1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

s NIH Public Access
Y,

Author Manuscript

Published in final edited form as:
AINR Am J Neuroradiol. 2009 January ; 30(1): 125. doi:10.3174/gjnr.A1309.

A Novel Quantitative Simple Brain Metric Using MR Imaging for
Preterm Infants

S Nguyen The Tichl, PJ Andersonz, JS Shimony3, RW Hunt4, LW Doyle5, and TE Inder®
1 Centre Hospitalier Universitaire, Angers, France

2 University of Melbourne and Murdoch Childrens Research Institute, Melbourne, Australia

3 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
4 Department of Neonatology, The Royal Children’'s Hospital, Melbourne, Victoria, Australia

5 The Royal Women’s Hospital, Melbourne, Victoria, Australia

6 Department of Pediatrics, Neurology and Radiology, Washington University School of Medicine,
St. Louis, Missouri

Abstract

Background and Purpose—The application of volumetric techniques to preterm infants has
revealed brain volume reductions. Such quantitative data are not available in routine neonatal
radiological care. The objective of this study was to develop simple brain metrics to compare brain
size in preterm and term infants, and correlate these metrics with brain volumes from volumetric MR
techniques.

Methods—MR images from 189 preterm infants <30 weeks’ gestational age or <1250 g birthweight
scanned at term-equivalent age and 36 term infants were studied. Fifteen tissue and fluid measures
were systematically evaluated on 4 selected slices. The results were correlated with total brain, grey
matter, white matter and CSF volumes.

Results—The mean bifrontal, biparietal and transverse cerebellar diameters were reduced (—11.6
%; Cl=—-13.8t0 —9.3%; —12%, —14 to —9.8% and —8.7%, —10.5 to —7% respectively) and the mean
left ventricle diameter was increased (+22.3%; 2.9 to 41.6%) in preterm infants (p<0.01). Strong
correlations were found between the bifrontal and biparietal measures with total brain tissue volume,
while the size of the ventricles and the interhemispheric measure correlated with CSF volume. Intra-
observer reliability was high (ICC >0.7), while inter-observer agreement was acceptable for tissue
measures (ICC >0.6) but lower for fluid measures (ICC <0.4)

Conclusions—Simple brain metrics at term-equivalent age showed smaller brain diameters and
increased ventricle size in preterm infants compared with full term infants. These measures represent
a reliable and easily applicable method to quantify brain growth and assess brain atrophy in this at-
risk population.
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Introduction

The survival rates for preterm infants have increased steadily over the two last decades:2.
Alongside increased survival rates, there is continuing recognition of the high prevalence of
motor, cognitive and behavioral disabilities suffered by survivors of preterm birth3. The major
neuropathologies recognized on cranial ultrasound in the preterm infant, such as
intraventricular hemorrhage and cystic periventricular leukomalacia (PVL) have remained
stable or declined in prevalence over this period*, without accompanying improvements in
outcomes. It is now increasingly recognized that the “cerebral lesions” responsible for these
broad range of disabilities may not be visible on cranial ultrasound and may involve altered
cerebral development as well as injury.

Quantitative evaluation of cerebral structure in at risk preterm infants may assist in defining
the impact of preterm birth on cerebral development. Previous approaches to this have included
quantitative volumetric magnetic resonance imaging (MRI) techniques as well as cranial
ultrasound measures. Cranial ultrasound has shown a decrease in the rate of growth of the
corpus callosum in preterm infants, which has correlated with later outcomes®. MRI techniques
have evaluated total and regional cerebral volumes by tissue segmentation and voxel base
morphometry. These studies have strongly suggested a reduction in total cerebral volumes with
regional variation that is apparent at term equivalent® and persists into childhood”.

An alternative biometric approach to cerebral growth has been developed in fetal brain imaging
by applying a set of measurements to the qualitative MR image, including the biparietal
diameter or the transverse cerebellar diameter8. These measures showed a close correlation
with maturity®. Thus, we adapted this methodology for a simple quantitative determinant of
brain size in preterm infants approaching term age. The primary objectives of this study were
(i) to develop a simple metric for the evaluation of brain size in preterm infants scanned at term
corrected age and to compare the results obtained between preterm and full term infants, and
(ii) to compare the results with the quantitative volumetric MRI data on the same cohort.

Material and Methods

Subjects

Our study was conducted on existing MRI data sets collected on a prospective longitudinal
cohort study of preterm infants born <1250 g or <30 weeks, and term born control infants. The
gestational age was based on maternal last menstrual date or dating by earliest ultrasound scan.
The preterm infants were admitted between April 2001 and December 2003 to the Royal
Women’s Hospital in Melbourne, Australia. Perinatal data (i.e. sociodemographic and
obstetrical data, birth characteristics, neonatal therapies and morbidities) were obtained by
chart review. For an early detection of brain lesions including intraventricular hemorrhage
(IVH) cranial ultrasound scans were obtained serially throughout the neonatal intensive care
course in all infants within the first 48 h and at ages 4—7 days and 4—6 weeks. During the study
period, 348 eligible preterm infants were admitted and 236 (64%) were recruited. There were
no significant differences in obstetrical or birth data between infants recruited compared with
those not recruited (data not shown). Infants with known or suspected brain malformation or
congenital abnormalities (n=4) were excluded. Infants were also excluded if there was
insufficient or of suboptimal quality of MRI (n=39) or perinatal data (n=4). Thus, MR images
were studied for 189 preterm infants. Fifty one term controls were also enrolled, 13 were
excluded for technical issues related to acquisition of the MR images and two for proven
neonatal sepsis. Thus MR images were analyzed for 36 term controls.
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MRI scanning

All infants were scanned at term or term equivalent age without sedation. Infants were fed,
swaddled, outfitted with earphones, and placed in a vacuum-fixation bean bag. Sleeping infants
were scanned in a 1.5 Tesla General Electric Sigma System MR scanner with a pediatric
quadrature head coil (Milwaukee, WI, USA), located at the Royal Children’s Hospital,
Melbourne. Two different imaging modes were applied: 3D T1-weighted (T1W) spoiled
gradient recalled (SPGR) [1.2 mm coronal slices; flip angle 45; repetition time (TR) 35 ms;
echo time (TE) 9 ms; field of view (FOV) 21 - 15 cm2; matrix 256 - 192] and T2W dual echo
(interleaved acquisition) fast recovery fast spin echo sequences (2 mm coronal; TR 4000 ms;
TE 60/160 ms; FOV 22 16 cm2; matrix 256 192, interpolated 512 - 512). Coronal T2W slices
were available for 189 preterm infants and 36 term controls, axial T2W slices were available
for 50 preterm infants and 8 term controls, sagittal T1IW slices were available for 74 preterm
infants and 13 term controls. Due to the small number of axial T1W slices, only the coronal
T2W MR and the sagittal T1W images were studied.

MRI analysis

Brain metrics—The MR images were displayed using a Dicom browser (DicomWorks®).
Fifteen parameters divided into “tissue” measures (i.e. bifrontal diameter, left and right frontal
height, brain and bone biparietal diameter, frontal-occipital diameter, length of corpus
callosum, surface of the vermis, transverse cerebellar diameter) and “fluid” measures of the
pericerebral space (interhemispheric distance, craniocaudal left and right interopercular
distances,) and the intracerebral spaces (diameter of the left and right lateral ventricles, third
ventricle diameter) were manually measured on four selected slices. Slices and landmarks are
detailed in Table 1 and Fig. 1.

The metrics on the coronal slices were tested for reliability. We calculated the interobserver
correlation from repeating measurements on 7 scans by 3 different observers. The intraobserver
correlation was calculated from 3 scans measured twice by each of the three observers. A screen
copy of each slice selected for measurement was produced by the observers. They were checked
in order to search for the source of variability relating to the slice selection.

The brain metrics were compared to the growth curves of normative data produced from fetal
MRI brain assessment (biparietal diameter, fronto-occipital diameter and transverse cerebellar
diameter).

Qualitative MRI analysis—MR scans were scored using a standardized scoring system?0.
White matter abnormality was graded according to five scales, which assessed (i) the nature
and extent of white matter signal abnormality, (ii) loss of periventricular white matter, (iii)
presence of cysts, (iv) degree of ventricular dilatation and (v) thinning of the corpus callosum.
The scores from individual scales were then combined to give an overall white matter
abnormality score categorized as normal, mild, moderate or severe white matter abnormality.

Quantitative volumetric MR analysis—A previous volumetric analysis using Sun
Microsystems workstations (Palo Alto, CA) has been reported®. The parameters retained for
analysis in the current study were the volumes of the total brain tissue, the cortical grey matter,
the myelinated and unmyelinated white matter, the deep nuclear grey matter and the CSF.

Statistical analyses

Statistical analysis was performed using SPSS version 15 (SPSS, Chicago, IL). Study group
characteristics were evaluated using t-tests for continuous variables and chi-square tests for
categorical variables. Exploratory analysis indicated that brain tissue metrics were
approximately normally distributed and that the distribution of fluid measures was left skewed.
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Results
Subjects

For univariate analysis, a t-test or a Kruskall-Wallis nonparametric test were used as
appropriate to study the effect of the group (preterm vs. full tem) and the gender on brain
metrics. The Pearson correlation coefficient was used to study the effects of gestational age at
MRI on brain metrics. A general linear model approach was used to model the most relevant
brain metrics as a function of the study group and gender, with gestational age at MRI as a
covariate. The relationships between these brain metrics and brain volumes were studied by
the Pearson correlation coefficient. The intraclass correlation coefficients (ICC) for
consistency (two-way random model, single measure) were calculated to analyze the inter- and
intra-observer agreement.

The characteristics of the cohort are presented in Table 2. The rate of multiple pregnancies was
relatively high (42%). More than 80 % of MRIs were considered as qualitatively normal or
mildly abnormal. The mean gestational age at MRI was 40.1 SD 1.3 [range 36—44] weeks
although the preterm infants were younger than term infants at MRI (t=—2.4, p=0.02). The head
circumference and the weight at MRI were significantly smaller in preterm infants, before and
after adjustment for gestational age at MRI (t= —4.2, p<0.001 for weight, t=—2.4, p=0.016 for
head circumference).

Reproducibility

The intra-rater and inter-rater consistencies were high for all the tissue measures, with ICC
coefficients above 0.8 (Table 3). For the fluid measures, the intra-rater consistency was
acceptable but the inter-rater consistency was low due to some discrepancies in the choice
between adjacent slices.

Brain metrics

Results of brain metrics are presented in Table 4.

The measures obtained in the full term infants were compared visually to those previously
published with the same methodology on fetal MRIs (Fig. 2) and were found to be inaccordance
with these values. The term infants seemed to display a slightly larger transverse cerebellar
diameter than the prenatal cohort scanned at 37 to 38 weeks GA.

Three tissue measures were markedly decreased in preterm infants compared with full term
infants (Fig. 3). These included a reduction in the bifrontal diameter, the brain and bone
biparietal diameters, and the transverse cerebellar diameter. A smaller reduction of the frontal
heights was also observed, significant only for the left side. The fronto-occipital diameter, the
surface of the vermis and the length of the corpus callosum did not differ between the two
groups. For fluid measures, the peri-cerebral space was larger in preterm infants in both the
inter-hemispheric distance and extra axial space. Preterm infants also had larger lateral
ventricles than term infants with the difference being significant only for the left side.

In both groups there was a significant correlation between gestational age at MRI and tissue
brain metrics (Fig. 3B) with no interaction between this variable and the study group. There
was no effect of the gestational age at MRI on the fluid measures.

Examination of gender differences demonstrated that the bifrontal and the biparietal diameters
were larger in boys (+4.2%; 95%CI = 2 t0 6.4%, p < 0.001 and +2.5 %, 0.43 t0 4.68 %, p=0.019
respectively). Gender differences were not observed for the transverse cerebellar diameter and
the frontal heights, or for any of the fluid measures.
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A multivariate analysis by linear regression was undertaken for the tissue measures
demonstrating differences in preterm infants with a relatively narrow confidence interval in
the bifrontal diameter, the biparietal diameter and the transverse cerebellar diameter. The
results are presented in Table 5 along with the same analysis for the fronto-occipital diameter
and the length of corpus callosum. There was an effect of group, associated with the effects of
gestational age and gender for the bifrontal and biparietal diameters with no interaction between
these variables. The transverse cerebellar diameter showed equivalent effects of group and
gestational age at MRI, but no effect of gender. For the fronto-occipital diameter and the length
of the corpus callosum, only the gestational age at MRI had an effect (significant only for the
fronto-occipital diameter).

Correlations with brain volumes and head circumference

Quantitative volumetric data were available for 178 preterm infants and 29 term control infants.
Correlations between brain metrics and volumes are reported in Table 6. The tissue
measurements (i.e. bifrontal diameter, frontal heights, biparietal diameter and transverse
cerebellar diameter) were well correlated with the brain tissues volumes (total brain tissue,
cortical gray matter, unmyelinated white matter and deep nuclear gray matter) except for the
myelinated white matter. The strongest relationships were seen between the transverse
cerebellar, bi- frontal and bi-parietal diameters and the total brain tissue and cortical gray matter
volumes.

The fluid measures correlated well with the total volume of CSF (r>0.4, p<0.01). There was
also a negative correlation between the lateral ventricles measures and the volume of the deep
nuclear gray matter (Table 6).

Head circumference was measured at MRI for 188 preterm infants and 35 controls. Head
circumference was significantly correlated with the brain metrics although the correlation
coefficients were lower than those obtained between the brain metrics and the brain volumes
(Table 6).

Discussion

This study demonstrates that measuring the diameters of the cerebral structures and the cerebral
cavity on raw MRI images at term may represent a simple and reliable approach for the
evaluation of brain size and hence brain growth in the at-risk infant. Our results show striking
differences between preterm and full term infants. The bifrontal cerebral, biparietal cerebral
and transverse cerebellar diameters were clearly reduced in preterm infants, without an increase
in the fronto-occipital diameter. The ventricular size was larger in preterm infants, the
difference being significant only for the left side. In preterm infants as in full term infants, the
gestational age at MRI was correlated with the cerebral diameters which continued to increase
over the last weeks of gestation. The ventricular size and the extra axial space dimensions were
not affected by the gestational age at MRI. Gender influenced some parameters with males
having larger bifrontal and biparietal diameters. Brain metrics, as one-dimensional measures
on qualitative MR images, were well correlated to the 3-dimensional volumetric data
previously calculated in this cohort and were also correlated at a lesser degree with the head
circumference.

The measures obtained in our full term infants appear in accordance with those previously
published with the same methodology on fetal MRIs®. The transverse cerebellar diameter
observed in the term infants scanned at 40 weeks PMA was slightly larger than the fetal brain
results obtained at 37-38 weeks GA. That is likely to be explained by the rapid growth rate of
the cerebellum during the last trimester!!. Few data exist about such MRI measures utilized
postnatally. In one study comparing ultrasound and MRI measures in 26 preterm and 8 term
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infants scanned after 37 weeks, similar measures for the length of the corpus callosum and
transverse cerebellum to those in our study were documented!2. Mewes?3 also observed a
similar length for the corpus callosum, splenium of the corpus callosum, the bitemporal
diameter and the fronto-occipital diameter in 20 term infants. This study then compared these
measures with 24 low risk preterm infants at term after reconstruction of the sagittal and axial
slices and alignment on the Talairach atlas. The authors found similar results to ours for the
length of the corpus callosum (no difference) and the bitemporal diameter (decreased in preterm
infants). But they observed a significant increase in the fronto-occipital diameter, which they
hypothesized reflected the non-synostotic dolichocephaly commonly observed in preterm
infants14 due to their sideway head position required by the respiratory support. In contrast in
our study, we did not find any difference in the fronto-occipital diameter in our preterm infants.
This may have differed as many of the infants in our cohort had water pillows, a method known
to prevent head deformation!:16 and were nursed supine from the first days of life as early
endotracheal extubation to nasal CPAP was the common practice in the NICU.

Smaller brain volumes in children and adolescents born preterm have been described in several
studies, along with ventricular enlargement and an increased volume of CSF. Brain metrics,
similar to those used in this study have been applied in evaluating adolescents born preterm
with reductions noted in coronal and sagittal diameters and length of corpus callosum’. Using
manual measurement in 66 preterm and 48 full term individuals scanned at 15 years,
Nosarti’ also demonstrated a decreased whole brain volume (—-6%), reduced cortical grey
matter (—11.8%) and enlarged ventricles (+42 %) which persisted after controlling for brain
volume. Semi-automated volumetric techniques have explored both regional and tissue specific
alterations in brain structure in preterm adolescents. A recent large study demonstrated
decreased grey matter volume in temporal, frontal and occipital cortices as well as in
cerebellum, putamen and thalamus?8. In this study, loss in white matter volume was observed
in the brain stem, the internal capsule and the temporal and frontal lobes. Interestingly some
cerebral regions demonstrated increased grey matter and white matter volume. These increases
were most marked in adolescents who had suffered from major neonatal neuropathologies and
suggest that a compensatory abnormal cytoarchitectural organization may have developed
secondary to cerebral injury Consistent with the hypothesis of abnormal organization,
alterations in orbito frontal sulcal formation has been shown in ex-preterm adolescents®.

Importantly, reduced volume and/or altered cerebral structure have been linked to suboptimal
functional outcomes. For example, lower 1Q has been shown to be associated with smaller
corpus callosum in very preterm infants 20:21 bilateral reduction of the parieto-occipital
volumes?2, and reduced cerebellar volumes23.

Computational morphometric volumetric techniques have notable variation in the findings in
preterm infants at term equivalent. There is a consensus across the studies documenting
increased CSF and reduced deep gray matter volumes2425. However, variation exists in the
delineation of reductions in cerebellar volumes which are found universally in one study1, or
only in the presence of injury in others 2728, Variation also exists in relation to total brain tissue
volumes. Previous data in this same cohort identified a reduction in total brain tissue
volume® in both low and high risk preterm infants compared with term infants in a similar
fashion to another previous smaller cohort study2®. However, other studies with a smaller
number of subjects have not demonstrated this reduction in brain volume in preterm infants
29 1n one larger study (89 preterm compared to 20 full term) Boardman3C described increased
ventricular CSF volume with similar total brain volumes. In contrast to our study, the Boardman
cohort consisted of more mature low risk preterm infants (mean GA at birth 29.9 weeks, mean
birthweight 1290 g) whose head circumference did not differ from the control population. Such
discrepancies had raised the question of the timing of the alterations in brain structure - either
during the neonatal period or later in childhood. Our results using simple measurements
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confirm that impairment in brain growth or brain atrophy may be present at term-equivalent
age. This emphasizes the need for a better understanding of the factors influencing brain growth
during the stay within the NICU. The apparent discordant results within this field may be related
to differences in population characteristics as large variations in prenatal and postnatal standard
of cares between countries have been demonstrated31.

There are limitations to our approach. The imaging protocol and sequence acquisition varied
throughout the study period due to considerations regarding volumetric analyses. The small
size of the control cohort further weakened the statistical analysis. In particular, the small
number of control infants with sagittal slices lowered the statistical power for the group
comparisons for the fronto-occiptal diameter and the length of corpus callosum. The positions
of the landmarks were not precisely defined as the images were not realigned in AC-PC space.
As the principal aim was to develop a simple and widely applicable method for standard clinical
practice, we choose to use the raw MR images, displayed with a Dicom Browser without
reconstructions. This choice led us to eliminate some MRIs from the study because of an
inaccurate orientation of the slices. However, the landmarks chosen allowed good
reproducibility, with the exception of ventricular size.

It should also be noted that there was a high rate of multiple pregnancies (42%) in our preterm
cohort. Twin pregnancies are associated with lower birthweight32 and higher risk of
neurological impairment33. Even though the proportion of IUGR (11%) in our population was
the range of the rates previously published in similar cohorts34:3% these factors - associated
with an enhanced role of genetic factors on brain size - may affect our results.

We did not adjust the brain metrics for head circumference because we considered that the
skull growth in our population may reflect directly the cerebral tissue growth or CSF expansion,
and not external factors. We chose to study the whole cohort including the infants with cerebral
injury, including intraventricular hemorrhage. The number of infants with severe cerebral
injury (cystic PVL and IVH grade 4) was low representing less than 10 % of the population.
Moreover, it appears that such neuropathologies may represent only the visible component of
a much more diffuse lesion that could be detected by brain metrics.

Conclusions

This study has defined a reliable reproducible set of brain metrics that can be easily applied in
the clinical setting. These measures have good comparability to that of brain volumes. Finally,
the measures identify alterations in brain structure in preterm infants in three key brain
diameters — bifrontal, biparietal and transverse cerebellum. Further investigations are in
progress to identify the relationships between brain metrics with neonatal factors and
neurodevelopmental outcome. These measures may assist in both the research and clinical
settings to better delineate the impact of preterm birth on brain development.
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Figure 1.
Selected slices and landmarks (see Table 1) used to calculate the coronal brain metrics with

example of a full term infant (A) and a preterm infant (B)
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Figure 2.

Cgmparison (median, 101-90t" percentiles) of the fronto-occipital, biparietal and transverse
cerebellar diameters measured in term infants (circle) and in the preterm infants (diamond)
with the results obtained during pregnancy by measuring fetal brains (square) with the same
methodology (adapted from Garel with permission).
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Figure 3.

Comparison of bifrontal, biparietal and transverse cerebellar diameters in preterm infants
(diamond) and full term infants (circle) (A) by their gestational age at birth and (B) by their
post menstrual age at time of MRI demonstrating the lower values obtained in the preterm
cohort.
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