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Abstract

We previously reported that SNPs near TSPAN5 were associated with plasma serotonin (5-HT) 

concentrations which were themselves associated with selective serotonin reuptake inhibitor 

treatment outcomes in patients with major depressive disorder (MDD). TSPAN5 SNPs were 

also associated with alcohol consumption and alcohol use disorder (AUD) risk. The present 

study was designed to explore the biological function of TSPAN5 with a focus on 5-HT and 

kynurenine concentrations in the tryptophan pathway. Ethanol treatment resulted in decreased 

5-HT concentrations in human induced pluripotent stem cell (iPSC)-derived neuron culture media, 

and the down-regulation of gene expression of TSPAN5, DDC, MAOA, MAOB, TPH1, and 

TPH2 in those cells. Strikingly, similar observations were made when the cells were treated 

with acamprosate—an FDA approved drug for AUD therapy. These results were replicated in 

iPSC-derived astrocytes. Furthermore, TSPAN5 interacted physically with proteins related to 

clathrin and other vesicle-related proteins, raising the possibility that TSPAN5 might play a role in 
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vesicular function in addition to regulating expression of genes associated with 5-HT biosynthesis 

and metabolism. Downregulation of TSPAN5 expression by ethanol or acamprosate treatment was 

also associated with decreased concentrations of kynurenine, a major metabolite of tryptophan 

that plays a role in neuroinflammation. Knockdown of TSPAN5 also influenced the expression of 

genes associated with interferon signaling pathways. Finally, we determined that TSPAN5 SNPs 

were associated with acamprosate treatment outcomes in AUD patients. In conclusion, TSPAN5 
can modulate the concentrations of 5-HT and kynurenine. Our data also highlight a potentially 

novel pharmacogenomic mechanism related to response to acamprosate.
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INTRODUCTION

We previously reported that TSPAN5 eQTL SNPs on chromosome 4 were associated with 

variation in plasma serotonin (5-HT) concentrations which were themselves correlated 

with selective serotonin reuptake inhibitor treatment outcomes in patients with major 

depressive disorder (MDD) (1). We also reported that knockdown of TSPAN5 resulted 

in the down-regulation of genes involved in both 5-HT biosynthesis and metabolism (1). 

It should be pointed out that depression is the most common psychiatric co-morbidity 

among AUD patients (2–4). A recent genome-wide association study (GWAS) of alcohol 

consumption in UK Biobank participants identified a series of genome-wide significant 

variants on chromosome 4 (5). Strikingly, several of those SNPs (rs3114045, rs193099203 

and rs9991733) are trans-eQTLs in the brain for TSPAN5 which maps to chromosome 

4. When the UK Biobank study results were stratified by sex, the rs114026228 SNP in 

TSPAN5 (p=3.60E-13) was the top signal associated with alcohol consumption in men (5). 

In addition, a recent GWAS meta-analysis demonstrated that TSPAN5 SNPs were associated 

with alcohol use disorder (AUD) risk in an African American population (2). It should also 

be pointed out that the TSPAN5 rs11947402 SNP which was originnally identified from 

our GWAS for baseline plasma 5-HT concentrations in MDD patients was also associated 

with AUD risk (p=0.017) in that same AUD GWAS meta analysis (2, 6). As a result of 

this growing body of evidence that TSPAN5 may play a role in both MDD and AUD risk, 

the present study was designed to explore the biological function of TSPAN5 with a focus 

on the tryptophan pathway using human iPSC-derived CNS cells exposed to either ethanol 

(EtOH) or acamprosate—an FDA approved medication for the treatment of AUD (7). The 

significance of the present study results from this expanding body of molecular genomic 

data with regard to TSPAN5, from the societal importance of AUD, from the possibility 

of more highly individualized treatment for AUD, and from the fact that the results of 

the studies described subsequently suggest novel genetic mechanisms that might influence 

individual variation in acamprosate response in AUD patients (8–10).

TSPAN5 is one of the 33 members of the tetraspanin gene family (11). TSPAN5 is widely 

expressed in the brain based on the GTEx database (12). However, the possible functional 
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role of TSPAN5 in AUD is unknown. Since our previous report demonstrated that TSPAN5 
is associated with plasma concentrations of 5-HT—a metabolite of tryptophan—the present 

study places a focus on the impact of TSPAN5 on the tryptophan metabolic pathway, one 

branch of which leads to the formation of 5-HT, with the other main branch resulting 

in the formation of kynurenine (Figure 1a). During our previous MDD study we found 

that kynurenine was, among the metabolites assayed, the most highly associated with 

severity of depression symptoms (1). In an attempt to understand the possible roles of 

TSPAN5, EtOH and acamprosate in the regulation of 5-HT biosynthesis and metabolism, 

we first demonstrated that both EtOH and acamprosate decreased 5-HT in the culture 

medium of iPSC-derived forebrain neurons and astrocytes. In parallel we demonstrated that 

TSPAN5 expression was also down-regulated in the presence of EtOH or acamprosate. 

We also demonstrated that TSPAN5 could regulate both kynurenine concentrations and 

the expression of a series of genes associated with interferon (IFN) related pathways. 

Those experiments were followed by a series of functional genomic studies using astrocytes 

and microglia which showed that TSPAN5 might have a role in CNS immune response. 

Finally, we found that several SNPs that are cis-eQTLs for TSPAN5 were associated with 

acamprosate treatment outcomes in patients with AUD.

In summary, the present study greatly extends our original observations with regard to 

TSPAN5 and plasma 5-HT regulation (1), and serves to highlight a novel pharmacogenomic 

mechanism related to acamprosate treatment response by which TSPAN5 can modulate and 

influence major metabolites of tryptophan and the CNS immune response—both of which 

have been implicated in neuropsychiatric disorders, including AUD (13). Taken together, 

these observations serve to emphasize the possible importance of TSPAN5 in acamprosate 

treatment response. As a result, they have expanded and broadened our understanding of 

acamprosate’s mechanism of action.

METHODS AND MATERIALS

Subjects

The Mayo Clinic Center for the Individualized Treatment of Alcoholism recruited 442 AUD 

subjects with associated clinical data, and DNA samples were obtained for genotyping (14–

16). Specifically, 305 European-American subjects included in this study had acamprosate 

treatment outcomes available, i.e. abstinence length during acamprosate therapy (17). In 

addition, induced pluripotent stem cells (iPSCs) were generated from five healthy subjects 

from the Mayo Clinic Biobank. All subjects provided written informed consent for their 

participation in these studies. The protocol for this study was reviewed and approved 

by the Mayo Clinic Institutional Review Board (reference number: 10–006845). See 

Supplementary text for details.

Generation of patient-derived iPSCs, and glial and neuronal cells differentiation

Fibroblasts from skin biopsies for all subjects were utilized for iPSC reprogramming 

using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (A16517, Thermo Fisher, USA). 

Patient-derived iPSCs were characterized as previously described (18, 19). Those iPSCs 

were then differentiated into astrocytes and forebrain neurons as previously described 
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(20). Cells were then treated with various concentrations of EtOH or acamprosate within 

the range of concentrations observed in patients drinking EtOH or patients treated with 

acamprosate observed during acamprosate treatment of patients with AUD, respectively 

(21). See Supplementary text for details.

RNA Sequencing and functional genomic studies

RNA-seq was performed by GENEWIZ using an Illumina HiSeq 4000 platform. Fastq 

files containing paired RNASeq reads were aligned with STAR (22) against the UCSC 

human reference genome (hg19) using Bowtie 2.2.3 with default settings (23). Gene level 

counts from uniquely mapped, non-discordant read pairs were obtained using the subRead 

featureCounts program (v1.4.6) (24) and gene models from the UCSC hg19 Illumina 

iGenomes annotation package. Differential expression analysis was performed using the 

DESeq2 package with default parameters (25). Gene set enrichment analysis (GSEA) 

software was used for pathway analysis (26, 27). Real time PCR was used for validation and 

primer sets for real time PCR are listed in Supplementary Table 1. We performed functional 

genomic studies including high-performance liquid chromatography, immunofluorescence 

staining and confocal imaging analysis, mass spectrometry, Western blot analysis, TSPAN5 

siRNA knockdown and CRISPR/cas9 knockout studies. See the Supplementary text for 

details.

RESULTS

TSPAN5 is an alcohol responsive gene

As a first step, we set out to determine the possible effect of EtOH on TSPAN5 expression 

and concentrations of 5-HT—one of the metabolites of tryptophan (Figure 1a) —using 

iPSC-derived forebrain neurons. TSPAN5 expression was significantly down-regulated 

in iPSC-derived forebrain neurons after EtOH (25 mM) exposure that is considered 

physiologically relevant, with 25 mM EtOH being slightly higher than the 0.08% blood 

alcohol concentration (BAC) required to be legally intoxicated in most states in the United 

State (29) (Figure 1b). In parallel, 5-HT concentrations in the culture media decreased 

substantially after EtOH exposure (Figure 1c). We also observed that the down-regulation of 

TSPAN5 by EtOH was associated with decreased mRNA expression of DDC, TPH1, TPH2, 
MAOA, and MAOB, all of which play roles in 5-HT biosynthesis and metabolism (Figure 

1d). In follow-up of this observation, siRNA knockdown studies were performed using 

four independent TSPAN5 siRNAs as well as one pooled siRNA (Dharmacon Chicago, IL, 

USA). The results for all of those experiments were consistent. Specifically, knockdown 

of TSPAN5 in iPSC-derived neurons to 5% of its baseline significantly decreased 5-HT 

concentrations in the culture media (Figure 1e–1f), with associated down regulation of the 

expression of DDC, TPH1, TPH2, MAOA, MAOB (Figure 1g), consistent with our previous 

report that used a neuroblastoma cell line, SK-N-BE(2) (1). Use of that neuroblastoma 

cell line also made it possible for us to optimize treatment conditions for our subsequent 

functional genomic studies, which would have been impractical using iPSC-derived neurons 

due to their high cost and the length of time required for their differentiation (see 

Supplementary Figure 1).
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Acamprosate modulates TSPAN5 expression and 5-HT concentrations

The next series of experiments was performed to determine whether acamprosate, an 

FDA approved drug for the treatment of AUD, might also influence TSPAN5 expression 

and 5-HT concentrations in iPSC-derived neuron culture medium. The concentrations of 

acamprosate used to perform those experiments were selected to fall within the range 

of blood drug concentrations observed during acamprosate therapy of patients with AUD 

(21). Strikingly, TSPAN5 expression in iPSC-derived forebrain neurons was also down

regulated in the presence of acamprosate (Figure 1h). In parallel, 5-HT concentrations in 

the neuron culture medium also decreased significantly (Figure 1i). Even more striking, 

and somewhat surprisingly, we observed that expression of the genes associated with 

monoamine neurotransmitter biosynthesis and metabolism shown in Figures 1d and 1g was 

also down-regulated in response to acamprosate treatment (Figure 1j).

TSPAN5 biological function in iPSC-derived astrocytes

Having determined the effect of EtOH and acamprosate on forebrain neurons, we next 

determined the effect of EtOH and acamprosate on iPSC-derived astrocytes. TSPAN5 

expression also decreased significantly in response to EtOH treatment of iPSC-derived 

astrocytes (Figure 2a). Consistently, 5-HT concentrations were also significantly decreased 

in iPSC-derived astrocyte culture medium in the presence of EtOH (Figure 2b). Similar 

results were observed when cells were treated with acamprosate (Figure 2c–2d). In 

addition, knockdown of TSPAN5 in iPSC-derived astrocytes significantly decreased 5-HT 

concentrations in the culture medium (Figure 2e–2f). We should point out that iPSC-derived 

astrocyte cultures displayed about 10-fold higher concentrations of 5HT than did the 

neurons, as shown in Figure 1. That is because the cell numbers used to perform assays 

for the iPSC-derived astrocytes were at least 10 times higher than for the iPSC-derived 

neurons, as described in the figure legend. It was not practically possible to use higher 

numbers of iPSC-derived neurons as a result of their high cost and the length of time 

required for their differentiation. It should also be emphasized that, unlike iPSC-derived 

neurons, iPSC-derived astrocytes can be expanded for functional studies that require a larger 

number of cells. Using the required larger number of cells, we next performed TSPAN5 

pulldown studies with iPSC-derived astrocytes for mass spectrometric identification of the 

proteins “pulled down” and identified a series of proteins that included clathrin heavy chain 

and other neurotransmitter vesicle-related proteins including AP2M1, AP3M1, VAMP7 

and VPS29, all of which interacted physically with TSPAN5, (Supplementary Table 2). 

These observations suggested that TSPAN5 might play roles in both the regulation of 5-HT 

biosynthesis and metabolism (see Figure 1 and Figure 2) as well as in vesicular function.

TSPAN5 influences kynurenine

We next set out to determine whether TSPAN5 might influence kynurenine concentrations 

(Figure 1a) just as it did for another major tryptophan pathway metabolite, 5-HT, and 

whether TSPAN5 downregulation resulting from EtOH or acamprosate treatment might 

also affect kynurenine concentrations. To answer those questions, we used HMC3 cells, 

a human microglial cell line, to perform the functional studies because microglia are 

the major cell type in the CNS responsible for immune response (30) and because our 
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previously published studies had placed a focus on the relationship of the “kynurenine 

arm” of tryptophan metabolism with immunity and inflammation (1). Specifically, we 

knocked out TSPAN5 using CRISPR-Cas9 and demonstrated that kynurenine concentrations 

decreased significantly in the TSPAN5 knockout cell culture medium as compared to 

wildtype cells (Figure 3a–3b). In line with those observations, both TSPAN5 expression 

and kynurenine concentrations (Figure 3c–3f) were decreased in response to EtOH or 

acamprosate treatment. These results significantly extended our original observations with 

regard to TSPAN5 and plasma 5-HT regulation (1), and served to highlight a possible novel 

pharmacogenomic mechanism by which TSPAN5 can influence kynurenine concentrations 

which have been implicated in CNS immune response and neuropsychiatric disorders.

TSPAN5 may also play a role in CNS immune response

We also used iPSC-derived astrocytes to perform mRNA expression profiling before and 

after TSPAN5 knockdown, and identified 301 genes that displayed significant changes in 

expression (FDR≤0.05) after the knockdown of TSPAN5 (Figure 4a, and Supplementary 

Table 3). Pathway enrichment analysis demonstrated that a series of immune response 

signaling pathways were the most common and most highly affected pathways after 

TSPAN5 knockdown (Figure 4b, and Supplementary Table 4). Those findings were 

validated using four additional human iPSC-derived astrocytes. Specifically, we confirmed 

that genes associated with the “response to interferon (IFN)” pathway were down-regulated 

when TSPAN5 was knocked down (Figure 4c). We then tested the effect of TSPAN5 

on IFN signaling pathways using an IFN-stimulated response element (ISRE) luciferase 

reporter system. Knockdown of TSPAN5 in iPSC-derived astrocytes resulted in significantly 

decreased ISRE activity (Figure 4d). That was also true when iPSC-derived astrocytes 

were treated with either EtOH or acamprosate (Figure 4e). We then replicated those 

findings using HMC3 cells. Consistently, ISRE luciferase activities were significantly 

lower in TSPAN5 knockout cells than in wildtype cells (Supplementary Figure 3a). 

TSPAN5 in HMC3 cells was also involved in differences in expression for a panel of 

genes involved in IFN signaling pathways as shown in Figure 4c. Specifically, TSPAN5 

knockout cells displayed significantly decreased levels of expression for IRF7, IRF9, MX1, 

MX2, OAS1, OAS2, IFITM1, DDIT3, GRP78 and STAT1 (Supplementary Figure 3b). 

In similar fashion, treatment of HMC3 cells with either EtOH or acamprosate resulted 

in significantly decreased expression of genes associated with response in IFN signaling 

pathways (Supplementary Figure 3c–3d). These findings suggested that both acamprosate 

and EtOH could influence TSPAN5 gene expression which, in turn, altered both 5-HT and 

kynurenine concentrations and down-regulated IFN signaling pathways in the brain—all of 

which might have implications for neuropsychiatric disorders such as AUD. Therefore, the 

next series of studies was designed to determine the possible association of TSPAN5 genetic 

variants with acamprosate treatment response in AUD patients.

TSPAN5 SNPs are associated with response to acamprosate treatment

We next set out to determine whether SNPs within TSPAN5 might be associated with 

the length of abstinence until the first drink of alcohol during 3 months of acamprosate 

treatment for AUD patients enrolled in the Mayo Clinic Center for the Individualized 

Treatment of Alcoholism clinical trial (Figure 5a and Supplementary Table 5) (17, 31). 
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Clinical characteristics for those subjects are listed in Supplemental Table 6. Specifically, 

the most significant three TSPAN5 SNPs (rs11940430, rs4699354, and rs10029405) were in 

tight linkage disequilibrium (LD) (R2>0.98) and were associated with length of abstinence 

during 3 months of acamprosate treatment. Those same three SNPs were also associated 

with a different but related clinical phenotype, i.e. abstinence length until heavy drinking 

or complete abstinence during 3 months of acamprosate treatment (Figure 5b). In addition, 

homozygous variant genotypes for those same three SNPs were also associated with higher 

risk of relapse during 3 months of acamprosate treatment (Figure 5b). Finally, the three 

TSPAN5 SNPs shown in Figure 5a were also eQTLs for the expression of TSPAN5 in many 

brain regions (Supplementary Table 7), specifically frontal cortex, cerebellum, medulla and 

putamen based on data obtained from the 1231 brain tissue samples (up to ten brain regions) 

that have been archived in the BRAINEAC database (http://www.braineac.org/) which 

includes 134 brains from individuals free of neurodegenerative disorders. These results, 

taken together, indicate that genetic variants that are associated with TSPAN5 expression 

might be biomarkers for abstinence length in AUD patients treated with acamprosate.

In summary, the results of this series of experiments suggest that TSPAN5 may play 

a significant role in 5-HT and kynurenine regulation and metabolism. Both of these 

tryptophan metabolites have been reported to play important roles in neuropsychiatric 

disorders (18, 32–35). That may result, in part, from an interaction of TSPAN5 with a 

series of vesicle-related proteins or its effect on the expression of enzymes involved in 

monoamine neurotransmitter biosynthesis and metabolism. Furthermore, as a result of the 

down-regulation of TSPAN5 in the presence of either EtOH or acamprosate, downstream 

genes involved in 5-HT biosynthesis and metabolism, as well as IFN signaling pathways 

were also down-regulated. Finally, TSPAN5 SNP genotypes appeared to be associated with 

acamprosate treatment outcomes in AUD patients—although those observations will require 

replication. This series of results represent a potentially important step in the process of 

obtaining functional insight into molecular mechanisms underlying the role of TSPAN5 in 

the regulation of two major tryptophan pathway metabolites, 5-HT and kynurenine, as well 

as individualized treatment outcomes for AUD patients treated with acamprosate.

DISCUSSION

The present study provides the first evidence that TSPAN5 genetic variation might be 

associated with acamprosate treatment outcomes in AUD patients. AUD is the most 

prevalent substance use disorder (36). However, only three drugs—acamprosate, naltrexone 

and disulfiram—have received FDA approval for the treatment of AUD in the United States, 

and only a small proportion (~35%) of patients respond to treatment with these agents by 

achieving sustained abstinence (17, 37, 38). It would represent a major achievement for 

precision medicine if we were to develop ways to better individualize the drug therapy of 

AUD patients in order to increase the frequency of the achievement of abstinence and to 

select the patients most likely to respond prior to the initiation of drug therapy.

Acamprosate, an NMDA glutamate receptor antagonist, is a synthetic compound with 

a chemical structure similar to those of the neurotransmitter gamma-aminobutyric acid 

(GABA) and the amino acid taurine (39). The AUD therapy literature and studies of 
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the mechanism of action of acamprosate have most often focused on its effects on 

the balance between GABAergic inhibitory and glutamatergic excitatory effects. For 

example, we reported previously that plasma glutamate concentrations can serve as 

pharmacometabolomic biomarkers for acamprosate treatment outcomes in AUD patients 

(40). However, the present study was designed to explore the biological function of TSPAN5

—with a focus on the tryptophan metabolic pathway—by using human iPSC derived 

CNS-like cells (i.e. astrocytes and neurons), as well as a microglial cell line as cellular 

model systems to study molecular and genomic signatures for AUD as well as mechanisms 

underlying individual variation in response to acamprosate. We observed that acamprosate, 

an NMDA antagonist, appeared to have “ethanol-like effects” on the expression of genes 

associated with monoamine neurotransmitter biosynthesis and metabolism as shown in 

Figures 1d, 1g and 2a–2d. It is of interest that Krystal and colleagues have reported that 

“ethanol-like effects” might involve not only serotonergic and noradrenergic mechanisms 

but also glutamatergic mechanisms (41). For example, another NMDA antagonist, ketamine, 

produced ethanol-like effects in a dose-dependent fashion in detoxified AUD patients. In 

addition, ketamine did not increase craving for ethanol. The mechanism underlying NMDA 

antagonist-induced ethanol-like effects remains to be determined (42–44).

TSPAN5 is an alcohol responsive gene that plays a role in the regulation of 5-HT and 

kynurenine concentrations. Both EtOH and acamprosate decreased TSPAN5 expression, 

ultimately leading to decreased 5-HT concentrations in cell culture medium. These 

molecular mechanism(s) could be multifactorial in nature as a result of acamprosate’s effects 

on neurotransmission, neuroinflammation and/or intracellular signaling in AUD patients. 

The functional genomic data from our studies of iPSC-derived CNS cells have opened 

a new avenue for understanding the biological role of TSPAN5 in AUD. We utilized 

iPSC-derived astrocytes which are expandable to perform a series of functional genomic 

studies, studies that required a large number of cells. Specifically, we performed gene 

expression profiling before and after TSPAN5 knockdown in iPSC-derived astrocytes and 

found that genes associated with changes in expression after the knockdown of TSPAN5 

were enriched in IFN signaling pathways. We also determined the possible influence of 

TSPAN5 on levels of 5-HT and kynurenine, two major tryptophan metabolites that have 

been implicated in a variety of neuropsychiatric disorders (18, 32, 33, 35). Unfortunately, 

kynurenine concentrations were below the limit of detection in iPSC-derived astrocyte or 

neuron culture media. These experimental data serve to re-emphasize the importance of the 

use of iPSC-derived CNS-like cells as tools for the study of neuropsychiatric disorders. 

The data shown in Figure 4 represents an example of the use of iPSC-derived CNS-like 

cells to generate hypotheses and to identify novel biology. Specifically, we performed 

gene expression profiling before and after knockdown using iPSC-derived astrocytes and 

found that genes related to interferon signaling pathways displayed significantly altered 

expression. Those results stimulated us to test a series of genes associated with interferon 

signaling and to perform interferon-stimulated response element reporter assays. It should 

be pointed out that iPSC-derived astrocytes are immunocompetent because they can respond 

to inflammatory stimuli and they can sustain inflammation by producing pro-inflammatory 

cytokines, similar to the behavior of primary astrocytes (20). However, microglia are the 

most prominent immune cells in the CNS. As a result, we replicated these findings using 
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HMC3 cells, as shown in Supplementary Figure 3. Strikingly, TSPAN5 knockout in HMC3 

cells was associated with the downregulation of kynurenine and ISRE luciferase activities, 

results compatible with observations that we made when the cells were treated with either 

EtOH or acamprosate. We observed that both EtOH and acamprosate behaved in a similar 

fashion in this system.

It should be pointed out that the concentrations of acamprosate used in our cell culture 

studies were within the range of acamprosate concentrations observed in AUD patients 

treated with acamprosate (21). The cells were also exposed to EtOH at 5–50 mM, 

concentrations that are considered physiologically relevant.. It is currently accepted that 

treatment with EtOH for 24 hours is considered as an acute exposure (28). However, the 

effects of alcohol vary based on the length of exposure and the EtOH concentration. As 

a result, molecular mechanisms related to the diverse effects of chronic and acute EtOH 

exposure remain unclear. For example, our results suggest that decreased TSPAN5 mRNA 

expression after EtOH treatment for 24 hours leads to the down-regulation of genes involved 

in IFN signaling pathways. However, it is well-documented that chronic EtOH exposure 

can severely damage multiple organs including the liver and brain through the activation 

of immune-related pathways including IFN signaling pathways (45, 46). As a result, acute 

EtOH exposure might have anti-inflammatory effects while chronic EtOH exposure could 

potentially switch anti-inflammatory to pro-inflammatory responses (46).

The present study used human iPSC-derived CNS-like cells to perform functional genomic 

studies. Obviously, iPSC-derived cell lines, like any cell lines, have limitations. For example, 

it should be emphasized that iPSC-derived CNS cells are “region-specific”. The present 

study utilized forebrain-specific glial and neural cells, cells that have been implicated in 

the pathophysiology of AUD (47, 48). However, future studies that include different brain 

regions will be required to pursue the results reported here as well as the application of 

co-culture systems or of iPSC-derived organoids in an attempt to mimic glial-neuronal cell 

communications in vitro.

In summary, the present study has highlighted the fact that TSPAN5 can regulate the 

two major metabolites of the tryptophan metabolic pathway as well as CNS immune 

responses. Specifically, genes that were modulated by TSPAN5 were enriched in IFN 

signaling pathways. Our data also raise the possibility that TSPAN5, which appears to 

play a functional role in CNS immune response, might also contribute to individualized 

acamprosate treatment outcomes through a novel pharmacogenomic mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
TSPAN5 and 5-HT concentrations can be regulated by EtOH and acamprosate. (a) 

Tryptophan metabolic pathway in schematic outline. (b) TSPAN5 mRNA expression was 

down-regulated in iPSC-derived forebrain neurons (n=5) after exposure to EtOH (25 mM) 

for 24 hours. (c) 5-HT concentrations decreased significantly in iPSC-derived forebrain 

neuron culture medium in response to EtOH treatment. (d) Down-regulation of TSPAN5 

expression resulted from EtOH exposure, with downstream effects on the expression of 

a series of genes involved in 5-HT biosynthesis and metabolism. In parallel, knockdown 

of TSPAN5 (e) decreased 5-HT concentrations (f), and resulted in the downregulation of 

genes associated with 5-HT biosynthesis and metabolism (g). Similar results were obtained 

when the cells were exposed to acamprosate (5uM) for 24 hours. Specifically, TSPAN5 
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expression, 5-HT concentration and expression of the genes displayed in panels (c,df and 
g) all were down-regulated in response to acamprosate treatment (h-j). Five independent 

human-derived-iPSC-derived neuron cell lines were used to perform these experiments. 

Cells were seeded in 6-well plates at a density of 2.5 × 105 cells per well in 2 ml culture 

medium. *A p value ≤0.05 was considered statistically significant (two tailed paired t test). 

Three independent experiments were performed. All values are mean±SEM.

Ho et al. Page 14

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Effects of EtOH and acamprosate on iPSC-derived astrocytes. (a) Down-regulation of 

TSPAN5 mRNA expression (F4,30 = 24.25, p = 0.0007) and (b) 5-HT concentrations (F4,35 

= 4.46, p = 0.046) in iPSC-derived astrocyte culture medium (n=5) in the presence of 

EtOH (from 5 mM to 50 mM) for 24 hours. (c) Down-regulation of TSPAN5 mRNA 

expression (F4,35 = 4.54, p = 0.037) and (d) 5-HT concentrations (F4,35 = 4.65, p = 0.031) 

in iPSC-derived astrocyte culture medium (n=5) in the presence of acamprosate (0.25 μM 

to 10 μM) for 24 hours. (e) Knockdown of TSPAN5 (f) decreased the 5-HT concentrations 

in iPSC-derived astrocyte culture medium. Five independent human-derived-iPSC-derived 

astrocyte cell lines were used to perform these experiments. Cells were seeded in T75 
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culture flasks at a density of 2.5 × 106 cells. *A p value ≤0.05 was considered statistically 

significant. Three independent experiments were performed. All values are mean±SEM.

Ho et al. Page 16

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
TSPAN5 regulates kynurenine concentrations. (a) Western blot analysis of TSPAN5 
knockout clones for HMC3 cells. (b) Lower kynurenine concentrations (F3,12 = 10.54, p 

= 0.013) were observed in TSPAN5 knockout cells. (c-d) TSPAN5 mRNA expression was 

down-regulated in response to EtOH (F2,21 = 5.8, p = 0.018) or acamprosate treatment (F2,21 

= 14.87, p = 0.0011) of HMC3 cells. (e) In parallel, kynurenine concentrations displayed 

significant decreases in the presence of EtOH (F2,21 = 15.8, p = 0.0009) or acamprosate 

(F2,21 = 19.24, p = 0.0005) for 24 hours. *p ≤0.05, as compared to wildtype cells or no drug 

treatment. Three independent experiments were performed. All values are mean±SEM.
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Figure 4. 
TSPAN5 expression plays a role in immune response. (a) Heat map showing expression 

profiles for 301 genes (FDR≤0.05) with mRNA expression that was altered after TSPAN5 

knockdown as determined by RNA-seq. Two biological replicates were performed. (b) 

Pathway analysis was performed using gene set enrichment analysis (GSEA) software, and 

those data placed a focus on the interferon pathways and the immune response—highlighted 

in the figure. (c) mRNA expression of genes involved in the IFN signaling pathways in 

iPSC-derived astrocytes before or after TSPAN5 knockdown, as determined by real time 

PCR with five independent human iPSC-derived astrocytes. (d) Knockdown of TSPAN5 

decreased ISRE luciferase activities. (e) ISRE luciferase activities could be regulated by 

EtOH or acamprosate (F4,15 = 52.05, p = 0.0012). *p ≤0.05, as compared to negative 
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siRNA or vehicle treatment. Three independent experiments were performed. All values are 

mean±SEM.
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Figure 5. 
TSPAN5 SNPs were associated with acamprosate treatment response. (a) Kaplan-Meier 

curves for abstinence length until first drink during 3 months of acamprosate therapy. 

(b) TSPAN5 SNPs were associated with several AUD acamprosate treatment response 

phenotypes. SNPs within the TSPAN5 gene (GRCh37/hg19: chr4:99939518–99579812) 

were tested for association. Single SNPs were evaluated individually as predictors of time 

until return to alcohol consumption following acamprosate treatment, and time until return 

to heavy alcohol consumption using multivariable Cox proportional hazard (CPH) models. 

SNP association with the binary outcome of complete abstinence from any drinking during 

3 months of acamprosate therapy was evaluated using multivariable logistic regression 

models. Models were adjusted for days sober prior to treatment, baseline Penn Alcohol 

Craving Scale (PACS), and study site. A total of 241 European American subjects passed 

quality control (QC) and completed 3 month follow up and were therefore included in the 

logistic outcome models. A total of 305 European American subjects had at least 1 week of 

follow up time and were included in the CPH analyses of abstinence length until first drink 

or first heavy drinking day during 3 months of acamprosate therapy. Results of the CPH 
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analyses are displayed using Kaplan-Meier plots, and are not adjusted for multiple testing. 

Analyses and plots were generated using Rstudio (version 9.4.2). The odds ratios or hazard 

ratio are represented as HR or OR (95% confidence interval), with a value >1 indicating 

worse outcome, i.e. variant genotypes for all three SNPs were associated with shorter 

abstinence length until first drinking or heavy drinking during 3 months of acamprosate 

treatment. P values <0.05 have been bolded.
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