′ (s, ⋅ ), for some s ∈ [0, τ). In terms of the state occupation 

probability, the null hypothesis is either H0 : P0,1j = P0,2j or H0 : P0, 1j′ = P0, 2j′ . Let M1i and 

M2i be the number of observations from the ith cluster, which belong to groups 1 and 2, 

respectively, with M1i + M2i = Mi, i = 1, … , n. Here, the situation where min(M1i, M2i) > 0 

is considered, that is each cluster contains at least one observation from both groups. Finally, 

let Nipm,hj(t), h ≠ j, and Yipm,h(t), ℎ ∈ Tc be the counting and at-risk processes for the mth 

observation in the pth group in the ith cluster.

Based on this setup, define the estimators of the pointwise between-group difference of the 

transition probabilities as Δn, ℎj(s, t) = {Pn, 1ℎj(s, t) − Pn, 2ℎj(s, t)}, t ∈ [s, τ], where Pn, pℎj, p = 

1, 2, is the estimator of P0,phj from the pth group and Δn, ℎj′ (s, t) = {Pn, 1ℎj′ (s, t) − Pn, 2ℎj′ (s, t)}, 

t ∈ [s, τ], where Pn, pℎj′ , p = 1, 2, is the estimator of P0, pℎj′  from the pth group, for some s ∈ 

[0, τ). Similarly, define the differences between the population-averaged state occupation 

probabilities as Δn, j(t) = {Pn, 1j(t) − Pn, 2j(t)}, t ∈ [0, τ], where Pn, pj, p = 1, 2, is the 

estimator of P0,pj from the pth group, and Δn, j′ (t) = {Pn, 1j′ (t) − Pn, 2j′ (t)}, t ∈ [0, τ], where 

Pn, pj′ , p = 1, 2, is the estimator of P0, pj′  from the pth group. The corresponding 

nonparametric cluster bootstrap realizations of the above differences are denoted by 

Δn, ℎj
∗ (s, t), Δn, ℎj

′ ∗ (s, t), Δn, j
∗ (t), and Δn, j

′ ∗ (t). It is important to note that these nonparametric 

cluster bootstrap realizations are generated by randomly sampling n clusters with 

replacement, as described in Sections 2.3. Based on these differences, define the 

Kolmogorov-Smirnov–type test statistics Kn, ℎj(s) = supt ∈ [s, τ] ∣ W ℎj(t)Δn, ℎj(s, t) ∣, for some 

appropriate weight function W ℎj(t) and some s ∈ [0, τ), and 

Kn, j = supt ∈ [0, τ] ∣ W j(t)Δn, j(t) ∣. The corresponding tests for Δn, ℎj′ (s, t) and Δn, j′ (t), denoted 

by Kn, ℎj′ (s) and Kn, j′ , are defined in the same manner. The weights W ℎj(t), W ℎj′ (t), W j(t), 

and W j′(t) are assumed to be uniformly consistent (in probability) for the nonnegative and 

uniformly bounded fixed functions Whj(t), W ℎj′ (t), Wj(t), and W j′(t). The importance of the 

weight functions lies on the fact that they can restrict the comparison interval to a set of 

times where both groups under comparison have nonzero observations at risk for the 

transition of interest. An example of such a weight function is 

W ℎj(t) = I[∏l ∈ L(ℎ, j)Y‒1, l(t)Y
‒

2, l(t) > 0], where L(ℎ, j) = {d ∈ S : d is a transient state that 

can be visited during the transition h → j} and Y‒p, ℎ(t) = np−1∑i = 1
np Y pi ⋅ , ℎ(t), for the group p 

= 1, 2, with Ypi⋅,h(t) denoting the sum of the at-risk process for state h in the ith cluster and 

the pth group. Similarly, this type of weight can be defined for the state occupation 
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probabilities as W j(t) = I[∏l ∈ ∪ℎ ∈ Tc L(ℎ, j)Y‒1, l(t)Y
‒

2, l(t) > 0]. The weights W ℎj′ (t) and 

W j′(t) are defined similarly. The weight functions can also be used to assign less weight to 

observation times with a smaller number of observations, where the estimated difference 

tends to be unstable. An example of such weight functions is 

W ℎj(t) =
∏l ∈ L(ℎ, j)Y‒1, l(t)Y

‒
2, l(t)

∑l ∈ L(ℎ, j){Y‒1, l(t) + Y‒2, l(t)}
 and W j(t) =

∏l ∈ ∪ℎ ∈ Tc L(ℎ, j)Y‒1, l(t)Y
‒

2, l(t)
∑l ∈ ∪ℎ ∈ Tc L(ℎ, j){Y‒1, l(t) + Y‒2, l(t)}

. The 

corresponding weights W ℎj′ (t) and W j′(t) can be similarly defined by replacing Y‒p, ℎ(t) with 

np−1∑i = 1
np Mpi

−1Y pi ⋅ , ℎ(t), for the group p = 1,2. In practice, the use of this latter type of 

weight functions is suggested. The calculation of P-values can be based on nonparametric 

cluster bootstrap or the influence functions for the group-specific estimators Pn, pℎj(s, t) and 

Pn, pj(t), p = 1, 2. These influence functions, denoted by γp,ihj(s, t) and ψp,ij(t), respectively, 

are provided in Web Appendix A. Now, define the estimated processes 

Cn, ℎj(s, t) = W ℎj(t)n−1 2∑i = 1
n {γ1, iℎj(s, t) − γ2, iℎj(s, t)}ξi, t ∈ [s, τ], for some s ∈ [0, τ], 

where ξi, are independent standard normal variables and the influence functions are 

estimated as described in Web Appendix A, and 

Cn, j(t) = W j(t)n−1 2∑i = 1
n {ψ1, ij(t) − ψ2, ij(t)}ξi, t ∈ [0, τ]. Similarly, one can define the 

estimated processes Cn, ℎj(s, t) and Cn, j′ (t) which correspond to the tests for Δn, ℎj′ (s, t) and 

Δn, j′ (t).

Theorem 3. Suppose that conditions C1, C2, C3′, C4′, C5, and C6′ in Web Appendix B.1 

hold. Then, under the null hypothesis and for any ℎ ∈ Tc, j ∈ S, and s ∈ [0, τ),

i. nW ℎj( ⋅ )Δn, ℎj(s, ⋅ ) ℤℎj(s, ⋅ ) in D[s, τ], where ℤℎj(s, ⋅ ) is a tight zero-mean 

Gaussian process with covariance function Whj(t1)Whj(t2)E[{γ1,1hj(s, t1) − 

γ2,1hj(s, t1)}{γ1,1hj(s, t2) − γ2,1hj(s, t2)}], for t1, t2 ∈ [s, τ]. Moreover, 

Cn, ℎj(s, ⋅ ) ℤℎj(s, ⋅ ) and nW ℎj( ⋅ ){Δn, ℎj
∗ (s, ⋅ ) − Δn, ℎj(s, ⋅ )} ℤℎj(s, ⋅ ) in 

D[s, τ], conditionally on the observed data.

ii. nW ℎjΔn, j ℤj in D[0, τ], where ℤj is a tight zero-mean Gaussian process with 

covariance function Wj(t1)Wj(t2)E[{ψ1,1j(s, t1) − ψ2,1j(s, t1)}{ψ1,1j(s, t2) − 

ψ2,1j(s, t2)}], for t1, t2 ∈ [s, τ]. Moreover, Cn, j ℤj and nW j(Δn, j
∗ − Δn, j) ℤj

in D[0, τ], conditionally on the observed data.

The proof of Theorem 3 can be found in Web Appendix B.4. There, it is also shown that the 

tests are consistent against any fixed alternative hypothesis. A relaxation of condition C6′ is 

considered in Web Appendix B.5. It can be easily shown that a similar version of Theorem 3 

holds for the differences Δℎ, ℎj′ (s, ⋅ ) and Δℎ, j′ . Based on Theorem 3 and the continuous 

mapping theorem it follows that, under the null hypothesis, 

nKn, ℎj(s) d supt ∈ [s, τ] ∣ ℤℎj(s, t) ∣, for any s ∈ [0, τ), and nKn, j
d supt ∈ [0, τ] ∣ ℤj(t) ∣. 

These asymptotic null distributions are complicated to use in practice for the calculation of 

P-values. However, by Theorem 3, one can simulate realizations from these null 
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distributions by simulating a sufficiently large number of sets {ξi}i = 1
n  of standard normal 

variables and then calculating samples from these null distributions as 

supt ∈ [s, τ] ∣ Cn, ℎj(s, t) ∣ and supt ∈ [0, τ] ∣ Cn, j(t) ∣. Alternatively, one can use a sufficiently 

large number of nonparametric cluster bootstraps Δn, ℎj
∗ (s, t), t ∈ [s, τ], and Δn, j

∗ (t), t ∈ [0, τ] 

and, then, calculate realizations from the asymptotic null distributions as 

n supt ∈ [s, τ] ∣ W ℎj(t){Δn, ℎj
∗ (s, t) − Δn, ℎj(s, t)} ∣ and n supt ∈ [0, τ] ∣ W j(t){Δn, j

∗ (t) − Δn, j(t)} ∣. 
The P-value can then be estimated as the proportion of these simulation realizations, which 

are greater than or equal to the actual value of the test statistic based on the observed data.

2.6 | Non-Markov processes

When the multistate process X(t) is non-Markov, the transition probabilities and transition 

intensities depend on the prior event history ℱt−. In this case, the population-averaged 

transition intensities defined in Section 2.2 are the partly conditional transition intensities, 

which are not conditional on the prior history ℱt−. Such marginal intensities have been 

argued to be meaningful quantities even for non-Markov processes because they describe the 

marginal (ie, unconditional on the prior history) behavior of the process (Datta and Satten, 

2001; Glidden, 2002). With independent observations from a non-Markov process, Datta and 

Satten (2001) showed that the Nelson-Aalen estimator of the cumulative transition 

intensities and the Aalen-Johansen estimator of the state occupation probabilities are 

consistent for the corresponding marginal quantities. Using the same arguments to those 

presented by Datta and Satten (2001) it can be shown that, with clustered observations from 

a non-Markov process, the proposed estimators of the (marginal) population-averaged 

cumulative transition intensities and state occupation probabilities are consistent. Similarly, 

as in the case with independent observations (Titman, 2015), the proposed estimators Pn(0, t)

and Pn′ (0, t) are consistent for the population-averaged P0(0, t) and P0′ (0, t) under right 

censoring, even for non-Markov processes. In the presence of left truncation, consistent 

estimation requires calculating Pn(0, t) and Pn′ (0, t) using only the subset of individuals who 

were under observation at t = 0. However, for s > 0, the proposed estimators Pn(s, t) and 

Pn′ (s, t) are not consistent in general for non-Markov processes, as in the case with 

independent observations (Titman, 2015). In such cases, following the idea of landmarking 

by Putter and Spitoni (2018), I propose estimating P0,hj(s, t) and P0, ℎj′ (s, t), for j ∈ S and t ∈ 

[s, τ], via the proposed estimators but using only individuals who were at the transient state 

h at time s. More precisely, I propose using the modified counting and at-risk processes 

Nim, lj(t; ℎ, s) = Nim, lj(t)Y im, ℎ(s + ), l ≠ j, and Y im, l(t; ℎ, s) = Y im, l(t)Y im, ℎ(s + ), l ∈ Tc, 

instead of the original Nim,lj(t) and Yim,l(t), when estimating P0,hj(s, t) and P0, ℎj′ (s, t), j ∈ S. 

These landmark estimators can be shown to be consistent using the same arguments to those 

used in Putter and Spitoni (2018). Inference with non-Markov processes can be performed as 

indicated in Theorems 2 and 3, with the exception that the influence functions for the 

landmark versions of Pn, ℎj(s, t) and Pn, ℎj′ (s, t) involve the modified processes Nim, lj(t; ℎ, s), l 

≠ j, and Y im, l(t; ℎ, s), l ∈ Tc. A remark on using Theorems 2 and 3 for inference with non-

Markov processes is provided in Web Appendix B.6.
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3 | SIMULATION STUDIES

To evaluate the small-sample performance of the proposed methods I conducted a series of 

simulation experiments under a non-Markov illness-death model with states S = {1, 2, 3} and 

absorbing state T = {3}, in a study with ICS. These experiments focused on the population-

averaged probabilities P0,2(t), P0, 2′ (t), P0,12(0.5, t), and P0, 12′ (0.5, t). Note that, for the illness-

death model where state 1 (healthy) is the unique initial state, P0,2(t) = P0,12(0, t) and 

P0, 2′ (t) = P0, 12′ (0, t). Scenarios with n = 20,40,80 clusters were considered. These sample 

sizes are considered small or relatively small. The cluster sizes Mi, i = 1, … , n, were 

simulated from either of the discrete uniform distributions U(5, 15) and U(10, 30), producing 

scenarios with 5 to 15 and 10 to 30 observations per cluster, respectively. To simulate non-

Markov illness-death processes, which are correlated within clusters, cluster-specific frailties 

vi, i = 1 , … , n, were simulated from the Gamma distribution with shape and scale 

parameters equal to 1. Conditionally on the frailty values vi and the cluster sizes mi, the non-

Markov illness-death processes were simulated based on the cumulative transition intensities 

A0,12(t; vi) = [0.25 + 0.25 × I{mi ≤ E(M1)}]vit, A0,23(t; vi) = 0.5vit, and A0,13(t; vi) = 

0.25vit, i = 1, … n. Note that the dependence of A0,12(t; vi) on cluster size produced data 

with ICS. The resulting population-averaged probabilities of interest are depicted in Figure 1 

in Web Appendix D. In this simulation study, two scenarios regarding right censoring and 

left truncation were considered; the first involved right censoring only while the second 

considered both right censoring and left truncation. In both scenarios, independent right 

censoring times were simulated from the uniform distribution U(0,3). In the first scenario, 

the simulation settings led on average to 57.5% right-censored observations (a), 24.4% 

observations at the illness state (b) (45.9% of those arrived later at the death state), and 

18.1% at the death state (c) without a prior visit to the illness state. In the second scenario, 

left truncation times were independently simulated from the beta distribution Beta(1,2). For 

the simulations evaluating the estimators of P0,12(0.5, t) and P0, 12′ (0.5, t), this data generation 

scheme led on average to 67% of the individuals being under observation and at state 1 at 

time s = 0.5. For simulations evaluating state occupation probability estimators, left 

truncation time was set to 0 with a probability equal to 2/3. This is because estimation of 

P0,2(t) and P0, 2′ (t) for non-Markov processes under left truncation, involves only individuals 

who were under observation at time t = 0 (see Section 2.6). Therefore, in both cases, around 

33% of the observations were excluded from the analysis due to left truncation. Under this 

setup, a two-arm multicenter randomized controlled trial was also simulated with a 1:1 arm 

allocation ratio within clusters. To simulate data under the alternative hypothesis, the 

cumulative intensity A0,p12(t; vi) = [0.25 + 0.5 × I(p = 2) + 0.25 × I{mi ≤ E(M1)}]vit, p = 1, 

2, was assumed depending on the treatment arm p. Estimation of the transition probabilities 

was performed using the landmark version of the proposed estimators as described in 

Section 2.6. Simultaneous confidence bands and P-values from the Kolmogorov-Smirnov–

type tests were based on 1000 simulated sets {ξi}i = 1
n  of standard normal variates or 1000 

nonparametric cluster bootstrap realizations. Moreover, as described in Section 2.3, the 

range of the confidence bands was restricted for each data set to the 10th and 90th percentile 

of the distribution of transition times from state 1 to state 2. We also present simulation 

results for the one-sample case under the working-independence Aalen-Johansen estimator 
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using the usual Greenwood standard error estimates and a wild bootstrap approach for 

confidence bands that ignores the within-cluster dependence.

Pointwise simulation results for the state occupation probability estimators under right 

censoring are presented in Tables 1 and 2. Ignoring the within-cluster dependence was 

associated with underestimated standard errors and poor coverage probabilities of the 95% 

confidence intervals. Also, the working independence Aalen-Johansen estimator of P0, 2′ (t)
exhibited a small bias as a result of the ICS (relative bias around −7%). The proposed 

estimators of P0,2(t) and P0, 2′ (t) were both virtually unbiased, the standard error estimates 

based on the influence functions and the nonparametric cluster bootstrap were both close to 

the Monte Carlo standard deviation (MCSD) of the estimates, and the corresponding 95% 

pointwise confidence intervals were close to the nominal level, except for the case with a 

very small number of clusters (n=20) and only 5 to 15 individuals per cluster. It is important 

to note that the weighted by cluster size working independence estimator Pn, 2′ (t) exhibited a 

larger MCSD compared to the working independence estimator Pn, 2(t) (variance ratio range: 

1.15 to 1.21), as a result of the additional variability of the weights.

Simulation results regarding the coverage probabilities of the 95% simultaneous confidence 

bands are presented in Table 3. The wild bootstrap approach for confidence band calculation 

that ignores the within-cluster dependence exhibited poor coverage rates in all cases. This 

phenomenon was more pronounced for the population-averaged state occupation probability 

P0, 2′ ( ⋅ ) over the TCM population, and is attributed to the bias of the working independence 

Aalen-Johansen estimator in addition to the variability underestimation. On the contrary, the 

coverage probabilities of the proposed approaches were close to the nominal level, except 

for the case with only 20 clusters and 5 to 15 observations per cluster, where the coverage 

rate was somewhat lower. Finally, simulation results about the empirical rejection rates of 

the proposed tests are presented in Table 4. Under H0, the type I error rate of the tests was 

close to the nominal level α = 0.05 in all cases. Under H1, the empirical power was 

increasing with sample size and this provides numerical evidence for the consistency of the 

proposed tests.

Simulation results regarding the estimators of the population-averaged transition 

probabilities P0,12(0.5, t) and P0, 12′ (0.5, t) under right censoring are presented in Web 

Appendix D.1. Results under both right censoring and left truncation are presented in Web 

Appendix D.2. Finally, simulation experiments evaluating the proposed methods under a 

larger cluster size variability (cluster size range: 5 to 200) and a very small number of 

clusters (n = 15 and 20), are presented in Web Appendix D.3. In all cases, the naïve methods 

performed poorly. However, this poor performance was less pronounced under both right 

censoring and left truncation as a result of the fact that, in this case, there were fewer 

observations per cluster, which led to a less pronounced intracluster dependence issue. The 

performance of the proposed methods was satisfactory in all cases, with the exception of 

somewhat lower coverage probabilities (reaching 91% in a few cases) with a very small 

number of clusters.
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4 | DATA EXAMPLE

The proposed methods are illustrated using data from the EORTC trial 10854 (Van der Hage 

et al., 2001). In total, 2792 early breast cancer patients from 15 hospitals (clusters) were 

recruited in this trial. Of them, 1398 (50.1%) were randomly assigned to the group receiving 

the combination therapy approach. In this multicenter trial, cluster sizes ranged from 6 to 

902 patients. The trial involved only n = 15 clusters and thus the analysis based on the 

proposed large sample inference methods may provide biased results. In this analysis we 

assumed that the data from the different hospitals are i.i.d. However, the number of patients 

in one hospital might be correlated with the number of patients in another hospital. This 

could lead to biased variance estimation and incorrect P-values. After surgery, 1146 (41.0%) 

patients experienced locoregional relapse, distant metastasis, or secondary cancer, and 810 

(29.0%) died throughout the follow-up period. Among the deceased patients, 710 (87.7%) 

died after having experienced a locoregional relapse, distant metastasis, or secondary cancer, 

while the remaining 100 deceased patients died without prior evidence for these events. The 

patient event history in this trial can be described by an illness-death model with the states 

“cancer-free” (state 1), “cancer” (state 2), and “death” (state 3). Throughout the follow-up 

period, 1546 (55.4%) patients were right-censored while being in the “cancer-free” state and 

436 (15.6%) were right-censored while being in the “cancer” state. There was no left 

truncation in this data set. In this analysis, the focus was on the between-arm comparison of 

the population-averaged state occupation probabilities of cancer P0,12(t) and P0, 12′ (t) (for the 

population undergoing surgery only), and P0,22(t) and P0, 22′ (t) (for the population receiving 

the combination of surgery plus polychemotherapy). The overall state occupation probability 

estimates for the three states over the population of all hospital patients along with the 

associated 95% simultaneous confidence bands are presented in Figure 1. These confidence 

bands were calculated based on 1000 nonparametric cluster bootstrap realizations. Figure 1 

provides significant information about the natural history of early breast cancer patients 

undergoing surgery. The corresponding probabilities for the population of typical hospital 

patients were approximately the same, with the exception that the probability of cancer was 

slightly lower in this case (data not shown). The arm-specific state occupation probabilities 

of cancer for both population of all hospital patients and population of typical hospital 

patients are presented in Figure 2. To compare these population-averaged probabilities 

between arms, the proposed Kolmogorov-Smirnov–type test was used based on 1000 

nonparametric cluster bootstrap realizations. The tests for both versions of population-

averaged probabilities were not statistically significant at the level α = 0.05 and, therefore, 

the null hypothesis that the population-averaged probabilities of cancer do not differ 

between arms cannot be rejected. Among those in the surgery only group, the estimated 

population-averaged probability of cancer over the population of typical hospital patients 

was lower compared to that for the population of all hospital patients (Figure 2). This 

indicates that larger hospitals had more cancer events among patients with surgery only, 

which may be attributed to the fact that patients with more advanced disease choose (or are 

advised to attend) larger hospitals. To evaluate this difference, the modified Kolmogorov-

Smirnov–type test described in Web Appendix C was used. The result of this test was 

statistically significant (P-value = .046), which provides evidence for ICS in this group. The 
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corresponding test for the group of patients receiving the combination therapy approach was 

not statistically significant (P-value = .416).

5 | DISCUSSION

This work addressed the issue of nonparametric population-averaged inference for multistate 

models with right-censored and/or left-truncated clustered observations. The estimators for 

the transition and state occupation probabilities were shown to be uniformly consistent and 

asymptotically normal with explicit formulas for the corresponding covariance functions. 

Additionally, rigorous methodology for the calculation of simultaneous confidence bands 

and a class of Kolmogorov-Smirnov–type tests were proposed. Inference can be performed 

using either the explicit formulas for the influence functions of the estimators or the 

nonparametric cluster bootstrap. The latter is particularly useful in practice since it can be 

used for inference using off-the-shelf software. In this work, I did not impose restrictive 

distributional assumptions or assumptions regarding the within-cluster dependence. 

Moreover, I allowed for ICS and nonhomogeneous multistate processes which are non-

Markov. Simulation results indicated that the performance of the proposed methods is 

satisfactory even for non-Markov processes and under ICS. On the contrary, ignoring the 

within-cluster dependence leads to invalid inference.

The proposed nonparametric estimators of the transition probability matrix and the influence 

function-based methodology for the calculation of simultaneous confidence bands are 

extensions of the Aalen-Johansen estimator (Aalen and Johansen, 1978; Andersen et al., 

2012) and the wild bootstrap approach for independent data by Bluhmki et al. (2018) to the 

cluster-correlated data setting. However, these extensions were not trivial given that I 

allowed for random and ICS. Moreover, I established the asymptotic properties of the 

proposed methods using empirical process theory instead of martingale theory that was used 

for the aforementioned methods for independent data (Andersen et al., 2012; Bluhmki et al., 

2018). I also considered the nonparametric cluster bootstrap by Field and Welsh (2007). 

These authors dealt with the case of a simple linear random-intercept model. Even though I 

used the cluster bootstrap algorithm of Field and Welsh (2007) for the one-sample problem, 

I proved its consistency for the more complicated nonparametric estimators in Theorem 2. 

Moreover, for the two-sample problem, the nonparametric cluster bootstrap approach 

proposed here is slightly different because the weight W ℎj(t) is being kept fixed (at its 

estimated value based on the original data set) across the bootstrap samples, since its 

variability does not affect the asymptotic null distributions of the test statistics.

It has to be noted that the proposed methods provide large sample inference, as do the 

typical methods for multistate models. Large sample in the clustered data setting means 

large number of clusters. Following general recommendations for the central limit theorem, 

it is suggested to use the proposed methods with at least 30 clusters. However, the extensive 

simulation studies presented in this article provide some numerical evidence for the 

satisfactory performance of the proposed methods, and their superiority over the naïve 

methods that ignore the within-cluster dependence, even with 20 clusters.

Bakoyannis Page 15

Biometrics. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I can see two useful extensions of the proposed framework. First, developing an estimation 

approach for semiparametric regression on the state occupation probabilities would be 

crucial in practice for the estimation of risk factor effects. This could be achieved by 

extending the inverse probability of censoring weighting approach by Scheike and Zhang 

(2007) to the clustered data setting. Second, relaxing the i.i.d. assumption across clusters 

imposed in this article is important from both theoretical and applied perspective. One 

situation where this assumption is violated is when there is a dependence between cluster 

sizes or counting processes from different clusters. A way to deal with this issue is to 

introduce weak dependence (such as mixing conditions) or long-range dependence 

assumptions over space or time for the clusters, and use appropriate central limit theorems 

for such dependent data (Dehling et al., 2002) to establish the asymptotic distributions of the 

estimators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Overall population-averaged state occupation probabilities of the three states (black lines) 

over the population of all hospital patients in the multicenter EORTC trial 10854, along with 

the 95% simultaneous confidence bands (gray areas)
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FIGURE 2. 
Population-averaged state occupation probabilities of cancer (locoregional relapse, distant 

metastasis, or secondary cancer) over the population of all hospital patients (A) and the 

population of typical hospital patients (B) for the two arms in the multicenter EORTC trial 

10854, along with the P-values from the Kolmogorov-Smirnov–type test
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TABLE 3

Simulation results regarding the coverage probabilities of the 95% simultaneous confidence bands for P0,2(⋅) 
and P0, 2′ ( ⋅ ) based on the standard method that ignores the within-cluster dependence (naïve) and the proposed 

method with (i) the estimated processes Bn, 2 and Bn, 2′  (IF) and (ii) the nonparametric cluster bootstrap (CB)

P0,2(⋅) P0, 2′ ( ⋅ )

n FM Naïve IF CB Naïve IF CB

20 U[5, 15] 0.856 0.922 0.930 0.826 0.917 0.911

U[10, 30] 0.798 0.944 0.952 0.771 0.946 0.938

40 U[5, 15] 0.892 0.948 0.951 0.849 0.945 0.940

U[10, 30] 0.802 0.941 0.942 0.750 0.945 0.946

80 U[5, 15] 0.878 0.945 0.943 0.788 0.940 0.942

U[10, 30] 0.820 0.941 0.944 0.689 0.945 0.940

Abbreviations: FM: discrete uniform distribution of the cluster size; n, number of clusters.

Note. Results under right censoring.
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