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SUMMARY

Accumulation of diverse types of omics data on schizophrenia (SCZ) requires a systems approach 

to model the interplay between genome, transcriptome, and proteome. We introduce Markov 

affinity-based proteogenomic signal diffusion (MAPSD), a method to model intra-cellular protein 

trafficking paradigms and tissue-wise single-cell protein abundances. MAPSD integrates multi-

omics data to amplify the signals at SCZ risk loci with small effect sizes, and reveal convergent 

disease-associated gene modules in the brain. We predicted a set of high-confidence SCZ risk loci 

followed by characterizing the subcellular localization of proteins encoded by candidate SCZ risk 

genes, and illustrated that most are enriched in neuronal cells in the cerebral cortex as well as 

Purkinje cells in the cerebellum. We demonstrated how the identified genes may be involved in 

neurodevelopment, how they may alter SCZ-related biological pathways, and how they facilitate 

drug repurposing. MAPSD is applicable in other polygenic diseases and can facilitate our 

understanding of disease mechanisms.
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In Brief

Proteome studies are lagging behind the research on nucleic acids in neuropsychiatric disorders. 

We present a novel data integration method (called MAPSD) to model protein trafficking maps 

within the cellular micro-domains in conjunction with other available biological data such as gene 

expression data to identify novel schizophrenia risk genes. We showed that targeted modeling of 

disease signatures in subregions of each tissue enables us to discover critical therapeutic insights 

that may not be revealed by the existing approaches.

THE BIGGER PICTURE

Proteins constitute the functional machinery in a cell. Genetic aberrations may cause disrupting 

the normal functionality of the proteins. On the other hand, biophysical and biochemical properties 

of proteins vary in distinct tissues mandating separate modeling of proteomic features given the 

tissue being studied, e.g. brain in case of schizophrenia. Using the concept of signal diffusion in 

graph theory, we proposed a model, termed MAPSD, which enables us to leverage proteomic 

properties of different tissues at single cell resolution along with genomic and epigenomic features 

of a disease in order to predict potential risk genes which cannot be annotated using common 

univariate approaches. Taking this approach helps create novel therapeutic hypotheses for 

precision medicine so that more effective treatments with less side effects on other organs can be 

developed. Application of MAPSD is not restricted to schizophrenia and most of complex diseases 

can benefit from the method.
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Proof-of-Concept: Data science output has been formulated, implemented, and tested for one 

domain/problem

INTRODUCTION

The emergence of omics technologies has revolutionized neuropsychiatric research1 by 

generating high-throughput genomic data, bridging genome and transcriptome to phenome.2 

For example, genome-wide association studies (GWAS), such as the Psychiatric Genomics 

Consortium (PGC)3 and the CLOZUK consortium4 have created a repertoire of tens of 

thousands of samples worldwide, leading to the discovery of many common variants 

associated with schizophrenia (SCZ). While such studies mark important milestones in SCZ 

research, they face critical challenges with regard to extracting novel biological insights and 

finding additional therapeutic targets or pathways. In fact, only one recognized drug target 

dopamine receptor D2 (DRD2) for SCZ has been re-identified by GWAS.5 It is not trivial to 

accurately pinpoint the corresponding risk genes in each GWAS risk locus, as such loci may 

cover a myriad of genes while the genuine causal variants may be away from the top-ranking 

single nucleotide polymorphisms (SNPs).6

In addition to genetic association studies, tremendous efforts have been made over the years 

to understand the machinery of gene regulation. Whole-body proteomics data, such as the 

Human Protein Atlas,7,8 now delineates protein expression not only across tens of various 

tissues but at certain cell types, while drawing their subcellular localization. Moreover, 

large-scale epigenomics data, such as Functional Annotation of the Mammalian Genome 59 

and genome-scale chromosome conformation capture10,11 technology have brought about 

unprecedented opportunities to elucidate long-range interactions among genetic loci. Given 

that individual omics data serve as complementary elements to each other, integrating multi-

omics data types can strengthen subtle disease signals from risk genes.5,12,13 In fact, such 

multi-omics perspective amplifies signals from genetic loci with small effect sizes, and help 

support converging evidence on certain biological processes. This is of critical importance in 

understanding polygenic diseases, such as SCZ.

The current available omics data on SCZ are predominantly related to those of nucleic acids, 

e.g., genomics, transcriptomics, and epigenomics, while the use of proteomics information is 

quite limited.14 As the functional machinery in a cell, proteins essentially reflect the 

functional consequences of genome, epigenome, and transcriptome. Although proteins are 

treated as proxies of gene functions, multiple lines of evidence report a maximum of 60% 

correlation between the gene and protein expression levels in certain organisms.15,16 

Moreover, functionality of proteins is not restricted to their abundances, where other 

determinants such as biochemical and physical properties, such as subcellular localization, 

protein-protein interactions (PPIs), and post-translational modifications affect such 

functions.17 This mandates an inclusive in-depth analysis of the proteome and its physical 

and biochemical properties, not only at the tissue level but at the cell resolution in SCZ. 

Although proteomic investigations have been historically hampered due to the lack of low-

cost and reliable high-throughput assay platforms,18,19 there have been recent advances in 

improving the mass spectrometry-based proteomics platforms,20,21 which has resulted in the 

generation of valuable resources, such as the Human Protein Atlas.7,8 On the other hand, 
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subcellular fraction allows probing enrichment of proteins in micro-domains within cells 

(such as neurons), and offers insights into understanding the intra-cellular trafficking 

trajectories of proteins. There have been several proteomic studies on SCZ,22-25 which 

mainly focus on observing the differential expression of proteins in postmortem brains, 

without taking into account tissue- or cell-specific biochemical and biophysical interactions. 

For a full review on proteome studies in SCZ, refer to Borgmann-Winter et al.14

In this study, we introduce MAPSD (Markov affinity-based proteogenomic signal diffusion), 

a multi-omics network-based computational method to identify novel risk genes for 

polygenic diseases. MAPSD leverages multiple layers of omics information, as well as the 

under-studied proteome subcellular localization patterns and tissue-wise cell-specific 

abundances of proteins in tens of different tissues and a wide range of cells, followed by 

propagating the biological signals across the human interactome to characterize potential 

disease-associated risk genes. The proposed model has several unique advantages, including 

(1) it uses protein trafficking information in subcellular micro-domains in 131 tissues and 

cell types, including multiple regions in the brain from the Human Protein Atlas;7,8 (2) 

MAPSD uses five layers of omics data including differentially expressed (DE) genes,2 

GWAS hits,3,4 rare and de novo mutations,26 differentially methylated genes,27-29 and 

chromatin accessibility data;30 and (3) MAPSD can effectively model interactions of 

genome, epigenome, transcriptome, and proteome at a single-cell resolution. Although we 

used SCZ as a test case in the study, MAPSD is flexible and can be effectively applied to 

other polygenic diseases other than SCZ. The outcome of MAPSD is accurate prediction of 

risk levels of all human genes in SCZ, which has led to the identification of a set of new 

candidate genes for SCZ. Our functional evaluation on these candidate genes indicate how 

the MAPSD-identified genes are predominantly enriched in certain cell types within specific 

brain regions. In particular, the novel candidate genes identified by us are enriched for the 

targets of approved drugs for brain disorders and suggest opportunities for repurposing 

existing therapies for SCZ.

RESULTS

Overview of the MAPSD Framework

MAPSD is a multi-step tissue/cell-specific proteogenomic method to identify risk genes 

through leveraging complementary biological signals from distinct omics data modalities. 

The overall structure of MAPSD is provided in Figure 1. MAPSD starts with a large-scale 

PPI network which is assembled from multiple sources31-34 (see Experimental Procedures). 

Using the PPI network, an affinity matrix is created. This matrix is binary in which if two 

nodes (proteins) interact then their corresponding matrix elements will be 1, otherwise 0. 

The PPI network is then adjusted to include molecular trafficking patterns. This adjustment 

is conducted using the subcellular localization data from the Human Protein Atlas (Figure 

2A). The rationale behind this adjustment is that if two proteins being connected in the PPI 

network co-localize in the same micro-domain within the cell, then they are more likely to 

be interacting with each other. In total, 32 micro-domains have been used in this study. 

Therefore, the weight of connecting edges of co-localized proteins in the PPI network is 

amplified by a factor of 1.5, while the remaining edges have a weight of 1 (see Experimental 
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Procedures). Using the adjusted affinity matrix, the Markov transition distribution matrix M 
is created. Using graph Laplacian concept in graph theory, a one-step probability distribution 

from each node to its neighbors is computed (see Experimental Procedures).

The multi-omics datasets have been collected from multiple sources (see Experimental 

Procedures). We used SCZ as a test case in our study to evaluate the MAPSD approach, due 

to the availability of large-scale genomics, transcriptomics, and epigenomics datasets on 

SCZ. Five layers of omics data have been used in this study, including DE genes,2 GWAS 

hits,3,4 rare and de novo mutation loci,26 differentially methylated loci,27-29 and loci being 

differentially accessible in open chromatin regions in neuronal cells.30 The corresponding 

Ensembl IDs for all of these loci were obtained and the final signal matrix was created. 

Since MAPSD operates at the single-cell resolution, it needs to adjust the created initial 

signal vector S based on the tissues as well as their corresponding cell types to project the 

variations between the protein abundances among them (see Experimental Procedures). To 

illustrate elements of the vector S, suppose a gene to be DE and differentially methylated in 

SCZ compared with controls. Then, the initial signal intensity of this gene in S equals 2. 

Using the available protein abundance data in various tissues and cell types from the Human 

Protein Atlas, we adjusted the signal vector S for 131 combinations of tissues and cell types 

(Figure 2B, see Experimental Procedures). For instance, we have five regions in the brain, 

including cerebral cortex, cerebellum, caudate, hippocampus, and hypothalamus, as well as 

seven cell types, including neuronal cells, Purkinje cells, glial cells, endothelial cells, 

neutrophils, and cells in granular and molecular layers. Protein abundances vary across 

tissues and cell types. Therefore, it is required to overlay the knowledge on such expression 

patterns onto the signal vector S. The adjusted signal matrix is called S* which shows the 

signal intensities of SCZ risk genes in all of the considered tissues and cell types. In fact, S* 

reflects the functional consequences of genetic variants in distinctive tissues or cells, given 

that if the protein product corresponding to a genetic variant is lowly expressed in a specific 

tissue, then its functional impact will be lower compared with the tissues where its 

expression is higher. As a result, the number of candidate risk genes arising from 

propagation of signals through these proteins will be smaller. An important point to consider 

is to preserve the consistency between the omics data used to create the signal vector S and 

the context of the disease being studied. For example, in this study the data used to create the 

signal vector have been predominantly generated from the same brain region or appropriate 

surrogate tissues, otherwise this will result in spurious signals leading to false-negative 

predictions. In the next step, using the Markov operator matrix M and the created tissue/cell-

specific signal intensity matrix S*, MAPSD diffuses the available adjusted signal intensities 

onto the adjusted networks aimed at estimating the disease signal intensities of the unknown 

proteins (see Experimental Procedures). Upon termination of the algorithm, MAPSD outputs 

the signal intensities of all of the proteins in 131 different combinations of tissues and cell 

types, on which we conducted several tests. The MAPSD results are unbiased given that the 

adjusted network for signal diffusion is independently created from SCZ signal intensities 

and does not contain any prior information of the disease. Given that the PPI network is 

adjusted for subcellular localization of the nodes, the overall topology of the network shows 

a more realistic picture of subcellular molecular trafficking and protein interactions. The 

lower panel in Figure 1 represents a toy example of diffused signals as well as the original 
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SCZ signal intensities in two different cell types. Given the abundance of proteins in each 

tissue and cell type, the overall diffusion patterns of SCZ signals varies in the two networks. 

The initial signal matrix does not include protein information. This information, including 

the localization in micro-domains and tissue-specific protein abundances, have been 

reflected in the model for adjusting the PPI network weights and create the affinity matrix as 

well as creating tissue-specific signal matrix, respectively.

Applying MAPSD on SCZ to Identify Disease Risk Genes

We created a large PPI network containing 232,801 edges and 16,185 nodes. As described 

above, considering five layers of omics evidences (gene expression, methylation, GWAS 

hits, rare and de novo mutation loci, and open chromatin regions), 3,915 genes were curated 

to be associated with SCZ with various degrees of signal intensities (Figure 3A). One gene 

(DGKZ) has a single intensity of 4 and six genes were found to have a signal intensity of 3, 

including DNAJA4, TCF4, CHRNA2, CPNE8, GRIN2A, and ZNF536. Notably, in a recent 

study35 we had identified TCF4 to act as a transcriptional master regulator in SCZ, based on 

expression network analysis of human dorsolateral prefrontal cortex. Upon initiating the 

diffusion process, MAPSD terminated the diffusion at the time step t = 3 (Figure 3C). A 

sharp decrease in Figure 3C indicates the tendency of the graph toward over-smoothness. 

Therefore, t = 3 is an appropriate cutoff point to prevent this phenomenon. After completion 

of the diffusion process, we sought to check how many of the SCZ risk genes show the 

highest signal intensity in all of the brain regions (Figure 3B). We can see that DGKZ as 

well as two other genes CHRNA2 and GRIN2A with a signal intensity of 3 were preserved 

in the brain. MAPSD resulted in 704 genes (4.4% of the total, see Table S1) to have the 

highest SCZ risk signal uniquely in several brain regions, including cerebral cortex, 

cerebellum, hippocampus, and caudate. We checked this gene set to look for the SCZ risk 

genes (which were used as the input to the method) showing the highest risk signal intensity 

upon executing the MAPSD. We found that 190 genes have the highest signal intensities 

only in the brain (the total height of bars in Figure 3B). We checked the signal intensity of 

the remaining SCZ-associated genes (n = 3,725). We found 3,480 genes to have the highest 

signal intensity in the brain as well as at least one other tissue other than the brain, while 245 

genes showed higher risk signals in other tissues other than brain.

MAPSD-Identified SCZ Risk Genes Are Enriched in Specific Subcellular Domains in 
Neuronal Cells

To evaluate the reliability of the MAPSD-identified candidate risk genes, we separated the 

704 identified genes with the highest signal intensity in the brain into two groups: 190 

known SCZ risk genes and 514 newly identified genes (Figures 4A and 4B). Using the 

protein abundances from the Human Protein Atlas, we checked in what specific brain 

regions and cell types the protein products of these genes are expressed. Of 190 known SCZ 

risk genes, 126 genes (66.3%) were highly expressed in neuronal cells in the cerebral cortex 

while in total, 138 genes (~72.3%) of the entire gene set were highly expressed in various 

cell types in the cerebral cortex. We next sought to evaluate the set of newly identified genes 

in the brain. We made a similar analysis on the 514 newly identified gene set by MAPSD. 

Among them, 360 genes (~70%) were highly expressed in neuronal cells in the cerebral 

cortex. In total, 396 genes were highly expressed only in the cerebral cortex which accounts 
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for 77% of the total number of the newly identified gene set. Notably, these observations 

reveal an agreement between the enrichment patterns of both gene sets and suggests reliable 

cell specificity of the MAPSD approach. This finding is in agreement with the cell types 

suggested to be underlying SCZ pathogenesis.36 In an important study, Skene et al.,36 

investigated the enrichment of SCZ common variants in adult brain temporal cortex and 

prefrontal cortex. Cell types being studied in these regions included: astrocytes, 

oligodendrocyte progenitor cells, oligodendrocytes, microglia, pyramidal neurons, and 

cortical interneurons. In both regions, pyramidal neurons and interneurons shared the highest 

degree of enrichment of GWAS loci compared with the other cell types. Our observations 

also show that the identified risk genes, at the protein level, are predominantly highly 

expressed in neuronal cells compared with other available cell types in this region. We also 

noted that endothelial cells share the lowest fraction of SCZ risk genes in our study. This is 

also the case in the findings of Skene et al., in which the enrichment of SCZ common 

variants in endothelial cells in prefrontal cortex is the lowest compared with the other cell 

types.

We were interested in finding the localization of SCZ risk genes in subcellular domains, 

using the subcellular localization domains obtained from Human Protein Atlas (Figure 2B). 

An immediate observation is significant enrichment of SCZ risk loci at protein level in 

various subcellular micro-domains of neuronal cells within the cerebral cortex (Figure 4C). 

Seventy-eight percent of the original SCZ risk genes found by MAPSD were enriched in 

neuronal cells in the cerebral cortex and across different subcellular domains. Among them, 

~96% were enriched only in neuronal cells across different micro-domains. Further focusing 

on neuronal cells, we found that five micro-domains, including cytosol, nucleus, 

nucleoplasm, plasma membrane, and vesicles share ~70% of the entire SCZ-associated 

protein products in the cerebral cortex. Across the entire subcellular micro-domains, 

cerebellum harbors ~13% of the candidate SCZ risk genes, in which Purkinje cells shares 

the highest fraction of SCZ candidate risk genes at protein level.

We compared the enrichment patterns of the newly identified genes by MAPSD with the 

known SCZ risk genes based on their corresponding micro-domains. Similar to the SCZ risk 

genes, subcellular micro-domains in neuronal cells within the cerebral cortex share the 

largest fraction of the identified genes. We checked the newly identified gene set in the 

cerebral cortex. Considering all of the micro-domains, ~96% of the entire identified proteins 

are expressed predominantly in neuronal cells (Figure 4D). Within neuronal cells, five 

micro-domains share 72.5% of these proteins, including cytosol, nucleus, nucleoplasm, 

plasma membrane, and vesicles. This fraction is very similar to the localization of SCZ-

associated protein products in neuronal cells within the cerebral cortex.

We compared the proportions of enrichment of SCZ genes and the identified genes based on 

their localizations within each cell in separate brain regions. In the cerebral cortex, 

considering all of the micro-domains and cell types, fractions of the both known SCZ risk 

genes and MAPSD newly identified genes were similar with no significant difference 

observed (chi-square p value = 0.79). We further compared the differences between the 

proportions of the major subcellular domains indicated above in neuronal cells within the 

cerebral cortex. Except vesicles (chi-square p value = 0.018), no significant difference was 
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observed between their proportions: plasma membrane (chi-square p value = 0.9432), 

cytosol (chi-square p value = 0.114), nucleus (chi-square p value = 0.842), and nucleoplasm 

(chi-square p value = 0.191). These observations extend further support, regarding efficacy 

of MAPSD in modeling, a more realistic map of proteomic properties of SCZ at the cellular 

resolution.

MAPSD Recovers Potential Disease-Associated Susceptibility Protein Complexes

In addition to finding novel candidate risk genes, MAPSD can also reveal protein complexes 

that may be involved in disease pathogenesis. We tested MAPSD to show how it can 

facilitate recovering the SCZ risk signals in the brain. We ran MAPSD 100 times and each 

time randomly removed one SCZ risk gene with the highest signal intensity in the brain. 

MAPSD successfully recovered their signal intensities to bear the highest SCZ signal 

intensities in the brain. As an example, we illustrate the signal intensity of two SCZ risk 

genes (DGKZ and ST8SIA2) to show the highest signal intensity levels in the brain. DGKZ 
showed the highest signal intensity of 4. DGKZ is a well-studied SCZ risk gene 

demonstrated to be DE2 and differentially methylated28 as well as harboring GWAS hits3,4 

and de novo mutations.26 MAPSD signal intensities for this gene (Figure 5A) are the highest 

in three regions, including neuronal cells in the cerebral cortex, Purkinje cells in the 

cerebellum, and neuronal cells in the caudate. ST8SIA2 (Figure 5B) is known to be 

implicated in SCZ in various ways, such as its impacts on cerebral white matter diffusion 

properties in SCZ37 as well as harboring multiple SCZ-associated SNPs.3,38 After removing 

this gene from the initial signal vector, we ran MAPSD and observed that MAPSD yields the 

highest SCZ signal intensities in the cerebral cortex and cerebellum. These experiments 

verify the robustness of MAPSD when the initial signal information for a disease is partially 

complete and that the method is capable to re-identify genuine SCZ risk loci given the 

topology of the adjusted PPI networks as well as proteome information incorporated into the 

model. Looking at the newly identified gene set by MAPSD, we found several genes to be 

implicated in other brain disorders. Considering that MAPSD can recover known SCZ-

associated risk factors, we hypothesize that the newly identified genes may potentially be 

implicated in SCZ. On the other hand, we are already aware that many psychiatric disorders, 

such as SCZ, autism, and bipolar disorder share substantial genetic susceptibility.39 

Therefore, as a proof of concept, we picked some of the top MAPSD genes with the highest 

signal intensity and evaluated whether they have already been indicated in other brain 

diseases.

As a proof of concept, we picked NRXN3, which shows the highest signal intensity in 

neuronal cells in the cerebral cortex upon executing MAPSD (Figure 5C). The autism risk 

gene NRXN340,41 is a member of the Neuroxin gene family, which encodes neuronal 

adhesion proteins with critical roles in synapse development and function. Although 

restricted evidence, such as copy-number variation42 and a polymorphism43 on NRXN3 
have been reported to be associated with SCZ in small population cohorts, its association to 

the disease has not been replicated44 or widely recognized. We investigated the PPI network 

to look for the genes connected to NRXN3. NRXN3 is directly connected to six genes, 

where the majority of them are significantly associated with diseases related to the central 

nervous system (CNS). These genes include NLGN1, NLGN2, NLGN3, CASK, AFDN, and 
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PAX4. NLGN1, NLGN2, and NLGN3 belong to the family of neuronal cell surface proteins, 

Neuroligin, and are involved in formation of CNS synapses.45 They have been implicated in 

epilepsy,46 autism spectrum disorders (ASDs),47 and post-traumatic stress disorder.48 

Notably, MAPSD recapitulated these three genes in the brain where NLGN1 and NLGN2 
were input to the model as SCZ risk genes, yet NLGN3 was identified by MAPSD as a 

susceptibility disease risk gene. This finding is in concordance with the well-established 

observations that Neuroligin protein members act as ligands for Neuroxins, resulting in the 

connections between neurons and generation of synapses.49 CASK and AFDN have also 

been implicated in CNS diseases such intellectual disabilities50,51 and CNS leukemia,52,53 

respectively. Given that AFDN interacts with NRXN3,54 we can conclude that MAPSD is 

capable of recovering high-risk loci in protein complexes and can infer converging disease 

risk modules in the human interactome.

Tissue and Developmental Stage-Specific Expression of MAPSD Risk Genes

To further gain evidence supporting their disease relevance, we analyzed the tissue-specific 

expression levels of the identified SCZ risk genes at mRNA level. For this analysis, we used 

gene expression levels on 53 different tissues from the Genotype-Tissue Expression (GTEx) 

project.55 GTEx data contain mRNA levels across the entire transcriptome, which enables 

specifying to what extent a gene is expressed in distinct tissues. We divided the MAPSD risk 

genes into two groups, including the known SCZ risk genes with the highest signal 

intensities in the brain and newly identified genes with the highest signal intensity in the 

brain. We queried the GTEx data and observed that in both sets, the outputs of MAPSD are 

highly enriched in brain tissues (Figure 6A). In fact, frontal cortex showed remarkably 

higher enrichment scores, which is supported by the previous findings regarding its 

implications in SCZ.2,56 The extent of enrichment in distinct brain regions was different. For 

instance, the frontal cortex and cerebral hemisphere represented a much stronger enrichment 

significance compared with other regions in the brain, while the amygdala and hippocampus, 

despite being significant, were less implicated in our analysis. In addition to the provided 

significance p values, we calculated the fold enrichment ratios (FER) for the top 5 

significant brain regions for the set of identified genes, including frontal cortex (FER = 8.9), 

cortex (FER = 8.8), anterior cingulate cortex (FER = 21.7), nucleus accumbens (FER = 5.1), 

and cerebellar hemisphere (FER = 2.9). These observations suggest that integrating cell-

specific genome and proteome knowledge in modeling the disease can lead to more sensitive 

and reliable identification of novel risk factors.

Because SCZ is likely a neurodevelopmental disorder, we next investigated if the brain-

specific MAPSD genes are dysregulated during various developmental stages in human 

brain. We used the Atlas of the Developing Human Brain (BrainSpan)57 on three brain 

regions, including the dorsolateral frontal cortex (DFC), cerebral cortex (CBC), and 

hippocampus (HIP). Next, we divided the data into two large categories of prenatal and 

postnatal stages, each with various time points. Prenatal stage includes 0–12 post-conception 

weeks (pcw), 13–24 pcw, and 25–36 pcw. Postnatal stages include 0–2, 3–8, 9–16, and >17 

years. We averaged the expression levels of each MAPSD gene across different stages of 

pre- and postnatal stages and looked for DE genes (Figure 6B). Our observation indicates 

that almost half these genes were DE in postnatal stages versus the prenatal stages. The 
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overall pattern of the number of DE genes in SCZ and MAPSD genes was almost similar. 

We were interested to specify what biological pathways are disrupted by the dysregulated 

genes during neurodevelopment in DFC, CBC, and HIP. We conducted pathway enrichment 

analysis (see Experimental Procedures) on these three gene sets. Although several pathways 

were nominally significant, none of them passed the false discovery rate (FDR) threshold of 

0.05. On the other hand, checking the SCZ-associated genes that demonstrated the highest 

signal intensity while being DE during neurodevelopment led to finding multiple pathways 

that are statistically significant (FDR < 0.05). The majority of these pathways were shared 

by the three regions, such as glutamatergic synapse (DFC: FDR = 2.3 × 10−8, FER = 15.4; 

CBC: FDR = 8.5 × 10−9, FER = 13.8; HIP: FDR = 2.8 × 10−7, FER = 11.8), calcium 

signaling pathway (DFC: FDR = 1.32 × 10−7, FER = 10.4; CBC: FDR = 8.5 × 10−9, FER = 

10; HIP: FDR = 2.8 × 10−7, FER = 8.7), circadian entertainment (DFC: FDR = 7.5 × 10−6, 

FER = 13.2; CBC: FDR = 2.2 × 10−7, FER = 13.6; HIP: FDR = 4.4 × 10−7, FER = 12.8), 

and cholinergic synapse (DFC: FDR = 2.1 × 10−5, FER = 11.3; CBC: FDR = 7.3 × 10−4, 

FER = 8.2; HIP: FDR = 2 × 10−4, FER = 8.8).

Some MAPSD Risk Genes Are Potential Drug Targets

We were interested in whether the MAPSD-identified SCZ risk genes act as targets of 

known drugs related to CNS. We used the list of US Food and Drug Administration (FDA)-

approved drug targets by Santos et al.58 comprising 4,631 drug-target connections as well as 

their mechanism of action. The data contained 881 unique protein targets in which the 

Ensemble IDs of 713 proteins were obtained. Among 514 newly identified MAPSD risk 

genes, we found 38 genes (Table S2) to be the targets of available FDA-approved drugs 

(FET p value = 2.68 × 10−4). We found multiple calcium channel mRNAs to be of high-risk 

signal intensities, such as CACNB1, CACNG2, CACNG3, and CACNG7. These genes are 

known to be the targets of fragile X mental retardation protein, which cause fragile X 

syndrome and autistic symptoms.59 These proteins were highly enriched in the brain, 

specifically in neuronal cells in the cerebral cortex (Figure 6C). We were interested in 

finding the genes that are already targets of drugs developed for CNS diseases. Twenty-one 

(56%) of the 38 genes were targets of drugs developed for CNS-related diseases (Figure S1). 

Some of these genes are well-documented risk loci in neurological diseases. For instance, 

SCN1A, a voltage-dependent sodium channel gene is known to be associated with epilepsy.
60,61 These genes are essential in generating action potentials in neurons and muscles. We 

found this gene to be the target of 16 drugs primarily developed to treat epilepsy. We had 

found this gene to exhibit the highest signal intensity in neuronal cells in the cerebral cortex. 

Similarly, SCN3A, an epilepsy gene was picked up by MAPSD in neuronal cells in the 

cerebral cortex and hippocampus. These two genes have been widely studied in epilepsy as 

well as mental retardation and other neuropsychiatric disorders.60 We recognize that these 

genes may have a different mode of action (gain of function versus loss of function) in 

different brain disorders, but our analysis demonstrated a proof of principle that MAPSD 

may facilitate drug repurposing efforts by integrating more fine-grained (tissue specific, cell-

type specific, and subcellular localization specific) omics information on brain disorders.

Another highly connected gene within the created drug target network was HRH1. This gene 

was found to be the target of 51 drugs, of which 10 were developed for CNS diseases. This 
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gene showed the highest MAPSD signal intensity in neuronal cells in the cerebral cortex 

despite not being used initially as an SCZ signature in MAPSD. A few studies have 

investigated its association with SCZ. For example, Nakai et al.62 have shown the possible 

associations between HRH1 and SCZ, despite borderline evidence for an association in 

GWAS.63 We found this gene to be connected to ADRA1B through two antipsychotic drugs 

chlorpromazine and trimipramine. Such interdependencies between the original SCZ risk 

genes supplied to MAPSD and the identified high signal genes further supports an 

orchestrated mechanism of the disease through interactions in convergent modules in the 

human interactome.

Among the identified genes to be drug targets, CHRM1 and CHRM2 were found to be 

targeted by over 30 drugs, 8 related to CNS. These genes are implicated in alcohol 

dependence,64 major depression,65 as well as possible involvements in SCZ.66 In addition to 

the identified genes that might have been implicated in neuropsychiatric disorders, MAPSD 

revealed new candidates for treatment of SCZ. For instance, SLC12A1, a solute carrier 

transporter, was found with the highest signal intensity in the brain to be targeted by five 

drugs. This gene is essentially targeted to reduce edema caused by kidney or heart failure. 

However, granted the role of such membrane-bound proteins in transferring substrates 

within the cell, such as dopamine and serotonin,67 they can be further studied for the 

treatment of SCZ.

DISCUSSION

In our view, the extreme polygenic nature of complex psychiatric disorders, such as SCZ, 

necessitates taking a more holistic view on the overall system of the diseases. One critical 

component of such a system is the proteome and its dynamics, given that proteins are in fact 

work horses of intra-cellular activities. Proteins reflect the genetic, epigenetic, and 

transcriptomic alterations that are caused by the disease. Yet, research on the proteome lags 

behind other omics data types, especially those generated on DNA and RNA levels,14 due to 

technical limitations in data generation. Recent advances in proteome experimental 

paradigms has created new horizons to further use proteome knowledge in studying SCZ. 

Integrated analysis of omics data types at nucleic acid and amino acid levels makes it 

possible to accurately pinpoint SCZ drivers as well as accurate isolation of gene modules 

whose orchestrated interactions may confer susceptibility to the disease. Taking a multi-

layer approach to SCZ, we introduced MAPSD, a proteogenomic signal diffusion method 

that accounts for subcellular localization of the proteins and intra-cellular trafficking in an 

integrated manner. Our study demonstrated the effectiveness of the MAPSD in recovering 

known SCZ risk genes and identifying novel candidate risk genes, and in identifying 

possible drug targets for drug-repurposing studies.

MAPSD has unique characteristics that are worth further discussion. MAPSD features 

modeling the protein localization in subcellular micro-domains as well as tissue-wise cell-

specific distribution of protein abundances in the human body. Taking all this information 

into account, MAPSD creates a dedicated cell-specific PPI network for tens of distinct 

human tissues. This allowed us to create more realistic PPI networks that can lead to more 

accurate prediction of disease drivers. MAPSD jointly uses GWAS hits, DE genes, rare and 
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de novo mutations, and chromatin accessibility data followed by diffusing this repertoire of 

information into each dedicated cell-specific PPI network to predict the signal intensities of 

novel candidate genes and their potential role in the disease onset and progression. The 

Markov affinity-based criterion borrowed from graph theory as well as the designed 

termination criterion ensures accurate transition of information across the network, while 

avoiding over-smoothing the signal intensities. Therefore, the highest amount of information 

will flow through the network while preventing the signals at each node are distinctive 

enough. MAPSD enables ranking the genes related to SCZ given their signal intensity levels 

in the brain.

An important strength of MAPSD is that the identified novel disease risk gene may not be 

immediate neighbors of known SCZ risk genes. For example, 217 genes out of 514 (~42%) 

identified risk genes by MAPSD are not directly connected to disease susceptibility loci. We 

checked the topology of the PPI network on the identified MAPSD risk genes, which were 

connected to at least one SCZ risk gene. Given the direct neighbors of MAPSD genes, we 

categorized them into four groups (Figure 6D) followed by counting the number of SCZ risk 

genes that are connected to each MAPSD risk gene within each group. Ninety-three percent 

of MAPSD genes have 1 to 30 direct neighbors among which the median percentage of SCZ 

risk genes is ~30%. In other words, on average, 30% of the accumulated signals in MAPSD 

risk genes were transmitted directly from neighboring SCZ risk genes, while the remaining 

signal intensities are transmitted from distant genes. This is remarkable given that MAPSD 

can capture the signals from distant risk loci so that the convergence of small effect size loci 

can be observed and modeled. Another major property of MAPSD is its resilience against 

noise. Markov operators in graph signal processing act as a low-pass filter.68 Therefore, in 

the case of introducing false signals, i.e., noise, to the MAPSD initial signal vector, these 

signals will automatically be filtered out during the signal diffusion. As a result, MAPSD is 

noise resistant. MAPSD was able to recover a significant fraction of known SCZ 

susceptibility genes from multi-omics studies. For example, in a recent study by Wang et al.,
5 multiple SNPs were reported to be associated with the disease. A significant overlap 

between MAPSD-identified genes and their reported loci was observed (FET p value = 2.1 × 

10−4, enrichment ratio = 3.2). Among them, 85% of the genes were enriched in neuronal 

cells in the cerebral cortex, 7.5% in Purkinje cells in the cerebellum, and 7.5% in neuronal 

cells in the caudate. This observation further supports the mechanism introduced in MAPSD 

to jointly model mutual interactions between omics data modalities for identification of 

novel risk genes and susceptibility risk modules in PPI networks.

Given that MAPSD takes an additive approach to combine signals from a variety of omics 

data types, we sought to explore if there were any correlations between these data types. We 

calculated the pairwise Matthews correlation among DE genes, de novo mutations, common 

variants, methylated loci, and open chromatin regions across the entire signature genes. 

Except for a mild correlation between DE and methylation signals (correlation coefficient = 

−0.43), we did not observe significant correlations between these data types. Incorporating 

the biophysical properties of proteins plays a critical role in precision predictions made by 

MAPSD. To evaluate the effects of removing the cell-specific PPI adjustment step in the 

performance of MAPSD, we ran MAPSD while disabling this stage followed by comparing 

the results with the original findings where the PPI network was adjusted for protein 
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localization information. First, we looked for the known SCZ risk factors showing the 

highest signal intensity in the brain. We found that 108 genes, compared with 190 genes 

when applying this stage, share the highest signal intensity in the brain demonstrating a 43% 

loss in reproducibility power of MAPSD. While all of the previous 190 genes were unique to 

the brain, we found 11 genes having unique signal intensities in tissues other than the brain. 

Regarding the prediction power of MAPSD, we came up with 450 genes to share the highest 

signal intensity in the brain compared with 514 predicted risk genes (12.5% decrease). These 

observations suggest a loss of power in reproducing a good portion of the predictions. 

Moreover, we evaluated the effect adjusting the signal vector using the cell-specific protein 

abundances. For this, we directly used the initial signal vector in the diffusion process in 

tandem with the adjusted PPI network. We found 69 SCZ risk genes, compared with 190 

genes in the original experiment, to share the highest signal intensity in the brain. However, 

we found that 97 SCZ risk genes also show the highest signal intensity in other tissues, such 

as heart muscle, lung, and liver. Next, we checked the status of the 514 predicted hits in the 

original analysis. We found only 109 (21.2%) genes to be significantly enriched in the brain 

and 213 genes to be significantly enriched in other tissues. Collectively, it can be concluded 

that removing the effect of modeling the cell-specific protein abundances has a radical 

impact on the overall performance of MAPSD in distinguishing cell-specific hits. Moreover, 

we found, from above, that relaxing the PPI adjustment stage in MAPSD has serious 

negative impacts on the reproducibility power of the algorithm and diminished the overall 

reliability of the predictions.

To evaluate how MAPSD can be resilient to the networks being used, we conducted a 

secondary analysis using a second independent PPI network from the IMEx consortium69 

called the Interologous Interaction Database (I2D).70 We observed 782 SCZ risk genes from 

the original signal vector of 3,915 risk factor to be present in the I2D PPI (~20% overlap). 

Among 190 SCZ risk factors which showed the largest signal intensity in the brain after 

running MAPSD, 45 genes existed in the I2D network, where 32 (71%) of them showed the 

highest signal intensity in the brain (Table S3). In our initial results, we had predicted 514 

susceptible risk loci to share the highest signal intensity in the brain. Eighty-three of these 

predicted risk genes existed in the I2D network, where 55 (66%) genes yielded the highest 

signal intensity in the brain. We did not observe unique hits in the I2D PPI not being 

available in the analysis performed on our large curated PPI network. We had previously 

shown that SCZ risk genes DGKZ, GRIN2A, and CHRNA2 (Figure 3) keep the highest 

signal intensity in the brain after the signal diffusion. Notably, two of them (DGKZ and 

GRIN2A) showed high signals in the brain after signal diffusion on the I2D network 

demonstrating a 67% overlap with the previous findings. Although the I2D PPI is 

significantly smaller (almost 18-fold) than the original PPI used previously, we were able to 

re-identify ~11% of the original predictions while only ~16% of the predictions existed in 

the I2D network. Therefore, our findings suggest that MAPSD is resilient to changing the 

networks being used. However, using a more detailed network will certainly lead to more 

robust predictions. In addition, conducting a randomized trial with 10 signal vectors each 

containing 3,915 signatures where none of which are SCZ risk loci led to an average of 473 

genes with the highest signal intensity in the brain. We did not observe a significant overlap 

with the original SCZ findings (p = 0.398) suggesting the robustness of MAPSD.
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There are some factors that may influence the overall quality of the prediction performance 

of MAPSD. First, the quality of the networks fed to the model. Since there are multiple 

compendia for PPIs, strict thresholds should be applied on the quality and reliability of 

pairwise interactions. This will ensure more accurate signal propagation through the network 

and will reveal more reliable outcomes. Second, more data types being fed to the model 

equates to more enriched signal matrices, which will in turn potentially lead to more 

concrete predictions regarding associations of the novel risk genes with the disease. If there 

is not enough evidence regarding each initial risk factor, then the Markov process will 

immediately converge while being over-smooth. Therefore, it would be difficult to interpret 

the findings, and the identified hits will likely be false negatives. Third, availability of high-

resolution single-cell proteome data can increasingly improve the overall performance of 

MAPSD. Current data in the Human Protein Atlas are the major resource for profiling 

proteins across a wide range of tissues and cells. We acknowledge that the current data are 

not quite comprehensive, yet with the advent of technologies, generating more in-depth 

proteome data across more tissues has become possible. Therefore, we will be continuously 

updating MAPSD with more additional data. Given that a large number of the identified risk 

genes by MAPSD co-localize in various cell types in the cerebral cortex, we made sure that 

the results are not driven by the bias in the proteome data used. We used the Human Protein 

Atlas data and extracted the genes whose protein products are highly expressed in various 

cerebral cell types. Among 13,150 protein products, 2,894 (22.0%) proteins showed high 

expression in various cell types in the cerebral cortex. Therefore, the dataset used is not 

biased toward the cerebral cortex. MAPSD had predicted 514 novel risk genes among which 

390 (~76%) are highly expressed in the cerebral cortex which is equivalent to an odds ratio 

of 3.45. Therefore, MAPSD findings are bias-free.

MAPSD takes advantage of high-dimensional omics data and is not tied to specific 

phenotypes. Therefore, it can effectively be applied to any complex disease, such as ASDs 

or autoimmune diseases, when necessary multi-omics datasets are available. MAPSD 

provides an ideal platform to leverage the outcomes of ongoing massive-scale projects, such 

as the PGC,71 the largest consortium in psychiatry genetics, and the PsychENCODE project,
72 which is actively generating extensive epigenomic data on various psychiatric disorders. 

We envision MAPSD to be useful to the community to catalyze integrated evaluation of 

candidate genes for various neuropsychiatric and neurodevelopmental disorders at a systems 

level.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact—Kai Wang, PhD (wangk@email.chop.edu).

Materials Availability—This study did not generate any new unique reagents or materials.

Data and Code Availability—MAPSD scripts and data required for running the platform 

are available online at: https://github.com/adoostparast/MAPSD.
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Description of the Data Used in the Study

Interaction networks used in this study were collected from three sources, including 

PICKLE 2.3,33,34 the Human Reference Interactome,32 and the Human Interactome 

Database.31 Upon removing the duplicate interaction, the final network being used by 

MAPSD contained 232,801 interactions. The list of DE genes were obtained from the 

CommonMind Consortium.2 GWAS hits on SCZ were downloaded from the CLOZUK 

consortium4 and the Psychiatric Genomics Consortium.3 Rare and de novo mutations were 

downloaded from denovo-db v.1.6.1.26 DNA methylation data were downloaded from the 

works by Vitale et al.,27 Aberg et al.,28 and Alelu-Paz et al.29 Open chromatin accessibility 

peaks were downloaded from the study by Bryois et al.30 Protein abundances in all of the 

tissues and cell types as well as the subcellular localization of all of the proteins were 

obtained from the Human Protein Atlas project.7,8 Tissue-specific gene expression levels 

were obtained from the GTEx project55 consortium on 53 tissues.

Creating the Signal Vector

The initial signal matrix S, is an overlaid column vector which contains the cumulative 

levels of biological evidences, such as transcriptional signatures, methylation, GWAS. For 

each level of information for a specific gene, we add a point 1 if there was a significant hit, 

such as an FDR threshold of 0.05 on transcriptome signals and 5 × 10−8 for GWAS loci. To 

create S, first we introduce evidence matrix EG×L, where G denotes the total number of 

genes and L is the number of omics data layers (in this study, 5). Therefore

Eij = 1 if for gene i there is evidence in layer j
Eij = 0 otherwise

Next, using E, we can create S as follows: Si = ∑j = 1
L eij. For example, if a gene i is DE and 

differentially methylated, then Si = 2. We should make sure that the data being collected to 

create the signal vector have been generated from the same tissue or appropriate surrogate 

tissues to avoid generating spurious signals.

Adjusting the PPI Network Weights and Creating the Affinity Matrix

Subcellular localization data used in MAPSD were downloaded from the Human Protein 

Atlas project.7,8 In total, 32 subcellular domains were available. To project this information 

onto the PPI network, first the affinity matrix A was created. A is an n×n binary matrix 

where aij = 1 if two proteins i and j are connected in the network, otherwise aij = 0. n denotes 

the total number of unique proteins in the PPI network. MAPSD scans the entire elements of 

A and checks its localization micro-domain. If two proteins i and j are connected in the 

network while co-localizing in the same micro-domain, then aij = 1.5. However, If two 

proteins i and j are connected in the network while not being co-localized in the same micro-

domain, then aij = 1. Note that A is a symmetric matrix, i.e., aij = aji.

Creating the Markov Transition Matrix from Affinity Matrix

Upon adjusting the raw affinity matrix to contain the subcellular localization information, 
MAPSD obtains the Markov operator matrix (M). M is an n×n transition probability matrix 
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whose element mij denoted the probability of single-step random walk from the node i to the 

node j. Leveraging random walk Laplacian in the graph theory,73 M can be obtained as 

follows: M=D−1A, where A denotes the adjusted affinity matrix above which consists 

subcellular localization information on all of the edges in the network and D represents the 

degree matrix. D is a diagonal matrix of the degree n, generated from A whose non-zero 

elements can be obtained as follows: Dii = ∑j = 1
n aij. Therefore, each element of the main 

diagonal in D equals the row-wise summation of its corresponding protein in the affinity 

matrix A.

Creating Tissue/Cell-Specific Signal Matrix

To use the knowledge on the expression levels of each protein in each cell within each tissue, 

the Human Protein Atlas data were leveraged. In these data, expression levels are defined by 

four qualitative terms, including High, Medium, Low, and Not Detected. To use this in 

MAPSD, we converted them into a weight matrix WG×T, where G is the total number of 

proteins from the Human Protein Atlas and T is the total number of tissues and cell types. 

The total combinations of tissues and cell types in this study is 131. Therefore, the 

expression degree of protein i in the tissue/cell j is denoted by wij as follows:

wij =

High = 1
Medium = 0.75
Low = 0.5
Not detected = 0.25

Later, we converted the signal vector S to tissue/cell-specific signal matrix S* by scalar 

multiplying the weight matrix W and the initial signal vector S as follows:

S* is a G×T matrix where Sj
∗ = W j ⊙ S, where matrix and ⊙ denotes dot (scalar) product. 

Here, Sij
∗  represents the disease signal intensity of the protein i in the tissue/cell j.

Signal Diffusion Process in MAPSD

MAPSD uses the Markov operator matrix M and tissue/cell-specific signal intensity matrix 

S* to initiate the diffusion process. During the diffusion process, given the topology of the 

PPI network, for each combination of tissues and cell types, signal intensities of SCZ risk 

loci are propagated onto the network so the signal intensities of unknown proteins are 

estimated. The higher the signal intensity of a protein in the brain, the higher the likelihood 

of its association to SCZ. MAPSD is an iterative process where in each iteration signal 

intensities from disease risk genes are propagated through the network using the following 

equation: St = Mt×S* where t denotes the diffusion time, i.e., the length of a random walk of 

size t from each node. A critical point to address during the diffusion process is choose of an 

appropriate diffusion time given that very large values of t leads to over-smoothness of the 

signal intensities. In other words, when the signals are over-smooth, then the signal 

intensities across all of the network will converge to a constant value leading to the loss of 

useful information. To avoid this situation, we have created a termination criterion called 

smoothness rate (R) as follows: R = SSE/SST, where SSE is the sum of square error and 
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SST is the sum of square total and can be calculated as follows:SSE = ∑i = 1
G ∑j = 1

T eij2 , 

where e denotes a single element of the error matrix E = Mt+1S*–MtS*. 

SST = ∑i = 1
G ∑j = 1

T kij
2 , where k denotes a single element of the total matrix K=Mt+1S*

+MtS*. MAPSD terminates the diffusion process if R ≤ 0.05. In other words, if the 

normalized difference of changes between signal intensities do not change at a certain 

threshold, then MAPSD stop the diffusion to avoid over-smoothing the signals of the protein 

across the network.

Pathway Enrichment Analysis

Pathway enrichment and gene ontology analysis were conducted using Web-Gestalt74 

v.2019. KEGG was used as the functional database the list of expressed genes were used as 

the background. The maximum and minimum number of genes for each category were set to 

2,000 and 5, respectively, based on the default setting. Bonferroni-Hochberg multiple test 

adjustment was applied to the enrichment output. FDR significance threshold was set to 

0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MAPSD models protein trafficking for disease modeling.

• Integrated proteome-genome modeling identifies novel schizophrenia risk 

genes.

• Schizophrenia risk genes are involved in different stages of 

neurodevelopment.

• Schizophrenia risk genes may converge in modules in interaction networks.
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Figure 1. The Structure of MAPSD
MAPSD steps include: creating the protein-protein interaction network followed by 

adjusting it for subcellular localizations; creating the Markov transition distribution matrix, 

assembling SCZ signatures from genome, epigenome, and transcriptome sources followed 

by creating the signal vector and adjust it for different tissues and cell types within them; 

creating tissue/cell-specific interaction networks, and signal diffusion across all of the 

dedicated networks to measure the disease signal intensities in unannotated proteins. Each 

dot on the human body scheme denoted the tissue being evaluated.
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Figure 2. The List of Cell Types and Tissues Used in This Study
(A) The 131 combinations of cell types and tissues. Each color denotes a tissue and the forks 

for each color represent their corresponding cell types in this study.

(B) The list of subcellular domains in this study followed by the number of proteins being 

expressed in each subcellular domain.
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Figure 3. Distribution of SCZ Signal Intensities
(A) Distribution of initial signal intensities in the original signal vector.

(B) Distribution of initial signal intensities enriched in the brain after signal diffusion.

(C) Changes of smoothing rate during the diffusion time.
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Figure 4. Expression Patterns of MAPSD Brain-Specific Genes at Cell Resolution and 
Subcellular Domains
(A) Frequency of MAPSD original SCZ risk genes at single-cell resolution to be highly 

expressed in four brain regions.

(B) Frequency of MAPSD newly identified SCZ risk genes at single-cell resolution to be 

highly expressed in four brain regions.

(C) Frequency of MAPSD original SCZ risk genes at protein level to be highly expressed in 

various subcellular domains in five cell types across four different brain regions.

(D) Frequency of MAPSD newly identified SCZ risk genes at protein level to be highly 

expressed in various subcellular domains in five cell types across four different brain 

regions.

Torshizi et al. Page 26

Patterns (N Y). Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. MAPSD Signal Intensities upon Diffusion in Three Genes
(A) MAPSD signal intensities of the SCZ risk gene DGKZ.

(B) MAPSD signal intensities of the SCZ risk gene ST8SIA2.

(C) MAPSD signal intensities of the gene DGKZ NRXN3 found to show the highest risk 

signals in the brain.
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Figure 6. Tissue-Wise Enrichment Statistics for SCZ- and MAPSD-Identified Genes at Gene 
Expression Level
(A) −log10(p value) of SCZ and MAPSD risk genes with the highest signal intensity in brain 

tissues in GTEx consortium gene expression data.

(B) The number of differentially expressed SCZ and MAPSD risk genes in the cerebral 

cortex (CBC), dorsolateral frontal cortex (DFC), and hippocampus (HIP) between prenatal 

and postnatal developmental stages using BrainSpan data.

(C) Number of MAPSD risk genes to be the targets of FDA-approved drugs being enriched 

in specific cell types in certain brain regions.

(D) Percentage of SCZ-associated genes to be direct neighbors of the MAPSD-identified 

genes where each color represents MAPSD genes with a certain number of immediate 

connecting nodes in the PPI network.

Torshizi et al. Page 28

Patterns (N Y). Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	Graphical Abstract
	In Brief
	THE BIGGER PICTURE
	INTRODUCTION
	RESULTS
	Overview of the MAPSD Framework
	Applying MAPSD on SCZ to Identify Disease Risk Genes
	MAPSD-Identified SCZ Risk Genes Are Enriched in Specific Subcellular Domains in Neuronal Cells
	MAPSD Recovers Potential Disease-Associated Susceptibility Protein Complexes
	Tissue and Developmental Stage-Specific Expression of MAPSD Risk Genes
	Some MAPSD Risk Genes Are Potential Drug Targets

	DISCUSSION
	EXPERIMENTAL PROCEDURES
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Description of the Data Used in the Study
	Creating the Signal Vector
	Adjusting the PPI Network Weights and Creating the Affinity Matrix
	Creating the Markov Transition Matrix from Affinity Matrix
	Creating Tissue/Cell-Specific Signal Matrix
	Signal Diffusion Process in MAPSD
	Pathway Enrichment Analysis

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

