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Abstract

Objective: To develop and test computer software to detect, quantify, and monitor progression of 

pneumonia associated with COVID-19 using chest CT scans.

Methods: One hundred-twenty chest CT scans from subjects with lung infiltrates were used for 

training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans 

from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the 
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presence and progression of infiltrates associated with COVID-19. The algorithm included: (1) 

automated lung boundary and vessel segmentation, (2) registration of the lung boundary between 

serial scans (3) computerized identification of the pneumonitis regions (4) assessment of disease 

progression. Agreement between radiologist manually delineated regions and computer detected 

regions was assessed using the Dice coefficient. Serial scans were registered and used to generate 

a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, 

subjectively rated heatmap accuracy in representing progression.

Results: There was strong agreement between computer detection and the manual delineation of 

pneumonic regions with a Dice coefficient of 81% (CI: 76-86%). In detecting large pneumonia 

regions (> 200mm3), the algorithm had a sensitivity of 95% (CI: 94-97%) and specificity of 84% 

(CI: 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for 

representing disease progression.

Conclusion: The preliminary results suggested the feasibility of using computer software to 

detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that 

can be used to visualize and assess progression.
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I. INTRODUCTION

Since its outbreak in December 2019, the novel coronavirus (COVID-19) has evolved from 

its epicenter of Wuhan City (Hubei Province, China) into a worldwide pandemic. Recent 

reports describe characteristic pulmonary infiltrative patterns on chest computed tomography 

(CT) including progressive ground glass opacities (GGO), crazy paving and consolidations 

occurring in the majority of patients [1–8]. In fact, such findings on CT exam have 

demonstrated a greater sensitivity than real-time polymerase chain reaction (RT-PCR) (98% 

vs 71%) [9] in diagnosing longitudinally confirmed COVID-19 infection. At this time, it is 

critical to develop efficient and effective tools to detect the disease and reliably assess its 

progress and response to therapy.

CT image findings associated with COVID-19, which include subtle boundaries, pleural 

based location and variations in size, density, location, and texture [1; 4; 8; 10] present 

challenges to automated identification and quantification using traditional lung segmentation 

algorithms. While automated detection of pneumonia on chest radiography [11–14] has been 

reported, limited effort has been directed toward CT images. One effort to detect ground-

glass opacities using a neural network was associated with a significant false-positive rate 

[15].

Our objective was to develop and test computer software to automatically detect pneumonia 

associated with COVID-19, quantify the extent of disease, and assess the progression of the 

disease using chest CT images. To accomplish our objective we needed to segment the lung 

in the presence of severe disease and to reliably detect and quantify pneumonic regions in 

the lung, which required the integration of deep learning and computer vision technologies. 
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The performance of the software was evaluated using the agreement between visual and 

automated computer assessment of lung infiltrates associated with COVID-19.

II. MATERIALS AND METHODS

A. Image datasets

Two datasets were retrospectively collected: Dataset 1 consisted of 120 chest CT scans and 

was used to develop, train, and test deep learning algorithms to segment the lung boundaries 

and main lung vessels. A variety of lung disease, including atelectasis (n=47), interstitial 

lung disease (ILD) (n=31), tuberculosis (n=13), pneumonia (n=17), and others (n=12) 

(including five CT scans with emphysema and seven CT scans that were negative for lung 

disease based on visual interpretation by a thoracic radiologist). Dataset 1 was randomly 

split into three groups: (1) training set (n=80), (2) interval validation set (n=20), and (3) 

independent test set (n=20). These CT scans were collected from various sources and 

acquired using different protocols (e.g., manufacturers, radiation dose, and slice thickness).

Dataset 2 consisted of 72 serial chest CT scans from 24 subjects with a confirmed 

COVID-19 diagnosis and used development and test the algorithm to detect and quantify the 

pneumonic regions. Each subject had at least three consecutive CT scans performed at: (1) 

T0 – baseline CT scan, (2) T1 – first follow-up scan, and (3) T2 – second follow-up scan, 

which were performed at 3.4 days ±1.8, 9.7 days ±1.9, and 15.8 days ±3.6 after symptom 

onset, respectively. Only the first three consecutive CT scans were included in this study. 

The cohort represents all the subjects identified with three consecutive CT scans and no 

other criteria were used to exclude subjects. All subjects had close contact with individuals 

from Wuhan and were later confirmed to have COVID-19 by RT-PCR. The chest CT exams 

were performed on a 64-row spiral CT (Siemens, Germany) without radiopaque contrast 

with the participants in a supine position and holding their breath. The scan parameters 

were: tube voltage of 120 kVp, tube current modulation of 100 mA, and spiral pitch factor of 

1. The image slice thickness ranged from 1.0 mm to 2.0 mm. Subject ages ranged from 15 to 

74 years with a mean of 44.8±15.6 with 13 of the 24 subjects male (Table 1). There were no 

reported or obvious comorbidities reported in the medical records of the Dataset 2 cohort. 

The CT scans from four subjects were used to develop the algorithm (training set), and the 

remaining CT scans from 20 subjects were used to independently test the algorithm (test 

set). All the CT scans from the subjects (i.e., T0, T1, and T2) were used in the development 

and testing process.

The protected health information was removed from all data and was re-identified with a 

unique study ID. This study was approved by both the Ethics Committee at the Xian 

Jiaotong University The First Affiliated Hospital (XJTU1AF2020LSK-012) and the 

University of Pittsburgh Institutional Review Boards (IRB) (# STUDY20020171).

B. The computerized scheme

There are four primary components to our approach (Fig. 1): (1) automated segmentation of 

the lung boundary and major vessels, (2) elastic registration of the CT scans acquired at two 

time points, (3) computerized identification of the pneumonitis regions, and (4) assessment 
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of disease progression. See Supplemental power point file demonstrating the 3-dimensional 

visualization of the lung, vascular, and pneumonia segmentations (slide 2) as well as the 

heatmap visualization of disease progression (slides 3 and 4).

Automated lung segmentation.—A deep learning approach based on the U-Net 

framework [16–18] was developed to ensure the automated segmentation of the lung 

boundary when there is pneumonia or consolidation adjacent to the chest wall. It is well-

known that deep learning approaches are data-hungry. The 120 CT scans in Dataset 1 used 

to develop the lung and vessel segmentation algorithm had the lung boundaries delineated 

and other types of lung diseases labeled by an experienced thoracic radiologist (D.P.). Our 

computational geometric approach [19] used to identify the intrapulmonary vessels often 

failed to identify the vessels near the hilum due to the entanglement of the arteries and veins. 

Therefore, the U-Net framework was used to identify the main extrapulmonary vessels and 

vessels near the hilum. When training the U-Net framework, the CT images were 

transformed into an isotropic format and used 3D patches with a size of 96×96×96 mm. The 

Adam optimizer was used with an initial learning rate of 0.001 on a batch size of 2 and set 

the maximum number of epochs as 100. The voxel-wise cross-entropy loss function was 

minimized for the optimization, and the model with the smallest validation loss was saved as 

the final inference model.

Elastic lung registration.—Our previously developed bidirectional elastic registration 

algorithm [20] was used to register two CT scans at different time points. The registration 

procedure produced a deformation field, by which we could elastically transform the CT 

images from one CT scan to another. We computed the intensity of the deformed voxels by 

performing a linear interposition based on the eight neighboring voxels of the new locations 

in the initial CT images.

Automated detection of COVID-19 disease: Pneumonia depicted on CT scans 

typically has a higher density compared to the lung parenchyma, but the density of 

pneumonia can vary widely. On chest CT scans, the lung vessels, fissures, and airway walls 

have a higher HU value compared with the surrounding parenchyma. The pulmonary 

fissures and the airway walls are small relative to the parenchyma and can largely be ignored 

or easily filtered from the image. The vessels are larger, thus intrapulmonary vessels and 

extrapulmonary vessels in the mediastinum were segmented (or filtered) and excluded from 

the images during the detection of the diseased regions, specifically pneumonia. The average 

density of the images in the middle of the lungs was and used to compute a threshold (the 

lowest density) to detect regions associated with pneumonia. An experienced thoracic 

radiologist (J.S.) labeled the pneumonic regions associated with COVID-19 in the 72 CT 

scans from the 24 subjects in Dataset 1. As stated above the 12 CT scans from four subjects 

were used in the development of the algorithm, which were not part of the test CT scans.

Quantitative assessment of disease progression.—One approach to assess disease 

progression would be to independently quantify the volumes of the diseased regions in the 

lungs depicted on two chest CT scans and then compute the volume differences. For 

pneumonia caused by COVID-19, which most often includes multiple infected regions (Fig. 
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4), this method provides an overall estimation of the disease progress but lacks information 

regarding specific regional disease differences. A more robust approach to evaluating disease 

progression includes the independent assessment of longitudinal changes in each diseased 

region. To compare progression across individual regions, the paired regions of disease need 

to be identified on serial CT scans (e.g., T0 and T1). To automatically pair the diseased 

regions on two different CT scans, we used our previously developed bidirectional elastic 

registration algorithm [20] to register the two CT scans. Given two chest CT scans, the 

registration procedure produced a deformation field by which we could elastically transform 

the CT images with the identified disease at an early time point to a deformed version that is 

expected to be aligned with the CT images obtained at a later time point. We calculated the 

intensity of the deformed voxels by performing a linear interposition based on the eight 

neighboring voxels of the new locations from the initial CT images. The CT images from T0 

and T1 were registered as described above and based on the alignment of the regions of 

disease, which are automatically aligned, the difference between the regions of disease was 

used to quantify disease progression between T0 and T1 in terms of volume and density. A 

simple subtraction was also performed, based on the image registration between the aligned 

regions of disease between T0 and T1, to visualize the longitudinal changes by creating a 

heatmap. The voxel values on the subtraction images could be either positive or negative. A 

positive value indicates that the density increases, and a negative value indicates that the 

density decreases from T0 to T1.

C. Performance testing

The performance of the deep learning algorithms to segment the lung boundary and main 

lung vessels were compared to the visually interpreted results of the human expert (D.P.) 

using the test set (n=20) of Dataset 1. Likewise, the pneumonic regions labeled in 60 CT 

scans (20 subjects) of Dataset 2 were used to evaluate the performance of the algorithm to 

assess the presence and progression of COVID-19. Since the algorithm for elastic lung CT 

registration has been quantitatively assessed and reported elsewhere [20], only (1) the 

performance of the deep learning algorithms for lung region segmentation and main lung 

vessel segmentation, and (2) the performance of the algorithm for pneumonia detection and 

quantification in COVID-19 subjects was evaluated in this study. The Dice coefficient was 

used to evaluate the performance of the deep learning algorithms [21]. The Dice coefficient 

is defined as:

D A, B = 2 A ∩ B
A + B (1)

where A is the computerized results and B is the labeled results by the human expert. The 

overlap between the readers’ delineated pneumonic regions and the computer detected 

pneumonic regions was used to evaluate the performance of the computer algorithm. The 

readers’ outlines of the lung boundary and pneumonic regions were considered the gold 

standard “truth” in this study. Pneumonic regions detected by the software that did not 

overlap with radiologist-delineated pneumonic regions were considered False Positives (FP). 

To characterize the detection-localization accuracy of the computer algorithm, we focused 

on regions >200 mm3, which are likely to be more clinically relevant. The classic detection-

localization characteristics [22] were estimated in terms of the True Positive Fraction (TPF), 
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which is the proportion of “true” detected pneumonic regions and the False Positive Rate 

(FPR), which is the average number of FP results per image. TPF and FPR estimates were 

used for the sensitivity and specificity estimates of the corresponding iROI analysis [22], 

assuming that a reasonable bound or the number of pneumonic regions for CT scan is 40. 

The 95% confidence intervals for the estimates were computed using the generalized linear 

model for clustered binary data (PROC GENMOD, SAS, v.9.4).

Two radiologists (S.K. and Y.G.) independently reviewed and rated randomly presented CT 

scans from subjects with COVID-19. First, they viewed the original CT scans at T0 and T1 

to assess if the disease increased, decreased, or remained the same. Next, they viewed the 

heatmap the computer software created from the registration of T0 and T1 images. Finally, 

they subjectively assessed if the heatmap accurately represented disease progression from T0 

to T1 on a five 5 point scale: 1 - unacceptable, too many errors that affect assessment, 2 – 

poor, obvious errors that may affect assessment, 3 – acceptable, minor errors that did not 

affect assessment, 4 – good, minor errors, and 5 – excellent, no obvious errors. We assessed 

the agreement of the two raters using the weighted Kappa coefficients. The statistical 

analysis (with p-values and 95% confidence intervals, CI) was performed using a 

generalized linear model for a binary outcome, accounting for correlation between the 

assessment of the images from the same patient (PROC GENMOD, SAS v 9.4, SAS 

Institute). Inter-rater agreement was evaluated for both binary and multi-category (Likert) 

quality assessment using a simple weighted kappa statistic (PROC FREQ, SAS v.9.4 ).

III. RESULTS

The lung boundaries, main lung vessel, and regions of disease (pneumonia) were reliably 

segmented with Dice coefficients of 0.95 (CI: 0.95-0.96), 0.79 (CI: 0.77-0.81), and 0.81 

(CI:0.76-0.86), respectively. Although the lungs can be severely affected by COVID-19 

infection, the algorithm successfully segmented the lung boundaries (Fig. 2). Further, while 

our algorithm automatically and robustly segmented the intrapulmonary and extrapulmonary 

vessels (Fig. 3), a small percentage of very small intrapulmonary vessels were not detected. 

However, these very small vessels can be filtered out by a size filter or an opening 

morphological operation. The regions of disease (pneumonia) associated with COVID-19 

were automatically and reliably segmented (Figs. 4 and 5). Each CT DICOM file was 

processed in ~ 6 to 10 minutes on a typical PC (Intel Core™ i7-8559 CPU 1.99GHz). 

Approximately 80% of the processing time was allocated to the deep learning-based 

segmentation, which was performed on a CPU instead of a GPU to facilitate generalization 

of the computer software. When GPU (⩾6 to 8GB memory) is available, it required ~2 

minutes to process CT scans.

Two radiologists identified a total of 834 pneumonic regions on 60 CT scans (Dataset 2 – 

test set) from 20 COVID-19 subjects, each >200 mm3. Individuals had a median of 19 

regions [interquartile range (IQR): 10–25], The algorithm detected 95% (796/834) of the 

regions identified and marked by the radiologists (range, 77 to 100% per scan). There were a 

total of 257 small false positives at the 95% detection rate or an average of 4.3 per scan 

(range, 1 to 12 per scan). The algorithm’s sensitivity for detection of the regions marked by 
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the radiologist was 95% (CI: 94-97%) with a specificity of 84% (CI: 81-86%) for an upper 

bound for the numbers of non-overlapping pneumonic regions at 40 per CT scan.

The computer software identified a median of 19 separate regions [IQR: 10–25] of 

pneumonia per individual patient on the T0 baseline CT scan. 55% (11/20) of the subjects in 

the Dataset 2 test set demonstrated disease progression and 45% (9/20) demonstrated 

regression based on the automated assessment.

For both readers, 95% (CI 72 to 99) of the heatmaps were rated at least “acceptable” for 

representing the disease progression in CT scans of COVID-19 subjects (Tables 2 and 3). 

There was no significant difference between the two radiologists’ assessments (p=0.33), 

with 55% and 60% of the CT scans reported as at least “good” by radiologist 1 and 2, 

respectively. Radiologists’ ratings on the Likert scale (“unacceptable”/“poor”/ “acceptable”/

“good”/“excellent”), agreed better than would be expected by chance(k=0.37, CI: 0.09 to 

0.65). Further, 19/20 (95%) of ratings were within one category of each other. While 

radiologists were blind to the heat maps during their assessment, in a post-hoc comparison, 

the two radiologists generally preferred assessing the progression of disease between two CT 

scans with the assistance of the heatmaps because of the clear illustration and quick 

interpretation of the area of disease (Fig. 5).

IV. DISCUSSION

Our computer algorithm automatically and robustly detected and quantified regions of 

pneumonia associated with COVID-19 as well as disease progression over time. Our unique 

registration approach was used to innovatively create a heatmap that visually illustrated 

disease progression. There was a high level of concurrence between human visual 

determination of progression and that of our automated algorithm. The results of this study 

on longitudinal CT scans from 20 patients with verified COVID-19 (Table 1) demonstrated 

the feasibility of the computer software to facilitate the assessment of the presence, severity, 

and change in the severity of lung abnormalities associated with COVID-19. The computer 

software could be used to detect and quantify pneumonia depicted on CT images associated 

with COVID-19 as well as other infectious or inflammatory pulmonary processes. We 

believe that the computer software can facilitate pneumonia detection, monitor progression, 

and assess treatment efficacy in both a clinical and research setting with respect to 

assessment and management of COVID-19.

One innovative aspect of our computer software lies in the integration of the deep learning 

technology and the computer vision technique to overcome the current limited availability of 

CT scans from COVID-19 patients for research purposes. Deep learning demonstrated 

remarkable performance in the detection of lung abnormalities associated with COVID-19, 

which is challenging for traditional computer vision techniques. For instance, the deep 

learning approach reliably identified the lung boundary in the presence of severe peripheral 

consolidation adjacent to the lung pleura (Fig. 2). There have been investigations by other 

investigators demonstrating the unique strength of the deep learning technology in 

identifying the complete boundaries of pathological lungs [23; 24], However, the deep 

learning approach needs a large dataset with ground truth. It is very difficult to create a 
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labeled dataset for lung vessel segmentation because it is very challenging and extremely 

tedious to accurately label the vasculature in the lungs. In this study, the intrapulmonary 

vessels were detected much more easily using traditional computer vision techniques 

compared to deep learning approaches.

The radiologists reported the heatmaps highlighting the regions of the lung associated with 

pneumonia were a beneficial addition to visual evaluation of the CT scans to assess disease 

progression. The radiologists reported that assessing disease progression was better when 

the novel heatmap was added to CT images compared to visual analysis of CT images alone. 

In only one case did the heatmap illustrating disease progression perform “poorly” or 

“unacceptable” as rated by Radiologist 1 and 2, respectively, (Subject 20, Fig. 5A). In this, 

case Radiologist 2 felt strongly that the presence of the heatmap could possibly lead to a 

misdiagnosis. While Radiologists 1 reported that the heatmap errors could possibly 

confound diagnosis but had only a small chance of leading to a misdiagnosis. The heatmap 

error was primarily caused by failure to detect and highlight a large region of the right lung 

in which the abnormality decreased from T0 to T1. In one case, our algorithm failed to 

detect the presence of pneumonic regions on the follow-up scans, which nearly resolved. In 

this case the heatmap indicated that the presence of the abnormality decreased from T0 to 

T1. (Fig. 5E). Although the agreement between their Likert ratings (κ=0.37) was not as high 

as anticipated, there was no significant difference between the two radiologists when they 

rated the accuracy of the heatmaps to illustrate disease progression at a rating of at least 

“acceptable.”

There are several limitations with this study. First, the regions on the CT image identified 

lung abnormalities associated with the COVID-19 disease may include other types of 

disease abnormalities that share a similar appearance as pneumonia (e.g., disease of the lung 

interstitium, non-solid lung nodules and heart failure). We did not differentiate between 

abnormalities associated COVID-19 and the potentially confounding abnormalities 

associated with other diseases. Second, the presence of comorbidities could affect the 

segmentation and assessment of COVID-19. However, in our relatively small study 

population, there were no obvious or reported comorbidities in the subjects’ medical 

records. Therefore, we cannot comment on how comorbidities may or may not impact our 

results. Additional procedures are desirable to differentiate the pneumonia regions 

associated with COVID-19 from other abnormalities. In practice, clinical information or 

other tests (e.g., RT-PCR) should be considered along with the image findings to exclude the 

false positive detections in arriving at the final diagnosis. Notably, all of the subjects in this 

study were confirmed to have COVID-19. Beyond simply quantifying the presence of a 

pneumonia associated with COVID-19 or other disease patterns, our computer software can 

quantify the progression of different regions that do and do not rapidly progress (e.g., days 

or weeks), which can be critical in assessing both diagnosis and prognosis. For example, in 

chronic conditions such as idiopathic pulmonary fibrosis, the appearance on CT images will 

not change significantly between CT scans acquired only days apart, a dramatically different 

disease course than COIVD-19. Third, the algorithm may fail to detect pneumonic regions 

that are very small and near the vessels or GGOs with very low density. Since these small 

regions are similar in appearance to ground-glass non-solid pulmonary nodules, traditional 

nodule detection and segmentation algorithms [25–27] could potentially be leveraged or 
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combined to improve the performance of the computer software. Fourth, when registering 

two CT scans, the errors of the elastic registration scheme [20] often lead to incorrect 

alignment near the boundaries of the lungs and the diseased regions (Fig. 5). It is very 

difficult to completely avoid this issue because of the challenges in registering two CT scans. 

The two radiologists that evaluated the usefulness of the heatmaps to aid in the assessment 

of disease progression report that registration error had a limited impact on their visual 

review and assessment. Finally, only a small number of confirmed COVID-19 cases were 

available to develop and evaluate the computer software. We recognize that validation on a 

large dataset and a sophisticated observer study are necessary to assess the computer 

software and its implication in clinical practice. However, we believe the experimental 

results demonstrate the feasibility of our approach.

V. CONCLUSION

We developed computer software to automatically detect and quantify regions of pneumonia 

depicted on CT scans associated with COVID-19. Our results demonstrate the feasibility of 

the software and its potential as an image-based biomarker to serve as an outcome marker in 

a clinical trial and ultimately translate to the clinical settings. The study also demonstrates 

the strength of integrating deep learning and computer vision technologies to overcome the 

limited availability of a dataset. It should be straightforward to develop a complete computer 

tool to efficiently label pneumonic regions in a large dataset for developing deep learning 

software.
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Abbreviations

AUC area under the curve

BCE binary cross-entropy

CAP community-acquired pneumonia

CI confidential interval

CNN convolutional neural network

COVID-19 novel coronavirus

CT computed tomography

FC fully-connected
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GGO ground glass opacity

GPU graphics processing unit

IRB institutional review boards

ROC receiver operating characteristic

RT-PCR real-time polymerase chain reaction
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Key points:

• Both computer vision and deep learning technology were used to develop 

computer software to quantify the presence and progression of pneumonia 

associated with COVID-19 depicted on CT images.

• The computer software was tested using both quantitative experiments and 

subjective assessment.

• The computer software has the potential to assist in the detection of the 

pneumonic regions, monitor disease progression, and assess treatment 

efficacy related to COVID-19.
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Figure 1: 
The scheme flowchart of the developed algorithm
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Figure 2: 
Examples of our algorithm’s automated lung segmentation of the lung boundaries in the 

presence of severe lung damage.
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Figure 3: 
Example of intrapulmonary and extrapulmonary vessel segmentation using the El-Net 

framework. (A) 3-D visualization of the segmentation vessels, and (B) and (C) the 

segmentation contours of the vessels overlaid on the original CT images.
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Figure 4: 
Example of automated segmentation of lung abnormalities depicted on CT images with 

COVID-19. The left column is the original axial CT image and a reformatted coronal image. 

The middle column the contours of the regions of disease. The right column, regions of 

disease depicted in red.
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Figure 5: 
Examples demonstrating the visualization of disease progression by subtracting the 

identified regions of interest on the T0 CT scans from the T1 CT scans. The left panel is the 

original T0 (baseline) CT scan. The middle panel is the original T1 (follow-up) CT scan. 

The right panel is the heatmap visualization of disease progression: green regions - limited 

changes, blue regions - decreased densities from T0 to T1, and yellow and red regions - 

increased densities from T0 to T1.
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Table 1.

Demographics of the COVID-19 subjects (n=24)

Characteristics Value

Male, n (%) 13 (54.2)

Age, mean years (SD) 44.8 (15.6)

Exposure history

 Exposure to infected patient from Wuhan, n (%) 19 (79.2)

 Recent travel to Wuhan, China, n (%) 5 (20.8)

Time from symptom onset to CT scans

 T0 3.4 days ±1.8

 T1 9.7 days ±1.9

 T2 15.8 days ±3.6

Comorbidities, n (%) 0 (0)

SD – standard deviation, T0 – baseline CT scan, T1 – first follow-up CT scan, T2 – second follow-up CT scan
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Table 2.

Dice coefficients of the lung, the main lung vessels, and the pneumonia.

Segmentation Type Mean (SD) Mean - 95% CI Dataset

Lung 95% (0.8) (95%-96%) Dataset 1 – test set (n=20)

Main lung vessels 79% (4.7) (77% - 81%) Dataset 1 – test set (n=20)

Pneumonia 81% (13.9) (76% - 86%)* Dataset 2 – test set tn= 20)

*
accounting for the nested data structure (using PROC MIXED, SAS v.9.4)

SD - standard deviation, CI - confidence interval
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Table 3:

Radiologists’ assessment of the heatmap to accurately represent disease progression from T0 to T1

Radiologist #1 Radiologist #2

1 2 3 4 5 1 2 3 4 5

Subject 1 ◯ X

Subject 2 ◯ X

Subject 3 ◯ X

Subject 4 ◯ X

Subject 5 ◯ X

Subject 6 ◯ X

Subject 7 ◯ X

Subject 8 ◯ X

Subject 9 ◯ X

Subject 10 ◯ X

Subject 11 ◯ X

Subject 12 ◯ X

Subject 13 ◯ X

Subject 14 ◯ X

Subject 15 ◯ X

Subject 16 ◯ X

Subject 17 ◯ X

Subject 18 ◯ X

Subject 19 ◯ X

Subject 20 ◯ X

1 - unacceptable, too many errors that affect assessment, 2 – poor, obvious errors that may affect assessment, 3 – acceptable, minor errors that did 
not affect assessment, 4 – good, minor errors, and 5 – excellent, no obvious errors.
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Table 4.

Numbers and proportions of cases rated by two radiologists’ for the assessment of the heatmap to accurately 

represent disease progression from T0 to T1

Marked at least “acceptable” Marked as at least “good”

Radiologist count total cases percent count total cases percent

1 19 20 95 11 20 55

2 19 20 95 12 20 60

Overall 38 40 95 23 40 58
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