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Abstract

Purpose: During spinal fusion surgery, screws are placed close to critical nerves suggesting the
need for highly accurate screw placement. Verifying screw placement on high-quality tomographic
imaging is essential. C-arm Cone-beam CT (CBCT) provides intraoperative 3D tomographic
imaging which would allow for immediate verification and, if needed, revision. However, the
reconstruction quality attainable with commercial CBCT devices is insufficient, predominantly
due to severe metal artifacts in the presence of pedicle screws. These artifacts arise from a
mismatch between the true physics of image formation and an idealized model thereof assumed
during reconstruction. Prospectively acquiring views onto anatomy that are least affected by this
mismatch can, therefore, improve reconstruction quality.

Methods: We propose to adjust the C-arm CBCT source trajectory during the scan to optimize
reconstruction quality with respect to a certain task, i.e. verification of screw placement.
Adjustments are performed on-the-fly using a convolutional neural network that regresses a
quality index over all possible next views given the current x-ray image. Adjusting the CBCT
trajectory to acquire the recommended views results in non-circular source orbits that avoid poor
images, and thus, data inconsistencies.

Results: We demonstrate that convolutional neural networks trained on realistically simulated
data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT
source trajectory. Using both realistically simulated data as well as real CBCT acquisitions of a
semianthropomorphic phantom, we show that tomographic reconstructions of the resulting scene-
specific CBCT acquisitions exhibit improved image quality particularly in terms of metal artifacts.
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Conclusion: The proposed method is a step towards online patient-specific C-arm CBCT source
trajectories that enable high-quality tomographic imaging in the operating room. Since the
optimization objective is implicitly encoded in a neural network trained on large amounts of well-
annotated projection images, the proposed approach overcomes the need for 3D information at
run-time.
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1 Introduction

The number of patients undergoing spinal fusion surgery in the US has been increasing
rapidly over the last years. From 204,000 cases in 1998, the number of interventions has
grown to 457,000 cases in 2011. This growth also resulted in a steep increase in
hospitalization charges of more than 750% as each intervention is relatively expensive with
an average hospital bill of more than $34,000 [2, 7]. During spinal fusion surgery, two or
more vertebrae are fused. Usually, this is achieved by implanting screws into the affected
vertebrae in a transpedicular approach. These screws are then interlocked with metal rods to
inhibit movement and induce the formation of new bony structure. This stabilizes the spine
at the given location, which can reduce chronic back pain when non-operative treatment
failed [1]. Despite the high number of interventions, spinal fusion surgery remains a high-
risk operation. In 2010, 6.8% of the patients undergoing spinal fusion interventions in the
US were rehospitalized within the first 30 days after surgery [32]. Misplacement of pedicle
screws has been reported in up to 55% of the cases using traditional free-hand technique for
screw placement [17]. While this number can be decisively reduced when the intervention is
performed under fluoroscopy-guidance [10], even in navigated approaches the incidence of
misplaced screws remains high [14]. Screw misplacement intrinsically carries the danger of
cortical breach which can result in nerve damage and severe neurological impairment of the
patient [9,26] and has been found in up to 8% of the cases [17]. Consequently, there is a
need for an imaging modality capable of precisely capturing the anatomy in direct proximity
of metal implants to assess the adequacy of implant placement during the intervention,
allowing for immediate revision in case of misplacement. Tomographic reconstructions
available through C-arm cone-beam CT (CBCT) have the potential to provide such
information intraoperatively. CBCT has been deployed for this purpose [13, 23]. However,
even with one of the most recent CBCT devices and compared to conventional postoperative
CT, 23% of the cases of cortical breach were missed on intraoperarive CBCT images
primarily due to much stronger metal artifacts around the screw [5]. Improving the quality of
intraoperative CBCT reconstructions for the task of pedicle screw placement in spinal fusion
surgery, consequently, has a great potential to identify cortical breach during the operation,
allowing for immediate revision, and therefore, reduction of both neurological complications
and need for revision surgery.

1.1 Background

Artifacts in CT reconstructions are a consequence of discrepancies between the assumed
mathematical forward model of x-ray image formation and the real physics of data
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acquisition [21]. The process of reconstruction aims at finding a volumetric representation
that optimally explains all measured x-ray images which is the inverse problem to the image
formation process. Usually, this is performed by backprojecting the images into the volume
thereby inverting the idealized mathematical assumption of the forward process [8]. This is a
well-posed problem as long as the mentioned discrepancies remain small. High
discrepancies, however, render this an ill-posed inverse problem resulting in artifacts in the
reconstructed volume. Other than noise, one of the most prominent discrepancies is beam
hardening. It is characterized by a shift between incident and recorded energetic spectrum of
the photons due to energy-dependent attenuation in dense objects, e.g. in our case titanium
screws. This affects measurements on the detector and results in the overestimation of
certain pixels during backprojection [22]. Existing approaches to artifact reduction in CBCT
reconstructions usually rely on postprocessing of the acquired data in projection domain [16,
18, 35] or artifact suppression in volume domain [15]. These methods work on the corrupted
data and oftentimes carry the risk of introducing new sub-optimal image content which
compromises the quality of the reconstruction in a different way. Therefore, we propose to
begin artifact reduction one step earlier by adjusting the CBCT protocol to the scene and
directly acquire better data. Specifically, our approach automatically predicts adjustments to
the C-arm trajectory in real-time to actively exploit views onto the anatomy which are most
consistent with the assumptions made in the tomographic reconstruction process. Selection
of good views is performed by a convolutional neural network that regresses a view-
dependent quality index from the current projection of an ongoing scan. We hypothesize that
this finally leads to artifact reduction and improved quality of the reconstruction. Ultimately,
such approach could allow for intraoperative tomographic imaging with clinically acceptable
quality in applications such as spinal fusion surgery.

1.2 Related work

Conceptually related ideas to ours have been proposed for real-time user guidance in free-
hand ultrasound probe mation. In [19] the ultrasound image of each time point is interpreted
by a deep reinforcement learning agent which predicts an incremental update on the probe
motion. Similarly, incremental and real-time user feedback can be provided in the case of
SPECT imaging with mobile freehand detectors based on the numerical condition of the
system matrix corresponding to the reconstruction problem [31]. However, analyzing the
entire system matrix is not feasible for CT due to its memory footprint. Instead, different
approaches have been proposed to select the most valuable next projection for CT: The
method in [36] favors views that sample rays tangential to edges of the 3D object to
maximize the edge information in the reconstruction, obviously relying on precise
knowledge of the object at optimization time. In [6] angular steps are selected such that with
each additional projection the set of solutions that are consistent with the set of already
measured projections is minimized. This, however, has only been applied to the 2D
reconstruction case and is computationally very expensive as it needs several preliminary
reconstructions per step. Recently, finding an optimal sinusoidal trajectory which avoids
metal parts of the imaged object while still ensuring a high coverage in Radon space for its
direct vicinity has been studied in [11]. While all these approaches do not directly consider
the x-ray imaging physics, [25] proposes an index to analyze the quality of different
projections based on the local point spread function and noise power spectrum of the
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imaging device. Similarly, [33] calculates a quality map of possible views from the expected
amount of spectral shift due to beam hardening depending on different path lengths of the
photons through metal objects. Both methods were successfully applied to CBCT trajectory
optimization. Yet, all previous approaches calculate optimal parameters in a (semi-)offline
manner and rely on knowledge about the 3D object at optimization time, which is usually
provided by a preoperative scan. This requirement is problematic since, during interventions,
the anatomy is altered in an unpredictable way, e.g. by screw insertion.

1.3 Contribution

In this work, we expand on our MICCAI 2019 submission that introduced machine learning-
based algorithms to predict on-the-fly adjustments for task-based C-arm trajectories [34].
Our contributions are two-fold. First, in carefully controlled experiments on synthetic data
we characterize the algorithm’s behavior and robustness 1) in the presence of varied noise
levels, and 2) with varying initial poses of the C-arm gantry with respect to anatomy.
Second, we substantially expand our experiments on real data acquired from a
semianthropomorphic phantom. To this end, we acquire 17 CBCT short-scans at different
swivel and tilt angles of the gantry and align all projection images to a common 3D object
space via image-based registration. This produces a set of calibrated x-ray images that
allows for validating the proposed C-arm servoing algorithm in a retrospective manner. This
strategy enables feasibility studies on real x-ray data but avoids the need for 1) a fully
robotized and freely steerable C-arm device, and 2) flexible and robust online calibration
methods that accurately estimate the C-arm imaging geometry without prior knowledge on
the 3D scene. Exploring solutions to these challenges is important and will be the subject of
our future work.

2 Methods

2.1 Online Trajectory Adjustment Pipeline

Trajectory optimization is a problem with many degrees of freedom because recent scanners
can realize very different motion patterns. Following the ideas in [25], we choose to
parameterize the problem in terms of an in-plane angle ¢ and an out-of-plane angle 6. The
in-plane angle is defined according to a traditional circular trajectory where source and
detector move in one plane for the entire scan, whereas the out-of-plane angle is associated
with tilting the C-arm relatively to this plane. Each trajectory consists of a set of pairs (¢4
6y, t=0, .., Twhere Tis the total amount of projections images. The general pipeline we
propose is illustrated in figure 1. An x-ray image is captured at a position (¢ 6y and
processed by a VGG-type convolutional neural network, which regresses a detectability
index (see section 2.2) for the next possible projections. The projection with the highest
predicted value is identified and the out-of-plane angle 6.1 is updated accordingly while the
in-plane angle ¢ is always incremented by a fixed amount: ¢x1 = ¢+ Ap. The new target
(pa1, Br1) s sent to the robotic C-arm and its position adjusted accordingly to acquire the
next projection.
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2.2 Projection-dependent Detectability Index

To assess how single projections contribute to perceived reconstruction quality, we follow
existing approaches based on the non-prewhitening matched filter observer model which
allows to find a so-called detectability index as per equation 1 [12].

)

d*(p,0) = | [T MTE(@, 0) P [Wasid fd fd fz]z
"7 [JNPS(g,0)IMTE(p, ) [W gl d f,d f,d f

MTF is the local modulation transfer function, NPS is the local noise power spectrum and
W sk IS @ task-function describing the properties of the object to be imaged with highest
quality in Fourier space. For the case of iterative penalized-likelihood reconstruction, it is
possible to derive analytic expressions for both MTF and NPS [12]. These equations rely on
forward projecting voxels into all views contained in a trajectory, comparing the projected
value with the measured values and back projecting this information into the volume. Using
these calculations for MTF and NPS, the final detectability index ¢ thus depends on the 3D
structure of the imaged object as well as the set of images in a trajectory. This means that, if
accurate 3D information is available, equation 1 can be maximized with respect to g and 8to
find an optimal trajectory. Note that the local MTF and NPS are very general measures
which can be calculated for any imaged object. This work is centered around metal artifacts
suppression as these are usually the most severe artifacts during interventions. In a different
setting, the same index could potentially also be used for improving e.g. soft-tissue contrast.

2.3 Network for Detectability Prediction

During an intervention, the volume to be imaged is altered compared to preoperatively
acquired information. Therefore, offline trajectory optimization approaches (e.g. the one
outlined in Section 2.2) usually cannot succeed in these cases. As introduced in our previous
work [34], we instead propose to regress the detectability index in equation 1 on-the-fly
during an ongoing scan using a convolutional neural network (CNN) using only fluoroscopic
images as input. In this approach, knowledge about the task is encoded in the weights of the
machine learning model, thereby overcoming the need for explicit 3D information at CBCT
acquisition time. We rely on an architecture that is similar to the VGG architecture [24], but
adapted to perform regression instead of classification because we believe that a highly
parameterized CNN is well suited to implicitly capture the underlying 3D structure in a
learning-based manner. From an input x-ray projection, the network is trained to predict the
detectability of those projections with an increment of +5° in in-plane angle and a range of
[-25°, +25°] in out-of-plane angle relative to the current position. The out-of-plane interval
is discretized in steps of 5° which leads to 11 values to be predicted from each input image.
For training, two different datasets were generated by forward projecting 3D volumes using
the open-source physics-based x-ray simulator DeepDRR [27, 28]. The resulting digitally
reconstructed radiographs (DRRs) were created on a uniform grid with step size 5° in both ¢
and 6. For each position (g, 6), one clean image and one image with additional realistic
noise injection were generated. The former was used to calculate ground truth detectability
for each projection using equation 1 and the corresponding 3D scan while the latter was used
as actual network input during training. The first dataset is based on five publicly available
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chest CT scans from the Cancer Imaging Archive (TCIA) [4]. Screw positions were
manually annotated in six different vertebrae per scan. During the generation of projection
data, only one vertebral level was considered at a time and a titanium screw was virtually
inserted at the annotated position into the corresponding anatomy. Additionally, the isocenter
of the simulated C-arm was varied randomly between the different simulations. 212
simulations were performed on 30 different anatomical sites, each resulting in 1368 images
on a 5° grid with a whole rotation ([0°, 360°]) for the in-plane angle and an interval of [45°,
135°] for the out-of-plane angle. The resulting images of one chest CT scan are held out as a
test set. Data generation for the second dataset is identical to the first dataset, but based on a
semianthropomorphic representation of a human chest that is composed of a long box-like
object, two cylinders, and two screws. The position of these objects was randomly varied
within reasonable bounds to account for different anatomy from patient to patient finally
leading to 75 simulations again consisting of 1368 images each, distributed over the same
interval as above. The test set consists of three simulations. The first dataset is used for the
experiments on synthetic data, while the second one is used to train the network in the real
data case. Additionally, batch normalization and data augmentation using random rotations
were included in the network for the real data experiments as we observe that it helps to
improve generalization.

3 Experiments and Results

3.1 Simulation Experiments

The network was first trained on the TCIA chest dataset. The training objective was to
predict the detectabilities of the 11 projections with an offset of +5° in in-plane angle and an
interval of [-25°, +25°] in out-of-plane angle relative to the position of the input projection
discretized in steps of 5°. During inference, an out-of-plane increment was chosen to be a
step towards the highest predicted detectability. Additionally, the whole trajectory was
restricted to an interval of [-45°, +45°] concerning the out-of-plane angle relative to the
starting position. In a purely simulated environment without realistic noise injection, the
algorithm achieves 8.35° £ 11.61° angular distance and 13.69% + 18.92% relative difference
in detectability of the predicted trajectory compared to the ground truth [34]. Their angular
distributions are shown in Figure 2. In the following, the influence of different levels of
noise and varying initialization poses of the C-arm on the prediction quality will be
analyzed. Eight different 200° short scan protocols are simulated for each screw pair in the
test-set. Half of the protocols employ a circular trajectory, each with 200 x-ray projections in
total. These serve as the baseline protocols. The other half of the scans are generated on
trajectories optimized with the proposed pipeline. For each of the two trajectory types, scans
without noise and with a noise level corresponding to 5 - 104, 1 - 105, and 4 - 10° photons per
pixel are generated. Each x-ray projection is acquired with 620 x 480 pixels and a pixel-size
of 0.31mm x 0.31mm. This image corresponds to the central part of a standard flat-panel
detector in 4 x 4 binning mode. A figure showing the predicted trajectories in the presence
of different noise levels can be found in the supplementary material. Only small angular
changes are observed which proves robustness against noise. Furthermore, the network did
not overfit to a single detectability map, as the trajectories generated from different vertebral
levels show major differences. Defining the trajectory in the noise-free case as the ground
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truth prediction allows calculation of the sensitivity to noise. The sensitivity is calculated as
the angular mismatch, averaged over all angles and trajectories for a single noise level. For 4
-105,1 - 10°, and 5 - 10 photons per pixel, the mean angular error reads 0.83°, 1.13°, and
1.64° respectively. The standard deviation of the predictions is 1.56°, 1.63°, and 1.73° in the
same order. Besides robustness against noise, it is desirable that the optimal trajectory is
largely independent of the starting angle. This property holds for the proposed algorithm, as
a prediction only depends on the last acquired image. Therefore, two trajectories that
intersect at any point will merge and continue as the same trajectory, given the noise is
identical. To show this property on data, the trajectories predicted from different starting
angles, but the same anatomy were simulated (see plot in supplementary material). After few
angle increments, the trajectories merge into two main bands that represent local maxima,
which then merge into a single trajectory at ¢ = 50°. The initial differences of the trajectories
can be explained by the limitations of the slope. The predicted trajectories were
reconstructed using a GPU implementation of the iterative conjugated gradient least squares
algorithm for cone-beam geometry provided by the ASTRA toolbox [29, 30]. Figure 3
shows axial slices through the reconstructions from projections at different noise levels for
qualitative analysis. For quantitative assessment, comparison is performed by computing the
full width half maximum (FWHM) of the screws of one vertebral level averaged over two
different positions which quantifies the amount of blooming artifact. Further, we investigate
the intensity of the Fourier spectrum of a small normalized image patch containing the screw
thread at the frequency of the thread itself. For comparison, the ground truth value for each
of these measures is listed which is obtained by reconstructing mono-energetic, noise-free
simulated projections without any physics-based artifacts. We also report the structural
similarity (SSIM) of a slice containing both screws between the ground truth and the noisy
reconstructions. Results are reported in table 1. Both the FWHM and the thread frequency
height are closer to the true value for the task-aware trajectories compared to the circular
ones. Also the image slices extracted from the reconstructions are more similar to the ground
truth slices as indicated by higher SSIM values. Noise in general deteriorates the
reconstruction performance, but this seems to be less severe for the task-aware trajectories.

3.2 Real Data Experiments

One central challenge when implementing non-circular orbits on any CBCT scanner -
robotized or conventional C-arm - is the calibration required for precise reconstruction.
Usually only few reproducible circular short-scan trajectories are calibrated in advance using
phantoms specifically designed for this purpose. The trajectories aimed for here, however,
cannot be precalibrated because they are scene specific, and thus, not known in advance. To
overcome this challenge, in this work, multiple pre-calibrated CBCT short-scans of the
phantom were acquired at various swivel and tilt angles prior to trajectory prediction. The
CBCT reconstructions, and via pre-calibration also all projection images, acquired in this
way were then aligned in a common 3D object space using image-based registration. This
procedure aims at providing a sufficient sampling of all possible views (g, 6) and is
explained in detail in the following paragraph. During inference, the sampled view closest to
the predicted optimal view is identified and used as subsequent input for the network instead
of an image acquired in real-time by a robotic device. This allows to predict non-circular
trajectories from real data using the proposed method in a retrospective manner and avoids
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the need for a fully robotic C-arm. Instead, data acquisition was performed on a
conventional CBCT scanner (Siemens Arcadis Orbic 3D). For the experiments, a phantom
was built in line with the simulated training data for this case. It consists of two screws
drilled into a wooden rod and two cylinders filled with ballistic gel.

Sampling the (g, 6) space using only circular scans can be achieved by scanning the
phantom on tilted but circular orbits (see figure 4 left). However, tilting the scanner would
require calibration of each of these tilted trajectories due to mechanical sagging and wobble.
Instead, the position of the phantom itself was altered between successive scans while the
scanner trajectory was kept identical. In this manner, 17 scans were acquired mimicking tilt
as well as swivel of the C-arm. In terms of the in-plane and out-of-plane angle notation, each
of these 17 scans results in a curve of sampled views in the (¢, 6) space (see figure 4 right).
All 17 scans were reconstructed and 16 tilted scans were rigidly registered to one reference
volume. Registration was performed by optimizing a normalized cross-correlation objective
function using quadratic optimization (BOBYQA). The rigid transformation 7;aligning the
i-th moving tilted volume with the reference volume was obtained and used to adjust the
projection matrices as:

j -1
Pty =T;  Ppia 2

Applying the inverse transformation to the projection matrices allows changing from several
volumes reconstructed with the same set of matrices Pgy to a scan-specific set of matrices

P!, such that all projections can be integrated into the same volume during reconstruction.

The network was trained on the dataset created from a digital copy of the used phantom
mentioned in section 2.3. Training ground truth was chosen to be identical to the setup
described for the synthetic data experiments in section 3.1. During inference, increments in
in-plane angle were fixed to A¢ = 1° and the out-of-plane angle step is computed from the
predicted detectability and a regularization component that penalizes high directional
changes and promotes a smoother trajectory. As the pipeline is targeted to be implemented
on a robotic C-arm device, we need to account for the limited mechanical capabilities of
such a system. Sudden directional changes would require high accelerations that cannot be
realized safely. Therefore, we introduce the cosine of the angle between two subsequent
steps as additional penalty term. With this term, sudden directional changes are traded off
with best next steps as predicted by the network.

O +1 = 0; + max(A(u - v;) + p;) 3)
1

Here, v denotes the previous trajectory direction in terms of (4g, 46), v;is the i-th possible
next direction and pjis the corresponding predicted detectability. We heuristically find that A
= 0.6 is a suitable weighting factor and keep it constant for all experiments. The projection
image which is closest to the optimal predicted view in terms of g and @is identified from
the set of acquired projections, added to the trajectory, deleted from the set of available
sampled views for all following steps, and used as next input for the network. Using the first
projection of the reference scan which corresponds to an out-of-plane angle of 90° (scan
plane intersecting long axis of both screws) as initialization of the algorithm, this procedure
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results in the trajectory depicted in figure 5. From the initial out-of-plane angle, the
algorithm proposes to increase the tilt of the C-arm for the majority of the scan. The
trajectory reaches the most extreme sampled out-of-plane angles in positive direction for in-
plane angles 50° to 80° and the most extreme angles in negative direction towards beginning
and end of the scan. In the central part, it exhibits a slightly alternating behavior. Note that in
the real data case, only views that have been sampled can be part of the trajectory which
limits the number of possible solutions considerably. Reconstructions were calculated using
the same algorithm as for the synthetic data [29, 30]. Projection images were masked prior
to reconstruction based on forward projecting a centered sphere with 5 cm radius in 3D to
reduce truncation artifacts and the algorithm was executed for 300 iterations. A slice through
the reconstructed volume of the trajectory corresponding to figure 5 and the circular
reference trajectory can be found in the last column of figure 3. While the overall shape of
the two screws, as well as its threads, are only poorly recovered in the reconstruction from
the circular trajectory, the task aware protocol is able to recover much finer structures. For
quantitative evaluation, we additionally initialize our algorithm with the first projection of
the four swivel trajectories in our dataset, which each provide initialization with a different
out-of-plane angle. We compare reconstructions obtained from all these trajectories to the
reference circular trajectory and the two circular trajectories of our dataset associated with
the highest tilt and swivel respectively. Comparison is again performed using the FWHM of
the screw and the thread frequency peak height. Results can be found in table 2. Calculating
the SSIM is not possible as no ground truth information is available. The circular reference
scan performs worst by far, exhibiting the largest FWHM of all scans and revealing severe
problems in visualizing the shape of the screw. While the trajectories corresponding to
maximum tilt and swivel perform best when considering either FWHM or peak height,
respectively, the task-aware trajectories can improve both measures decisively compared to
the reference scan. Initializing with angles different from the reference scan (90° out-of-
plane) additionally seems to improve the ability to reconstruct the screw thread.

4 Discussion

The presented results on simulated data help to understand strengths and limitations of the
method in a controlled setting and serve as an upper bound of the ideally achieved
performance. They show that predicting the detectability values of possible next views from
the current projection is possible with reasonable accuracy and robustness against different
noise levels and initialization angles. The resulting trajectories are in line with previously
published concepts on the emergence of reconstruction artifacts introduced in section 1. If
possible, our algorithm avoids views with overlapping screws as well as views along the
screws’ long axes, which cause the most severe inconsistencies (beam hardening up to
photon starvation) based on the assumptions made during reconstruction. Therefore, the fine
structures of the screws can be reconstructed with higher quality and metal artifacts can be
reduced significantly. The performed real data experiments hint at the feasibility of the
approach in real CBCT acquisitions. Benchmarks for the inference time of VGG-19 point
out that it is generally feasible to use the network predictions for real-time adjustment of the
C-arm [3], but as our real data evaluation was performed retrospectively, we did neither
implement a real-time capable system including the mechanical components nor did we
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investigate whether the final trajectory can be realized by a scanner within reasonable
scanning time. The retrospective evaluation still suggests that the task-aware trajectories lead
to considerably improved reconstructions of the screws’ general shape as well as its thread.
This holds true especially when comparing to the reference scan, the scan plane of which is
parallel to both screws’ long axes. Unfortunately, this acquisition scheme is most
predominantly employed in the operating room. This leads to the conclusion that slightly re-
positioning the C-arm to acquire a short scan trajectory that is tilted with respect to the
standard plane already avoids many of the worst views, and would thus already result in
considerably improved reconstruction quality without changes to the routine acquisition
protocol.

On real data, the predicted trajectory shows an increased alternating behavior between
positive and negative out-of-plane angles compared to the simulations. Possible reasons for
this are a sub-optimal generalization of the network from its training domain to the domain
of real images which could potentially be mitigated by an increased amount of training data.
Moreover, the network fails to disambiguate positive and negative increments for the out-of-
plane angle in some cases while still clearly following the trend to favor high out-of-plane
angles in our specific setup. This behavior results in trajectories that tend to jump between
high positive and high negative out-of-plane angles and might be caused by the Markov
property of the algorithm described here. As each prediction is only based on one preceding
projection image, there is very little contextual information available that could be used to
disambiguate predictions with similar detectability. The predicted trajectory still leads to
remarkable improvements in the reconstruction results compared to the circular reference
trajectory which can already improve the ability for accurate clinical assessment tasks. Still,
there are many open challenges which need to be addressed to push the approach closer to
the level of accuracy and robustness needed for clinical application. First, the retrospective
calibration procedure presented here on a non-robotic C-arm with only one actuated axis to
enable CBCT is not applicable in a clinical setting because it would expose the patient to
high doses of ionizing radiation. Instead, an online calibration procedure which does not
require precise knowledge about the 3D structure would be desirable. Relying on the joint
encodings of a fully robotic C-arm for initialization, further fine-tuning of the pose
parameters could be performed in an image-based manner, e.g. using autofocus measures
[20]. To ensure robust and precise network predictions in a clinical environment, important
steps are the generation of synthetic training data, which is representative of the variety of
different anatomies and tools as well as views onto these. The domain gap between the
simulations used for training and the real fluoroscopy images during inference could be
minimized using state-of-the-art domain adaptation techniques. Once a task-aware protocol
is deployed in practice and a broader spectrum of fluoroscopy images from different views
onto the anatomy becomes available, real data from predicted trajectories can be used to
directly retrain the network parameters. Experimenting with different network architectures
might also improve prediction performance. Finally, we envision a clinically applicable
version of the pipeline to supersede existing CBCT protocols as they are already applied in
the operating room.
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5 Conclusion

We introduced a learning-based method for online CBCT trajectory adjustment that
overcomes the need for volumetric information at imaging time. This is the first step towards
high-quality intra-operative C-arm CBCT imaging which is based on the idea of directly
acquiring better data for artifact avoidance. Such an approach might ultimately enable
intraoperative verification of implant placement with high confidence, as is required for high
volume procedures including spinal fusion surgery. Future work will address the lack of
sequential modeling in the current approach and investigate whether the image quality
delivered by a refined version of our approach is sufficient for clinical interpretation.
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Fig. 1:
High-level overview of the envisioned pipeline for online trajectory adjustment.
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Spatial distribution of the angular and detectability error. The X-axis shows the full 360° in
in-plane angle ¢ and the Y-axis possible out-of-plane angles & between 45° and 135°
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(a) Simulation (b) Simulation (c) Simulation (d) Real data
no noise 4-10° photons/pixel ~ 5-10* photons/pixel

Fig. 3:

Slices through the reconstructions of synthetic and real data from a circular scan (upper row)
and the task-aware trajectory (lower row) at different noise levels. Note that the simulated
screws are not identical to the screws of the real phantom in size or shape.

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 November 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Thies et al.

Page 17

501

60

70+

80+

90+

100+

Out-of-plane-angle

110+

120+

130+

0 25 50 75 100 125 150
In-plane-angle

Fig. 4:

Left: Two exemplary tilted orbits and a non-circular trajectory with varying out-of-plane
angle. Right: Sampling of the (¢, 8)-space using tilted orbits. Solid red represents the
untilted reference scan, dashed black refers to scans acquired on tilted circular orbits.

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2020 November 03.

175




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Thies et al.

Out-of-plane angle

Page 18

L
T
50

75 100 125 150 175
In-plane angle

Fig. 5:

Predicted trajectory on real data in black and network predictions relative to the current
position. The crosses show optimal views based on network output, the black line is the final
trajectory based on the closest sampled view.
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Table 1:

Evaluation of reconstruction quality based on screw FWHM, screw thread frequency peak height and SSIM
for circular and task-aware trajectories and different noise levels on simulated data.

screw FWHM [mm] | thread frequency height | SSIM to ground truth
ground truth 3.92 6.83 1.00
circular no noise 6.38 9.05 0.83
circular 4 - 10° photons/pixel 6.35 8.96 0.81
circular 5 - 10* photons/pixel 6.19 7.52 0.69
task-aware no noise 3.65 7.57 0.90
task-aware 4 - 10° 3.72 8.31 0.89
task-aware 5 - 104 4.10 6.95 0.85
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Evaluation of reconstruction quality based on screw FWHM and screw thread frequency peak height for

different trajectories.

Table 2:

screw FWHM [mm]

thread frequency height

circular reference 12.67 211

circular max. tilt 6.29 3.24
circular max.swivel 9.36 9.79
task-aware init 67° 7.35 5.98
task-aware init 76° 7.29 5.99
task-aware init 90° 6.93 4.33
task-aware init 99° 6.92 4.38
task-aware init 121° 6.79 9.42
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