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Abstract

Background: A monograph systematically evaluating recent evidence on the dose-response
relationship between low-dose ionizing radiation exposure and cancer risk required a critical
appraisal of dosimetry methods in 26 potentially informative studies.

Methods: The relevant literature included studies published in 2006-2017. Studies comprised
case-control and cohort designs examining populations predominantly exposed to sparsely
ionizing radiation, mostly from external sources, resulting in average doses of no more than 100
mGy. At least two dosimetrists reviewed each study and appraised the strengths and weaknesses of
the dosimetry systems used, including assessment of sources and effects of dose estimation error.
An overarching concern was whether dose error might cause the spurious appearance of a dose-
response where none was present.

Results: The review included 8 environmental, 4 medical, and 14 occupational studies that
varied in properties relative to evaluation criteria. Treatment of dose estimation error also varied
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among studies, although few conducted a comprehensive evaluation. Six studies appeared to have
known or suspected biases in dose estimates. The potential for these biases to cause a spurious
dose-response association was constrained to three case-control studies that relied extensively on
information gathered in interviews conducted after case ascertainment.

Conclusions: The potential for spurious dose-response associations from dose information
appeared limited to case-control studies vulnerable to recall errors that may be differential by case
status. Otherwise, risk estimates appeared reasonably free of a substantial bias from dose
estimation error. Future studies would benefit from a comprehensive evaluation of dose estimation
errors, including methods accounting for their potential effects on dose-response associations.

Methods

lonizing radiation exposure is unavoidable in everyday life. The foremost concern about
low-dose ionizing radiation exposure is the potential for increased risk of cancer (1). Since
the 1950s, authoritative bodies have relied mostly on data from the Life Span Study (LSS) of
Japanese atomic bomb survivors to project cancer risks from ionizing radiation exposure
(2,3). The acute ionizing radiation exposure in the LSS population differs from the
protracted lower dose rate exposures in most occupational and environmental settings;
therefore, the transport of risk in the LSS to other populations (eg, radiation workers) is
uncertain (4-6).

The direct estimation of risk is preferred when data are sufficient, and health risks from
ionizing radiation in several populations have been studied extensively (2,3). In 2006, the
National Research Council of the National Academy of Sciences’ Committee on the
Biological Effects of lonizing Radiation (BEIR) published its most recent review of existing
data on health effects from low levels of ionizing radiation, hereafter referred to as BEIR VII
(2). The review examined a wide array of information from medically, occupationally, and
environmentally exposed populations; however, the Committee again relied on LSS data to
estimate risk because of uncertainty in risk estimates and a general lack of accounting for
errors in dose estimation in other studies.

The relevant literature has grown considerably since BEIR VII. The National Cancer
Institute is leading an effort by international experts to critically evaluate a group of post—
BEIR VII studies and assess several potential sources of biases on estimates of risk from
low-dose ionizing radiation exposure (7). The National Cancer Institute assessment largely
followed recent guidance by the United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR) for evaluating radiation epidemiologic studies (8). As a part
of this assessment, the work herein is a systematic appraisal of the strengths and weaknesses
of the dosimetry systems used in these studies, including an assessment of sources and
effects of potential discrepancies between the true absorbed dose to target tissues from
ionizing radiation (ie, the preferred dose quantity) and the value used in dose-response
analyses, hereafter referred to as dose estimation error.

Study Selection

Details on study selection are provided elsewhere (7). Briefly, investigators systematically
searched public domain databases for epidemiologic studies on radiation-exposed
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populations published from 2006 through 2017. Studies were either cohort or case-control
designs with dose-response analyses of the relationship between cumulative radiation dose
and cancer, reporting effect measures in terms of risk per unit dose or at a given exposure
level. The primary exposure was to sparsely ionizing radiation at low doses and low-dose
rates resulting in an average absorbed dose to the whole-body or target tissue of interest of
100 mGy or less. Exposures stemmed mainly from external gamma and x-rays; however,
contributions from other sources (eg, incorporated radionuclides or neutron exposures) were
considered in some studies. Articles from the Fifteen-Country Workers Study (9) published
within the eligible period were excluded because main findings were reviewed in BEIR VII
(2). When more than one article pertained to a study population, the synthesis was limited to
the study with the longest follow-up. When studies stemmed from the same population and
observation period, selection was based on consensus of the monograph working group (7).

Assessment Strategy

Investigators categorized studies as environmental, occupational, or medical exposure. At
least two dosimetrists independently reviewed each study within a category. All dosimetrists
convened to discuss, reconcile, and consolidate disparate findings within a category to
achieve consensus. Table 1 describes dose estimation errors considered in this review.
Additional information is provided in Appendix A and a companion paper (27). Dose
estimation error comprises both systematic and random components, where systematic error
represents an inequality between the long-term averages of true [ X;{#)] and observed [Zj(7)]
dose to individual, / in group, /, at time, £ and random errors represent natural variation in
X9 and Zj(§). Measurement error [Uf(#)] that is assumed to be independent and
identically distributed is said to be unshared. Conversely, correlations in errors between
individuals, groups, or time represent shared error. Random errors reduce statistical power
(and increase the width of confidence intervals), but usually they do not distort the results of
statistical tests of the null hypothesis. Systematic error that is nondifferential with respect to
case status is unlikely to result in a spurious positive dose-response. In contrast, error that is
differentially distributed can lead to false-positive or -negative results. The effect of a
component of error on dose-response relationships depends on the magnitude and the error
structure (eg, classical or Berkson) and whether it is shared among some participants or if
independent (see Appendix A).

Each reviewer evaluated potential sources of dose estimation error (Table 1), strengths and
weaknesses of the exposure assessment methods, and the potential for bias in risk estimates.
Key issues evaluated were as follows:

. Directness: How were individual doses determined? Generally, greater weight is
given to evidence from studies directly measuring dose at the individual level,
followed by estimates derived from measurements on other similarly exposed
individuals and then models using area measurements (eg, radionuclide plume or
soil concentrations) and an individual’s proximity to the radiation source (eg,
work history, domicile).

. Complexity: Were exposures dynamic or occurring at a constant long-term
average rate (as with natural background)? Did exposure scenarios involve
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multiple radiation sources and pathways? In general, the likelihood of substantial
dose estimation error increases with the complexity of the exposure scenario
considered in the dose reconstruction.

. Completeness: Did investigators use complete data and consider all relevant
sources and pathways? Systematic error can result from incomplete information
on organ dose. To the extent practicable, reviewers assessed the completeness of
the exposure database.

. Uncertainty: Was dose to the target organ or tissue assessed? To what degree was
the potential for bias in dose estimates examined by investigators? Was there a
known bias? Did investigators report dose estimates based on information that
might have depended on the disease status of the individual (ie, potential for
recall bias)? Did investigators account for dose error in dose-response analyses?
The reviewers evaluated the investigators’ efforts to examine the potential
consequences of dose estimation errors on risk estimates.

. Validation: Reviewers assessed the extent to which investigators validated
indirectly obtained dose estimates (eg, by direct measurements on a subsample
population).

Among numerous publications on radiation health effects since BEIR V11, 26 were selected
for critical evaluation based on criteria used in the systematic review (7). The review
included 8 environmental studies, 4 medical studies, and 14 occupational studies (Table 2).
Among these, 11 (42%) reported organ absorbed dose (28,32,44,55,57,59,64,78,82,85,89).
Others reported in units of equivalent or effective dose. Exposures spanned from 1905 to
2011, with 12 studies reporting exposures prior to 1960. The following sections briefly
describe eligible studies and relevant findings. Table 3 summarizes key strengths and
weaknesses of the dosimetry systems. Appendix B provides additional information on
selected studies.

Environmental Studies

There were eight environmental studies (study IDs 1-8; Table 2). Data from individual
monitoring were mostly unavailable; therefore, exposures were generally assessed using
models relating source and pathway to an individual’s potential for exposure. Exposure
potential stemmed primarily from occupancy (ie, one’s time and distance from the radiation
source); however, some estimates included modifications given individual characteristics
(eg, age, shielding, and food and water consumption). Environmental studies comprised
exposure subcategories of natural background and human activities. The natural background
studies (32,36,41,48) involved relatively constant rates of exposure from external sources
(ie, single source and pathway), whereas human activities (28,29,44,49) involved planned
and unplanned releases of radiation resulting in dynamic exposures to surrounding
populations.
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Information on dose estimation errors was sparse. Another potential weakness was the
reliance on self-reported information in some environmental studies (28,29,32,44,49).
Information obtained from interviews or questionnaires is subject to recall errors that could
be differential by case status depending mostly on the timing of data collection. For
example, the population-based case-control study of leukemia in children exposed from the
Chernoby! accident (study ID 1) used information from interviews conducted after case
ascertainment in estimating doses; however, investigators did not examine the potential for
bias from differential recall (28).

Background Radiation Studies.—There were four natural background radiation studies
(32,36,41,48). Three were national studies of the effects of terrestrial gamma rays that
estimated dose using existing radiation survey data. Study investigators assessed dose
without direct measurement or interview. In all three studies, exposures inside buildings
contributed more dose compared with the outdoors. The Great Britain study (study ID 4) had
access to individual measurements of gamma rays in buildings but assessed exposures to
study subjects as the mean for the county district of birth (36). The Swiss and Finnish
studies (IDs 5 and 7, respectively) aggregated results in the form of average outdoor gamma-
ray dose rates in geographic grid squares (41,48). The Finnish study converted these to
indoor dose rates using house-type specific shielding factors. The Great Britain study
considered some sources of dose uncertainty (37) but concluded the effect from these
sources was limited to a loss of statistical power. There was some evidence of a potential
downward bias in risk estimates in the Swiss study possibly caused by a lack of dose
information due to residential mobility (41). None of the national studies included dose from
other radiation sources, such as ingestion of naturally occurring radionuclides and medical
exposures; however, sensitivity analyses in the Finnish study found no evidence of a
potential bias from unmeasured exposures related to computer tomography (CT)
examinations. National study investigators did not evaluate other sources of dose
uncertainty.

The Chinese background study (study ID 3) applied numerous measurements in the study
and control areas to estimate indoor and outdoor doses based on hamlet-specific averages
(32). Intercomparisons with groups of residents by dosimeters and biologic dosimetry
systems provided some validation of dose estimates (33,108). One intercomparison study
suggested that the average coefficient of variation (CV) of the ratio of measured values to
the estimated values was less than 22% (33). The potential for confounding by medical
exposures appears small based on previous studies of this cohort (109). Internal doses were
not assessed. Dose error was not addressed in dose-response analyses.

Studies of Human Activities.—Human activity studies examined cancer risks in persons
exposed to radioactive contamination in and around their place of residence (28,29,44,49).
This group of studies required retrospective assessment of time-varying doses under
different exposure scenarios. The levels of exposure were, in general, a function of source,
occupancy, release rate, environmental transport, exposure pathway, and biokinetics. Given
this complexity, the modeling necessary to estimate individual dose was unique to the
scenario at hand, and the methods used were generally more complex than those for
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background studies. A common weakness among these studies was the lack of accounting
for dose estimation errors in dose-response analysis.

Study ID 1 is a population-based case-control study of childhood leukemia in regions of
Belarus, Russia, and Ukraine contaminated by the Chernobyl accident (28). Davis et al. (28)
calculated absorbed dose to red bone marrow (RBM) using residential histories and field
measurements for external doses and radionuclide concentrations and assumptions on
individual food and water consumption rates for internal doses. The dosimetry addressed
time dependence of these parameters through residential changes of study subjects. The dose
reconstruction used information on residence and personal information obtained by
questionnaires administered after case ascertainment; however, there was no assessment of
the potential for differential recall. Investigators used Monte Carlo simulation techniques
and mean values of 1000 realizations from internal and external dose sources in dose-
response analyses (personal communication with study authors on September 20, 2018).
Excess risk was most evident in Ukraine, diminished in Belarus, and not found in Russia.
Although investigators mentioned dosimetry errors as a possible cause, they deemed them an
unlikely explanation for this heterogeneity because of the common dosimetry methods
across countries. Instead, there was evidence of a bias in control selection such that Ukraine
controls tended to be selected from less contaminated areas than cases given differences in
selection procedures (110).

Study 1D 2 examined cancer incidence from 1982 to 1995 among Caucasian adults (10 446
men and 11 048 women) who resided within 5 miles of the Three Mile Island (TMI) nuclear
power station during the 1979 partial reactor core meltdown (29). Dose estimation combined
self-reported information on occupancy within the 5-mile zone for 10 days following the
accident with calculated time-dependent gamma dose-rate distributions (30). The approach
intentionally overestimated doses (approximately 40%). Estimate precision was poor, with
uncertainty in dose ranging from two- to sixfold. Dose-response analyses did not account for
dose uncertainty. Because location data were collected about 2 months after exposure and
well before follow-up, the potential for differential recall was small.

Study ID 6 examined cancer incidence in Techa River residents exposed to releases from the
Russian Mayak Radiochemical Plant in the Southern Urals (44). Dose accrued externally
from fission product contamination in river sediment and surrounding soil and accrued
internally from the consumption of contaminated water, milk, and food. Interviews were
used to assess group occupancy factors but not for individual dose assessment. Dose was
treated as a time-dependent continuous variable calculated as the 5-year—lagged absorbed
dose to the stomach. Doses were estimated using the Techa River Dosimetry System
(TRDS-2009). As in most models, estimates relied on specific choices for uncertain
modeling parameters, which is a source of shared uncertainty. Model validation efforts were
noteworthy, including multiple intercomparisons with results from other models,
radionuclide assays, and opportunistic dosimetry (45, 111-116). In particular, two studies of
stable chromosome aberrations assayed via fluorescence in situ hybridization (FISH)
suggest trends with dose a bit lower than (although comparable with) those in the Japanese
atomic bomb survivors (115,116); these and various studies of electron paramagnetic
resonance in tooth enamel have been summarized in a recent review (113). A recent
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assessment yielded realization distributions with geometric standard deviation values for
internal absorbed dose to the stomach of about 2 to 3, with external dose uncertainty slightly
less (117). Other reports have indicated dose uncertainties on the order of four- to fivefold
(108). Investigators did not account for dose uncertainty in dose-response analysis.

In the early 1980s, a large quantity of steel reinforcing bars contaminated with cobalt-60 was
used in the construction of schools and residential buildings in Taiwan. This contamination
was not discovered until 1992, when measurements revealed dose rates of 0.5-270 pGy/h
(118). Breast cancer and leukemia were examined in a cohort of 6242 building residents
with adequate information for dose assessment. As in previous studies of this cohort, doses
were assessed using the Taiwan Cumulative Dose system (50,51). Occupancy factors were
assessed by interviews, with some taking place after case ascertainment; therefore, some
bias from differential recall appeared possible. Model validation procedures involved
comparisons of radiation survey data and personal dosimetry measurements in a sample of
residents. Dose-response analyses did not describe or account for dose estimation errors.
Analysis of chromosome aberrations in these individuals has shown excess micronuclei
(119), as well as dicentric chromosomes (120), in the exposed group, but no dose-response
analyses were carried out in either study. Doses are likely too low to yield statistically
significant trends, in view of the difficulty in detecting signals much below 100 mGy (121).

Medical Studies

The medical studies (study IDs 9 to 12; Table 2) included a variety of different populations
and exposure scenarios: 1) Study ID 9 examined cancer in adult patients with acute
myocardial infarction who underwent cardiac imaging and therapeutic procedures (52); 2)
two studies (study IDs 10 and 11) focused on cancer risk following pediatric CT
examinations (55,57); and 3) the Pooled International Radiation and Thyroid Cancer
Epidemiology Study (PIRATES, study ID 12) is a pooled analysis of 12 studies of thyroid
cancer following radiation exposure in childhood; subanalyses of nine studies focusing on
children exposed to thyroid doses below 0.2Gy and 0.1Gy, respectively, satisfy criteria for
this review (59). In PIRATES, cases with doses below 0.1Gy consisted mainly (82%) of
atomic bomb survivors (122,123) and the Tinea Capitis cohorts (124); therefore, the present
review focused on dose estimation errors in the Tinea Capitis cohort (60,61).

Dose estimation errors stemmed from missing data on both the patient’s characteristics and
the protocol implemented for every procedure, with, for example, age being used as a
surrogate for physical characteristics such as height and weight. These errors are not likely
to be differentially distributed. Medical radiologic examinations and/or treatments are
usually carried out based on generic protocols developed for each procedure, which is then
adapted to the physical characteristics of each patient. Missing information on the specific
procedure used can be remedied by imputation of values based on typical protocols;
however, this practice results in Berkson error and potentially shared systematic error.
Moreover, organ doses are estimated using models based on measurements made with
phantoms. Berkson error stems from using a single phantom for a range of body sizes.
Shared error can result from an incorrect transport calculation for a given body size and
orientation because of an imperfect phantom or transport code.
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Cardiac Imaging Patients.—Eisenberg et al. (study 1D 9) (52) examined cancer risks
from radiation exposure in 82 861 adult patients undergoing fluoroscopically guided
procedures (with or without contrast media) or nuclear medicine procedures following acute
myocardial infarction. The authors calculated the cumulative effective dose for each patient
by summing average values per procedure abstracted from the literature (53,54). This was
accomplished by linking patient billing codes to procedures of interest, which were
myocardial perfusion imaging (15.6 millisievert [mSv]), diagnostic cardiac catheterization
(7.0 mSv), percutaneous coronary intervention (15.0 mSv), and cardiac resting
ventriculography (7.8 mSv). These estimates did not consider heterogeneity in dose within
broad groups of procedures or between centers or individuals. The investigators
acknowledged that the variability of the doses between centers and operators was a
limitation; however, they did not carry out a formal quantitative evaluation. Another
limitation was the use of effective dose, which can greatly differ from the absorbed dose to
organs of interest under partial-body irradiation and nuclear medicine procedures.

Pediatric CT Studies.—The French and United Kingdom CT cohorts (study IDs 10 and
11) were launched in the early 2000s and included 67 274 and 180 000 pediatric patients,
respectively (55,57). These studies represent a new source; there were no previous CT
studies in BEIR VII. In both studies, the authors collected information from the radiology
information system of participating radiology departments. The radiology information
system is devoted to the administrative recording of the radiology activities but includes only
limited information on the type of examination performed (ie, body region scanned). Dose
reconstruction therefore involved typical protocols defining image-acquisition parameters
rather than individual data. Doses were based on typical values obtained at the national level
in study ID 11 (58), whereas an extensive two-step survey in participating hospitals allowed
hospital-based protocols to be used for dose reconstruction in study ID 10 (55,56), with
imputation of median values from other radiology departments in cases of missing data. In
both cases, assigned doses do not reflect interindividual variability. The Picture Archiving
Communication System, which provides systematic recording and archiving of all images
from the CT machine as well as a summary of the machine settings associated with each
image taken, was progressively introduced worldwide after the mid1990s and could be used
to derive more individualized organ dose estimates. Dose uncertainties were not quantified
and therefore not considered in dose-response analysis.

The PIRATES (Low-Dose) Study.—The low-dose PIRATES study (study ID 12)
examined thyroid cancer risk following exposure to low doses (<200 mGy) of ionizing
radiation in childhood by pooling data from nine studies with individual estimates of thyroid
dose (59). The Tinea Capitis cohort included 10 834 children treated in the 1950s in Israel,
who represent most children involved in the pooled analysis (124). Individual doses used on-
phantom measurements simulating x-ray prescriptions implemented in treatment centers
(62). In reanalysis of the Tinea Capitis cohort, the authors assessed multiple sources of dose
estimation error and developed a predictive model to account for major sources of
uncertainty in dosimetry (60,61). The predictive model used information collected from
three studies of anthropomorphic phantoms to estimate dose, using age at first irradiation, x-
ray filtration, prescribed dosage, and the number of treatments. The model accounted for

J Natl Cancer Inst Monogr. Author manuscript; available in PMC 2020 November 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Daniels et al.

Page 9

missing data by averaging the prediction equation over the probability distribution of the
required variables, given the available data. The model also accounted for random errors
representing intraindividual effects (due to motion during the treatment or peculiarities in
positioning of the body), interindividual effects (distribution of physical characteristics of
the head), and other sources of random error. Researchers combined errors to compute the
expected true dose from the available patient data and the prediction equation using a Monte
Carlo approach. Thus, for dose-response modeling, Poisson regression calibration was
accomplished by using expected true dose categorization.

Dose-response regression parameter estimates, standard errors, and inferences were
essentially unchanged after accounting for measurement error, which study investigators
attributed to the linearity of relative risk in dose and the predominance of Berksonian error
(60,61). There was also little evidence of influence on the estimated potential effect
modifiers attributable to dose uncertainty. This assessment accounted for most major sources
of uncertainty; however, it did not account for measurement error associated with the
phantom studies.

Occupational Studies

The 14 occupational studies (study IDs 13-26; Table 2) comprised three working
populations: 1) Nuclear workers (NW) who were predominantly exposed to penetrating
gamma rays with energies of 100-3000keV; 2) US radiologic technologists (USRT) exposed
externally to x-rays with average energies of 30-50keV from diagnostic and therapeutic
procedures; and 3) Chernobyl liquidators primarily exposed to high-energy gamma rays
from fission product surface contamination resulting from the nuclear accident. Ten studies
used measurement data from personal monitoring to estimate individual cumulative dose.
Four studies combined incomplete measurement data with indirect methods using proxy
measures, questionnaires, expert judgment, and statistical models. All studies updated
information on cohorts (or subcohorts) previously reviewed in BEIR VII.

Nuclear Workers.—The NW studies (n=11; study IDs 13-26) comprised the largest group
of occupational studies (Table 2). Study populations primarily comprised workers employed
in research, weapons and fuel production, commercial power, or military operations. Doses
encompassed exposures beginning as early as the mid-1940s and ending in 2005 (Table 2).
Annual exposure patterns largely follow Cold War weapons production, with the bulk of the
collective dose in studies occurring in the mid-1960s (Appendix B). There was overlap
between studies stemming from the United Kingdom, United States, and French NW studies
(66,81,95) comprising subcohorts pooled in the International Nuclear Workers Study
(INWORKS) (82). Also, some Korean workers in a cancer incidence study (study 1D 16)
(68) were included in a previous mortality study (study ID 13) (63).

INWORKS (study 1D 23) examined mortality patterns among 308 297 nuclear workers
employed in France, the United Kingdom, and the United States between the years 1944 and
2005 (82,83,125,126). This study updated the dosimetry system used in the previous
collaborative study coordinated by the International Agency for Research on Cancer, which
included a comprehensive assessment of dose uncertainties (84). Investigators made
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considerable efforts to acquire complete dose histories and to derive unbiased estimates of
absorbed dose to target tissues, considering known sources of systematic errors in facility
dosimetry over time (17,84). In particular, investigators derived facility- and time-specific
“bias factors” to estimate absorbed dose from recorded dose. For RBM dose, recorded
values were divided by bias factors ranging from 1.4 to 2.2, with corresponding CV values
ranging between 0.2 and 0.6. For colon dose, which was used in analyses of all solid cancers
combined, factors ranged from 1.2 to 2.1 (CV values 0.3-0.8). Investigators also quantified
uncertainty in dose conversion; however, dose-response analyses did not use this
information.

INWORKS comprised several subpopulations in previous epidemiologic investigations
spanning decades. Over the course of these studies, there have been a number of
improvements in dose estimates afforded through multiple records reviews. The extended
follow-up also enabled dosimetry to incorporate improvements in measurements over time;
however, this did not alleviate errors in early dosimetry that were carried forward. By
design, the selection of similar study populations reduced heterogeneity and the potential
confounding from unmeasured high linear energy transfer radiations and incorporated
radionuclides. Nevertheless, data were inadequate to quantify contributions from internal
dose and neutron exposures. Instead, dose-response analyses indirectly examined effects
from other radiations in alternative models (82,83).

INWORKS and the US atomic veterans study (study ID 24) estimated absorbed dose
(82,85), whereas others used unadjusted doses in units of whole-body equivalent dose
(66,69,74), personal dose equivalent at a tissue depth of 10mm [#(10)] (81,95) or effective
dose (63,68,71,80). Most data originated from measurements using film meters in the early
years (1940s-1980s) and thermoluminescent dosimeters thereafter. The US atomic veterans
study also used available measurement data from film meters; however, relatively few
individuals were assigned personal dosimetry (85). Only 25% of participants had film badge
records accounting for at least 80% of their dose (86). Therefore, estimates of RBM-
absorbed dose stemmed primarily from group radiation measurements or by using time-
motion models based on job descriptions and area radiation levels. There was no information
on validation methods, although there was reasonable agreement with estimates from a
detailed dose reconstruction involving a subset of workers (86). The average CV in the
subset analysis was about 0.4-0.5, and values ranged upward of threefold in some exposure
scenarios. In this comparison, doses were consistently lower in the detailed dose
reconstruction compared with the cohort-assigned values; therefore, a scaling factor of 0.64
was used in the epidemiologic study to correct cohort doses (85).

Some NW populations were susceptible to dose from incorporated radionuclides and
neutron exposures (Table 4). Recorded whole-body doses included contributions from
neutrons (63,66,68,69,71,80) and 50-year committed effective doses from incorporated
radionuclides (63,68,71,80) in several studies. The Rocketdyne NW study (study ID 17)
quantified internal dose from 16 different radionuclides; however, quantification was limited
to those workers judged to have a 50-year committed effective dose of 10 mSv or greater
(69,70). In that study, there were 46 970 cohort members, including 5801 monitored for
radiation and 2322 monitored for internal dose. Study investigators estimated annual doses
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from internally deposited radionuclides for 292 workers. The inclusion of internal dose
showed no meaningful effects on the dose-response. The Canadian and US NW studies (IDs
19 and 22, respectively) estimated dose from tritium uptakes (74,81). Dose-response
analyses conducted with and without tritium dose or treating tritium as a separate model
term did not suggest substantial tritium-related effects. In the French NW study (study ID
26), investigators examined confounding by internal exposures and concluded that
neglecting internal dose did not substantially bias risk estimates in this cohort (104). Studies
without adequate quantitative data on neutron exposures or incorporated radionuclides
examined the effects in various sensitivity analyses using markers of exposure potential
(66,82,95). These analyses did not reveal evidence of a strong bias in risk estimates resulting
from excluding dose from neutrons and internal emitters.

Doses below detection limits (BDL) were explicitly addressed only in the UK National
Registry for Radiation Workers (UKNRRW) study (study ID 15) (66); however, three other
studies (study I1Ds 22, 23, and 26) used dosimetry systems that have addressed detection
limits in previous reports involving full and subcohort populations
(22,23,25,67,106,127,128). In studies of the UKNRRW study, results with and without BDL
dose adjustments revealed no evidence of meaningful bias in risk estimates (67,129).
Similarly, there was little evidence of a strong bias from BDL doses in other studies
(22,23,127,128). Among these, a “worst-case” example found a 22% drop in the linear
excess relative risk per sievert (ERR/Sv) for all cancers in a previous study of Oak Ridge
National Laboratory workers, also included in the US NW study and INWORKS, after
adjusting for BDL doses between 1943 and 1956, when film badge dosimeters were
processed weekly (128). In subsequent examinations of these data, effects on risk estimates
were more modest and potentially completely offset by other errors (22,127).

At some facilities, notional doses were assigned to periods of unmonitored exposure (eg,
because of a lost badge or doses at a previous facility) as a means of assuring compliance
with dose limits. The UKNRRW study accounted for notional doses, which lowered the
collective dose from pro-rata assignments from 295 person-Sv to 15 person-Sv but did not
meaningfully change risk estimates given a small change in the total collective dose (4260
person-Sv) (25). The lack of substantial bias from notional doses was also evident in a study
of shipyard workers included in the US NW study and INWORKS (26).

Most studies expended considerable efforts to gain complete exposure histories;
nevertheless, investigators of the Canadian NW study raised concern over missing data (74).
The study may have omitted exposures to a group of early workers because of information
lost during transfer to the central dose registry. The authors speculated that the missing data
might explain the dose-related risk of solid cancer mortality observed among these workers
that was absent among other workers; however, there was no attempt to examine the
plausibility of the error to fully explain the risk difference. Recently, the missing data have
been found and researchers have initiated an update to the study; therefore, lingering
questions on bias in risk estimates from the missing data may be resolved soon (personal
communication with study authors on October 17, 2018).
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Work-related medical x-ray examinations (WRX) are a potential source of unmeasured
occupational exposure in some cohorts. The majority of WRX dose stems from fluoroscopic
or photofluorographic chest exams in the 1940s and 1950s; therefore, studies including
workers employed prior to 1960 appear more susceptible to dose error from this source
(130-133). In some US NW studies, WRX data were abstracted from medical records to
estimate dose (101-103,134-137). Of these, three examined the potential for bias from
unmeasured WRX, with two reporting no effect (134,135) and one showing attenuation of
the association between lung cancer mortality and external dose, including WRX (136). In
this review, WRX was examined in the French NW cohort (105). Medical records were
unavailable; therefore, doses were estimated as the product of assumed yearly exams and
dose per procedure. Because it could not be ruled out, fluoroscopy (1.5-3.0 mSv per exam)
was assumed prior to 1955 and radiography (0.1-0.3 mSv per exam) thereon. Risk estimates
without WRX were imprecise in this cohort; adding WRX doses led to modest attenuation
(7-47%) and further reduction in precision, yet positive but nonsignificant dose-response
associations persisted.

The NW studies did not account for random measurement error in dose-response analyses;
however, doses that are the sum of many measurements (ie, as in cumulative dose) likely
have relatively small random error. Previous examinations have provided little evidence of a
substantive bias from random error. Xue et al. (127) examined the simultaneous effects of
BDL doses and random error on findings in a study of Oak Ridge National Laboratory
workers included in the US NW study and INWORKS. They concluded that random errors
in measurements were unlikely to substantially bias risk estimates. Similarly, a detailed
examination of the relative error in cumulative doses from film badges worn by Hanford
workers (also included in study IDs 22 and 23) suggested that the increase in the total
variance of measured cumulative doses is unlikely to be more than 1% of the total variance
in true cumulative doses, leading to negligible bias in the risk estimates (138). A similar
conclusion was reached regarding the Canadian NW study (75).

US Radiologic Technologists.—Three publications on cancer in the USRT (study 1D
25) were eligible for consideration (89-91), with each using identical dosimetry but differing
target organs of interest (92). For brevity, the narrative is limited to a study of breast cancer
incidence and mortality patterns in females certified by the American Registry of Radiologic
Technologists for at least 2 years from 1926 through 1982 (89). Exposures were
reconstructed for the period 1916-1997 for technologists conducting medical diagnostic and
therapeutic procedures using ionizing radiation. The mean cumulative breast dose was 37
mGy, ranging from 0.058 to 2500 mGy. (92).

Investigators used available personal dosimetry measurements and information on work
procedures, protection practices (eg, apron use), X-ray imaging technology, and other factors
to estimate whole-body dose equivalent and subsequently absorbed dose to breast tissue.
Parameters used in estimation procedures were treated as expected values with an associated
probability distribution. Monte Carlo methods were used to generate multiple dose
realizations for the full cohort. These methods accounted for sources of shared and unshared
errors, including treatment of BDL doses and errors associated with changing dosimetry and
work practices over time. Regression calibration was used to account for random error. The
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CV in cumulative breast dose from 1000 dose realizations was about 2.4. The dosimetry
system was partly validated by comparison with badge reading at five major US hospitals
and biodosimetry methods linking this study to observations in LSS participants (92).
Validation was also conducted by a study of stable chromosome aberrations assayed in 238
of the USRT participants using FISH suggesting that the trends of stable chromosome
aberrations with dose are comparable with those in the Japanese atomic bomb survivors and
in various other groups (139).

Dosimetry strengths were the collection and integration of individual film badge dose data
available between the years 1960 and 1997, extensive efforts to account for sources of dose
estimation error, and methods used to validate dose estimates. However, relying on indirect
estimation because of the unavailability of measurement data prior to 1960 was an important
limitation. Film badge measurements were available for 39% of the years worked, with
about 25% of the collective dose derived from film badge data. The proportion of film
badge—based dose estimates varied by the year of first exposure, ranging from essentially
none for the earliest workers to 60% for those who began working after 1980. Moreover,
birth cohort and total cumulative dose were associated, and the dose-related excess risk of
breast cancer incidence was strongest in women born before 1930 (ERR/Gy = 1.6, 95%
confidence interval [CI] = 0.3 to 3.9). In fact, the experience of early workers was the
primary determinant of cancer incidence and mortality risk. Because of the large uncertainty
in early doses and the strong birth cohort effect, the authors interpreted results cautiously.

Chernobyl Liquidators.—Two case-control studies were reviewed. The first (study ID
14) was nested within cohorts of mostly male (>95%) liquidators from Belarus, Russia, and
Baltic countries who took part in recovery activities between the accident date (April 26,
1986) and December 31, 1987 (64). The second (study ID 20) was nested within a cohort of
110 645 male Ukrainian workers who were 20 to 60years of age during cleanup activities
between the years 1986 and 1990 (78). The exposure to liquidators was predominantly
penetrating whole-body gamma radiation emitted from radionuclides (primarily 137Cs) on
contaminated surfaces. Dose from ingesting contaminated food and drinking water was
plausible, especially in those living in Belarus; however, investigators posited that the dose
contribution from incorporated radionuclides was at least an order of magnitude lower than
the external contribution (140).

Studies of Chernobyl liquidators reported in BEIR V11 relied primarily on dose data in the
Russian National Medical and Dosimetric Registry, which was known to have several gaps
and problems (79,140). To account for the Russian National Medical and Dosimetric
Reqgistry shortcomings, researchers combined information from available radiation
measurements with self-reported data to develop the Radiation Dose Reconstruction with
Uncertainty Estimates (RADRUE) software package used to estimate absorbed dose to RBM
for workers in both studies. In general, RADRUE dose estimates are the product of exposure
rate and irradiation time, given a number of exposure scenario parameters. Input data
included work histories, exposure rates, adjustment factors for protective equipment used,
and dose conversion coefficients. The output included point estimates of dose and associated
uncertainties, the latter reported as geometric standard deviation values across all liquidator
categories between 1.7 and 3.4 (65). The methods used to estimate uncertainty enabled
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examination of the effects of random errors on dose-response analyses, which suggested
negligible effects on risk estimates, although confidence intervals were slightly wider (64).
Validation of RADRUE was accomplished by intercomparisons with data from personal
dosimeters and biological dosimetry, including both ESR and FISH (64,65,79,141).
RADRUE does not provide information on internal exposure; however, separate estimation
of doses and attendant uncertainties from consumption of contaminated food were calculated
for study participants who resided in Belarus.

The dosimetry systems relied on self-reported information from a selected set of cases and
controls, using in-person and proxy interviews. As a result, differential recall may have
introduced a bias in dose estimates. To reduce potential biases, the interviewers were blinded
to disease status. Similarly, dosimetrists estimated doses without knowledge of disease
status. Some efforts to assess recall accuracy in these workers have suggested that a large
bias in dose estimates was unlikely; however, an examination sufficient to exclude a bias in
liquidator doses is difficult, if not impractical (79). Thus, the potential for spurious dose-
response results from differential recall cannot be ruled out.

Discussion

It has been more than a decade since the BEIR VI review. An important conclusion in BEIR
V11 was that low-dose studies were generally unsuitable for projecting population risks, in
part, because dose estimation errors had not been taken into account. Since then, there have
been nearly 100 publications of study findings on the dose-response association between low
linear energy transfer ionizing radiation and cancer. Among these, 26 studies meeting a
priori quality for selection were independently reviewed by at least two dosimetrists against
common key characteristics of directness, complexity, completeness, uncertainty, and
validation of dosimetry methods. This approach provided a far-reaching review and
consistent presentation of findings by source of exposure. The findings, in concert with
ongoing analyses of other factors potentially affecting risk estimates, enable a
comprehensive assessment of the weightof-evidence on low-dose radiation carcinogenicity.
Of studies evaluated, three case-control studies vulnerable to differential recall appeared
most susceptible to a spurious dose-response caused by dose error (28,64,78). These and
other sources of dosimetry error in study categories of environmental, medical, and
occupational exposures are described below.

Environmental Studies

Most environmental studies in BEIR V11 were ecologic, including all background radiation
studies and previous studies of TMI residents. Excluding children of exposed adults, 17
longitudinal studies were reviewed in BEIR VII; therefore; the eight eligible studies herein
represent a noteworthy increase in available literature. There were earlier examinations of
Techa River— and Chernobyl-exposed residents that preceded the studies in the current
review (28,44). In particular, the Techa River dose reconstruction has evolved considerably
post-BEIR VI, including some validation. In contrast, there was no indication of
improvements in dose reconstruction supporting Chernobyl resident studies.
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Except for study ID 2 (29), environmental studies were reviewed by UNSCEAR (108). In its
2017 report to the General Assembly, UNSCEAR found that risk estimates from these
studies were generally consistent with a range of risk estimates found in other studies.
Environmental studies are potentially informative on radiation risks at very low doses,
although the detection of small effects is demanding in terms of study power and the
potential for residual confounding. As with any source, dosimetric biases might be more
influential on risk estimates in studies of very low doses, such as the national background
radiation studies; however, there was no evidence of substantial dosimetric bias in these
studies. Nevertheless, the environmental studies generally provided limited information on
dose uncertainty, because dose errors were not accounted for in dose-response analyses.

Medical Studies

Among medical studies, CT studies (study IDs 10 and 11) appear most informative given
similar methods used between studies and a lack of comparable studies in BEIR VII.
Investigators made substantial efforts to estimate CT patient organ doses from hundreds of
protocols. The dosimetry systems made use of data from radiation on-phantom
measurements related to generic protocols developed for each procedure. Using group-
averaged estimates resulted in Berkson error that is unlikely to bias risk estimates markedly.
Shared errors were possible; however, these errors were likely to be independent of case
status. Future improvements in dose estimates can be achieved with CT parameters on
individual patients. Among other study limitations related to dosimetry, analyses did not
consider dose from other diagnostic examinations or from CTs in nonparticipating hospitals,
although these doses were likely to be small in comparison. Furthermore, assessments of
dose uncertainty and subsequent treatment in dose-response analyses were lacking.

Occupational Studies

BEIR VII identified 25 studies of nuclear industry workers (principal studies listed in table
8-2, US Atomic Veterans described on page 212, and Appendix E of BEIR VII) published
between the years 1981 and 2005 (2). The 11 studies herein represent notable additions to
NW literature, including updates to studies in BEIR VII. Most studies relied on personal
measurements, which BEIR VII and the present investigators recognize as the most
complete and informative source for studying the relationship between low-dose protracted
ionizing radiation exposure and cancer (2). Improvements in dosimetry included expanded
searches for dose data for some populations (17,69,74,81) and added information on more
recent exposures (17,63,66,68,69,71,74,80,81,95). Other improvements included detailed
assessments of dose estimation errors, which can inform on estimates of absorbed dose. In
particular, INWORKS improved on dosimetry methods in the previous International Agency
for Research on Cancer studies (9,142) to account for systematic errors related to radiation
fields, dosimetry practices, and dosimeter technology (17). INWORKS methods were also
used in the French NW study (95). Nevertheless, dose estimation errors were unavoidable,
especially during the early years when contributions to individual dose from BDL doses,
neutrons, and WRX could be substantial. The potential effects on the dose-response from
these sources remain unclear.
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BEIR VII included studies of radiation-exposed medical and dental workers, including the
USRT cohort; however, these studies generally lacked dose estimates suitable for dose-
response analyses. In recent USRT studies, improvements in dosimetry have provided dose
estimates with attendant uncertainties for dose-response modeling (89,90). The USRT cohort
is among the first to use Monte Carlo computer simulation techniques to quantify and
account for sources of shared and unshared errors in an occupational cohort, including
missed dose and errors associated with changing dosimetry practices over time. A similar
approach was taken in the Chernoby!l liquidator studies (64,78). BEIR VI concluded that
risk estimates in studies available at that time were unreliable because of a lack of validated
individual dose estimates (2). Since then, there has been marked improvement in dosimetry
with the development and implementation of RADRUE, which has been used in several
studies published since BEIR VI (64,78,143,144).

This review assessed the quality of dosimetry systems in 26 studies published since BEIR
V11, which collectively represent a sizeable addition to the literature on low-dose radiation
exposure and cancer. Nearly all studies provided reasonable assurances that risk estimates
were free of a substantial bias from dose-estimation errors; however, few sources of error

were thoroughly explored. In this review, a known or suspected bias in dose estimates was
found in six studies:

. The study of TMI residents (study ID 2) in which doses were intentionally
overestimated for protection purposes (29)

. The Canadian NW study (study 1D 19), where authors speculated that missing
doses among a group of early workers may explain the observed positive dose-
response for solid cancer in these workers (74)

. The case-control studies of Chernobyl liquidators (study IDs 14 and 20) and
residents (study 1D 1) because of the potential for differential recall from
questionnaires administered after case ascertainment (28,64,78)

. The USRT breast cancer study (study ID 25), where greater excess risk per unit
of dose was seen in early workers (when dose levels were highest and dose
uncertainty greatest) and the effects of birth cohort and dose uncertainty on risk
estimates could not be disentangled. As such, the authors cautioned
interpretation of findings because of possible systematic errors in early doses that
were not fully accounted for in dose reconstruction (89).

Information on recall in the Chernobyl case-control studies was inadequate to completely
rule out recall errors in dose that may be differential by case status (28,64,78). Additional
examination of the potential for recall bias is warranted. Only study ID 2 reported a known
bias, which would not result in spurious excess risk. The effects from incomplete exposure
data in the Canadian NW Study remain unclear. Thus, until inclusion of the newly found
dosimetry data in dose-response analysis, interpretation should be limited to estimates from
the cohort excluding early workers suspected of incomplete dose histories. The potential
bias in early doses among USRT workers is likely to be nondifferential; therefore, this error
is unlikely to fully explain the heterogeneity in risk by birth cohort.
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Overall, this assessment did not reveal strong evidence of spurious dose-response
associations stemming from dose error in the studies reviewed. Advancements in dosimetry
systems used in epidemiologic studies since BEIR VI are evident; nevertheless, there are
areas for further improvement. In particular, future studies would benefit from a more
comprehensive evaluation of systematic and random dosimetric errors, including the
development and use of methods accounting for their potential effects on dose-response
associations.
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