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Abstract

Objectives: Estimation of the cascade of HIV care is essential for evaluating care and treatment 

programs, informing policy makers and assessing targets such as 90-90-90. A challenge to 

estimating the cascade based on electronic health record concerns patients “churning” in and out 

of care. Correctly estimating this dynamic phenomenon in resource-limited settings, such as those 

found in sub-Saharan Africa, is challenging because of the significant death under-reporting. An 

approach to partially recover information on the unobserved deaths is a double-sampling design, 

where a small subset of individuals with a missed clinic visit is intensively outreached in the 

community to actively ascertain their vital status. This approach has been adopted in several 

programs within the East Africa regional IeDEA consortium, the context of our motivating study. 

The objective of this paper is to propose a semiparametric method for the analysis of competing 

risks data with incomplete outcome ascertainment.

Methods: Based on data from double-sampling designs, we propose a semiparametric inverse 

probability weighted estimator of key outcomes during a gap in care, which are crucial pieces of 

the care cascade puzzle.

Results: Simulation studies suggest that the proposed estimators provide valid estimates in 

settings with incomplete outcome ascertainment under a set of realistic assumptions. These studies 

also illustrate that a naïve complete-case analysis can provide seriously biased estimates. The 
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methodology is applied to electronic health record data from the East Africa IeDEA Consortium to 

estimate death and return to care during a gap in care.

Conclusions: The proposed methodology provides a robust approach for valid inferences about 

return to care and death during a gap in care, in settings with death under-reporting. Ultimately, the 

resulting estimates will have significant consequences on program construction, resource 

allocation, policy and decision making at the highest levels.
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Background

Since 2003 there has been a progressive expansion of the eligibility criteria for antiretroviral 

therapy (ART). This has culminated in the current universal test and treats guidance 

(Granich, Gilks, and Dye 2009; World Health Organization 2015). These efforts are 

embedded in the 90-90-90 targets, which advocate that, by the year 2020, 90% of all people 

living with HIV/AIDS (PLWH) will know their status, 90% of those will be receiving ART 

and 90% of those on ART be virally suppressed (UNAIDS 2014). 90-90-90 emanates from a 

conceptual framework that views HIV infection and subsequent engagement in care as a 

“cascade” of states, from prior to diagnosis through viral suppression (Gardner, McLees, and 

Steiner 2011). The HIV care cascade, in addition to being a useful model to convey the 

sequential nature of these states, readily lends itself to mathematical modeling. 

Mathematical modeling of this cascade is an important tool in our efforts to both design 

optimal models of care and to assess the effectiveness of these models in the real world.

The cascade of care can be naturally conceived as a multi-state model (Andersen and 

Keiding 2002; Gentleman et al. 1994; Lee et al. 2018; Meira-Machado, de Uña Álvarez, and 

Cadarso-Suárez 2009). Multi-state models can be used to describe the probability of 

transition between various states, based on characteristics of each individual. Gardner and 

colleagues, in their landmark study that ushered in the concept of the HIV care cascade, 

observed that not everyone remains engaged in the care cascade (Gardner, McLees, and 

Steiner 2011). The term “disengagement from care” has been used to describe the situation 

where a patient is alive but not in HIV care, after enrolling in care. The state “disengagement 

from care” has been typically considered an “absorbing” state in the literature, i.e., a 

terminal state from which there is no transition to other states (Bakoyannis and Yiannoutsos 

2015; Bakoyannis, Zhang, and Yiannoutsos 2019; Graham et al. 2013; Rachlis et al. 2016; 

Schöni-Affolter et al. 2011). In addition, PLWH may also die of their disease at any point in 

the cascade. Figure 1 shows a simple competing risks model (for a review on competing 

risks see Bakoyannis and Touloumi 2012), which is a special case of a multi-state model 

with single initial state and several absorbing states, of the two aforementioned states.

More recently, a number of research papers have started to look at disengagement from care 

as a transient state, with a proportion of patients who have disengaged from care at one 

program re-engaging in care either in the same program or elsewhere (Geng, Odeny, and 

Lyamuya 2015, 2016; Lee et al. 2018; Rebeiro, Bakoyannis, and Musick 2017). This idea of 
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patient “churn” (Gill and Krentz 2009) and the consequent rehashing of disengagement from 

care as just a “gap in care”, acknowledges the complex manner by which care is accessed 

within a mature ART delivery environment (Nsanzimana et al. 2014). Figure 2 presents a 

multi-state model of patient churning in an out of care after ART initiation.

Estimation of the transition rates between the states of the multi-state model depicted in 

Figure 2 can be based on data from HIV care and treatment programs. Analysis of the data 

produced by these programs, in combination with the multi-state modeling framework 

provides an opportunity to perform principled monitoring and evaluation in an 

unprecedented scale. However, the methodological challenges to using programmatic data to 

estimate patient churn are formidable, especially in resource-constrained settings. A major 

issue is death under-reporting, which leads to a misclassification problem, since unreported 

deaths are typically classified as losses to care. This means that a patient who has been 

identified as “lost to care” can be either alive and without care (i.e. gap in care) or deceased, 

whose death was undocumented. A cost-efficient way to obtain additional information 

which can be used for adjusting such biases is a double-sampling study design (An et al. 

2009). Under this design, a small sample of patients who have missed a scheduled clinic 

visit is intensively outreached in the community and, subsequently, their vital status is 

actively ascertained by outreach workers. Double sampling is also known as two-phase 

sampling.

The methodological work to date has focused on utilizing data from double-sampling to 

overcome biases arising from death under-reporting in situations such as the one depicted in 

the model in Figure 1 (An et al. 2009; Bakoyannis and Yiannoutsos 2015; Bakoyannis, 

Zhang, and Yiannoutsos 2019, 2020; Brinkhof, Spycher, and Yiannoutsos 2010). However, 

the previously proposed approaches cannot be used to adjust for the biases arising from 

death under-reporting when estimating more complex models, such as that depicted in 

Figure 2, where “gap in care” is not treated as an absorbing state. Nevertheless, unbiased 

estimates of the rates of patient churn is crucial for making valid inferences about the 

cascade of HIV care, as well as for mathematical modeling purposes.

In the present paper we address the issue of flexible semiparametric estimation of the rates 

of return to care and death after a gap in care, adjusting for death under-reporting. To 

achieve this adjustment, we leverage data on the true vital status and engagement in HIV 

care drawn from a double-sampling design. Our proposal relies on a partial 

pseudolikelihood-based approach which utilizes a flexible semiparametric inverse 

probability weighing approach. Estimation of the latter weights is achieved via B-spline-

based sieve maximum likelihood estimation. The proposed approach does not rely on strong 

and restrictive parametric assumptions, which are typically violated in practice. Therefore, it 

provides a robust method for valid analyses of return to care and death after a gap in care 

based on programmatic data. The validity of the proposed approach is evaluated through 

simulation experiments. The method is also illustrated using routine programmatic data from 

sub-Saharan Africa to analyze return to care and death after a gap in HIV care.

The rest of the paper is organized as follows. The research context, population, data and 

statistical methodology are introduced in Section 2. Next, a number of simulation 
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experiments is presented in Section 3, where both the extent of bias from naïve analytical 

approaches is quantified and the validity of the proposed methodology is assessed. An 

illustrative analysis of death and return to care after a gap in care is presented in Section 4, 

concluding with a discussion in Section 5. For completeness, the analysis of death while in 

care and gap in care after ART initiation (the remaining transitions in Figure 2) using 

previously proposed methods is provided in Appendix. R code that implements our 

simulation studies is available as an Online Supplementary Material with this paper. This 

code can be easily modified for implementing the proposed SIPW approach in practice.

Methods

Study population and setting

We use data from an HIV care and treatment program in western Kenya, the Academic 

Model Providing Access to Healthcare (AMPATH). In addition to providing care and 

treatment services to tens of thousands of PLWH, AMPATH has robust data collection and 

an extensive electronic medical record system. Moreover, and of direct relevance to this 

work, AMPATH has an intensive patient outreach program (a special case of a double-

sampling design), as part of efforts to reach patients who are lost to care (i.e. have missed a 

clinic visit and have not return to clinic for a certain time period) and attempt to re-engage 

them. As part of the outreach process, data on vital status are collected. We will use this 

information, in conjunction to the clinical data routinely collected on all AMPATH patients, 

in order to adjust estimates of return to care and death after a gap in care. A schematic of the 

double-sampling strategy in AMPATH is shown in Figure 3.

The statistical problem

Recently, we presented a methodology to nonparametrically estimate the transitions in a 

multi-state model with missing data on the absorbing states (Bakoyannis, Zhang, and 

Yiannoutsos 2019). This methodology is based on a nonparametric maximum 

pseudolikelihood estimator (NPMPLE) of the transition rates. Furthermore, we proposed a 

maximum partial pseudolikelihood estimator (MPPLE) for semiparametric regression 

analysis of competing risks data with missing event types (Bakoyannis, Zhang, and 

Yiannoutsos 2020). These methods can be used to analyze the transition hazards from the 

“on ART” state to the “gap in care” and “death” states in the model depicted in Figure 2 

using the data up to the first gap in care or death (or right censoring), under a double-

sampling design such as that implemented in AMPATH. However, these previous methods 

cannot be used to analyze the transition hazards from the “gap in care” state to the back to 

care and “on ART” or the “death” state. In this work we address the issue of analyzing this 

missing piece in the model, which is depicted in Figure 2. More precisely, we focus on the 

analysis of the hazard of return to care and death after the first true gap in care (Figure 2). To 

accomplish this we have to overcome a number of significant challenges:

• Not all lost patients have the same probability of being successfully traced. For 

this reason, a complete-case analysis is expected to lead to biased estimates.
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• Among those lost to care, the non-traced patients have a missing “true gap-in-

care” status. The immediate consequence of this fact is that there is uncertainty 

about whether these patients should be included in the analysis of return to care.

• In addition, these non-traced patients have missing vital status as well as missing 

death times. This in turn hampers defining events and calculating the risk sets in 

statistical analyses (e.g., in Cox’s partial likelihood for the semiparametric 

proportional hazards model).

Notation, assumption and model

Here, we assume the observation of n lost to care patients over the observation interval [0, 

τ], with τ < ∞. Also, let Xi be the first occurring event or right censoring time, and Δij, j = 1, 

2, denote the death before returing to care (Δi1) and return to care indicator (Δi2) for the ith 

patient. Note that trivially Δi1 + Δi2 ≤ 1 and, therefore, the problem under consideration can 

be treated as a competing risks problem. Based on these quantities we can define the event-

specific counting process as Nij(t) = I(Xi ≤ t, Δij = 1), j = 1, 2, and the at-risk process as Yi(t) 
= I(Xi ≥ t). Also, let Ri be the successful patient outreach indicator, with Ri = 1 if the ith 

patient has been successfully outreached, and Ri = 0 otherwise. Moreover, let Gi = 1 if the 

ith patient has a true gap in care, and Gi = 0 otherwise. Note that patients who have a missed 

visit due to an unreported death have Gi = 0. Finally, let Wi = Zi
T , Ai

T T
, with Zi being a 

vector of covariates of scientific interest, and Ai a vector of auxiliary variables that are not of 

direct scientific interest but may be related to the probability of successful outreach (e.g. 

number of outreach workers in a particular clinic).

In this work we are interested in making inferences under the semiparametric proportional 

cause-specific hazards model

λ0, j t; Zi = λ0, j t exp β0, j
T Zi , j = 1, 2, t ∈ 0, τ ,

where, λ0,j(t), j=1, 2 are the unspecified baseline cause-specific hazards. This model is 

popular because it does not impose restrictive and, in some cases, unrealistic distributional 

assumptions. Estimation of the model parameters with incomplete programmatic data 

requires the key Missing at Random (MAR) assumption, which governs all statistical 

inference in the context of missing data. MAR means that, conditional on observed data, the 

probability of missingness (i.e. of non-outreach) is independent of the incompletely 

observed variables. In this work, we assume MAR conditional on both variables of interest 

Zi and auxiliary variables Ai.

Definition:

MAR assumption: The probability of missingness is independent of the incompletely 

observed (Gi, Xi, Δi1, Δi2) conditionally on the covariates of interest and auxiliary variables 

Wi

That is,
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Pr Ri = 1 ∣ Gi, Xi, Δi1, Δi2, W i = Pr Ri = 1 ∣ W i
≡ π W i .

The incorporation of auxiliary variables makes the MAR assumption more plausible in 

practice (Bakoyannis, Zhang, and Yiannoutsos 2019; Lu and Tsiatis 2001).

A standard approach to deal with missingness is Rubin’s multiple imputation (Rubin 1996; 

Schafer 1999). However, this approach is not appropriate for the problem under 

consideration in this paper due to two main reasons. First, in our setting we have three 

incomplete variables, Gi, Xi, and Δi1, and this means that three parametric imputation 

models (one for each incomplete variable) need to be specified (White, Royston, and Wood 

2011). Specifying multiple parametric models increases the risk of model misspecification in 

at least one of the imputation models, and this can lead to inconsistent estimates (Robins and 

Wang 2000). Second, since we introduce auxiliary variables to make the MAR assumption 

more plausible, the imputation models will be uncongenial with the main analysis model 

(i.e. the semiparametric proportional cause-specific hazards model). This will lead to biased 

Rubin’s variance estimates and, therefore, to invalid inferences (Meng 1994; Robins and 

Wang 2000). To deal with these issues we propose the use of inverse probability weighting 

(IPW) techniques (Li et al. 2013) along with bootstrap for variance estimation. Under the 

IPW approach, one needs to only specify a single model for the probability of non-

missingness, i.e. π(Wi). Since specifying a parametric model for π(Wi) can lead to model 

misspecification, we consider the more flexible semiparametric generalized additive model 

(Hastie and Tibshirani 1986) of the form

logit π W = ϕ0 + ∑
k = 1

p
ϕk W k , (1)

where, for k = 1, …, p, ϕk(·) is an unspecified smooth function if Wk is a continuous 

variable, or ϕk(Wk) = ϕkWk, with ϕk ∈ ℝ, if Wk is binary or indicator variable. This model 

admits also parametric interaction terms. The likelihood function under this semiparametric 

generalized additive model involves a number of unspecified smooth functions ϕk(·) 

(infinite-dimensional parameters). In general, maximization of a likelihood function with an 

infinite-dimensional parameter ϕ ∈ Φ over the whole space Φ may lead to inconsistent 

estimates (Shen and Wong 1994) and can also be very computationally burdensome. To 

circumvent these problems we use sieve maximum likelihood estimation (Shen and Wong 

1994; Zhang, Hua, and Huang 2010). A “sieve” is a sequence of finite-dimensional 

parameter spaces {Φn}n≥1 that approximates Φ, and the approximation error tends to 0 as n 
→ ∞ (Shen and Wong 1994). A sieve maximum likelihood estimate is the maximizer of 

likelihood function over Φn. In this work, we use B-spline sieve spaces of the form

Φk, n = ϕk:ϕk w = ∑
s = 1

Nk + mk
γk, sBs, mk w , w ∈ ak, bk , γk ∈ ℝNk + mk ,
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for all subscripts k which correspond to a continuous Wk, where Nj and mj are the number of 

internal knots and the order of the B-spline for the continuous variable Wk, and [ak, bk] the 

corresponding support. Following previous work on B-spline based sieve maximum 

likelihood estimation (Zhang, Hua, and Huang 2010), we allow the number of internal knots 

to increase with the total sample size n, satisfying

Nk = O n
1

1 + 2sk .

Here sk is related to the smoothness of the underlying true function ϕk(·). Maximization of 

the resulting sieve maximum likelihood function leads to the sieve maximum likelihood 

estimate of π(Wi), denoted by π W i . Based on this estimate, we can perform 

semiparametric estimation based on the following pseudo-score function:

Ψn, j βj; π = 1
n ∑

i = 1

n Ri
π W i

Gi∫0
τ

Zi −
∑l = 1

n Rl
π W l

GlZlYl(t)eβjTZl

∑l = 1
n Rl

π W l
GlYl(t)eβjTZl

dNij t ,

for the events j=1, 2 (return to care and death). An estimator for β0,j, j = 1, 2 is βn, j such that

Ψn, j βn, j; πn = 0.

We call the estimator βn, j a sieve inverse probability weighting (SIPW) estimator. Having 

obtained the SIPW estimator for β0,j, it is possible to obtain an SIPW estimator of the 

cumulative baseline cause-specific hazard as follows:

Λn, j t = ∫0
t ∑i = 1

n Ri
π W i

GidNij s

∑i = 1
n Ri

π W i
GiY i s eβn, j

T Zi
, j = 1, 2, t ∈ 0, τ .

Finally, a plug-in estimator of the cumulative incidence function given the covariate pattern 

Z = z is

Fn, j t; z = ∫0
t
exp − ∑

l = 1

2
Λn, l u − ; z dΛn, j u; z ,    j = 1, 2, t ∈ [0, τ],

where, Λn, j t; z = Λn, j t exp βn, j
T z . For standard error estimation we suggest the use of 

bootstrap. The bootstrap has been shown to be consistent for the asymptotic distribution of 

Euclidean parameter estimators in general semiparametric M-estimation problems (Cheng 

and Huang 2010).
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Computation of the estimators βn, j, j = 1, 2, can be easily performed using the R package 

survival, by utilizing the weights option in the coxph function. The function coxph is 

particularly fast and using bootstrap with 100 (or more) replications for standard error 

estimation is not a computationally burdensome task. Computation of Λn, j t , j = 1, 2, can be 

performed in a straightforward manner, using the function basehaz with the option 

centered=FALSE, after running the coxph function.

Simulation studies

We performed a number of simulations studies in support of the validity of the SIPW 

estimator. We simulated two covariates of interest Z1 ~ N(0, 1) and Z2 ~ Bernoulli(0.4). The 

true gap in care status G was simulated from the Bernoulli distribution with probability 

equal to expit(2 − 0.5Z1 + 0.5Z2). For the observations with Gi = 1 (i.e. true gap in care), the 

two events of interest (death and return to care) were simulated based on the proportional 

cause-specific hazards models

λ1 t; Z = exp β01 + β11Z1 + β21Z2 ,

where, (β01, β11, β21) (1, −0.5, 1), and

λ2 t; Z = eβ02
2 eβ02t − 1

2exp β12Z1 + β22Z2 ,

where, (β02, β12, β22) = (0.7, 0.5, −0.5). The first model is an exponential model while the 

second is a Weibull model. We also simulated an independent right-censoring time from 

Exp(1.5). In the simulation studies we considered scenarios with large percent of 

missingness. In order to simulate a more complex missingness pattern, we considered an 

auxiliary covariate A = −1 − X + 2Δ1 + ϵ, where ϵ ~ N(0, 1), which was associated with the 

incomplete variables X and Δ1. The true model for the probability of missingness was a 

nonlinear model of the form

logit π W = θ − cos Z1 + Z2 − 2
1 + exp 2A ,

where, θ depended on the scenario and controlled the proportion of missingness. Note that 

the MAR assumption is violated if the auxiliary variable A is not taken into account. For 

each of the three scenarios we simulated 1000 data sets, and in each data set we applied the 

naïve complete-case analysis, which ignores the auxiliary variable A, a flexible multiple 

imputation by chained equations (MICE) approach with five imputations, and the proposed 

SIPW method. For the MICE approach we assumed the following flexible imputation 

models:

logit Pr G = 1 ∣ W = η0 + η1 Z1 + η2Z2 + η3 A ,

where, η1 (·) and η3 (·) were unspecified smooth functions,
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log X ∣ G = 1, W N γ0 + γ1 Z1 + γ2Z2 + γ3 A , σ2 ,

where, γ1 (·) and γ3 (·) were unspecified smooth functions, and

logit Pr Δj = 1 ∣ G = 1, W , X = ψ0, j + ψ1, j Z1 + ψ2, jZ2 + ψ3, j A + ψ4, jX + ψ4, jX2,

for j = 1, 2, were ψ1 (·) and ψ3 (·) where unspecified smooth functions. We an assumed a 

quadratic effect of X in the last model for simplicity, because X contains missing values 

which need to be simulated in each imputation. Assuming an unspecified smooth effect of X 
in this model would require the calculation of the basis functions for the simulated Xs at 

every imputation, which could potentially lead to B-splines with different domains. For the 

SIPW approach we assumed the following model

logit Pr R = 1 ∣ W = ϕ0 + ϕ1 Z1 + ϕ2Z2 + ϕ3 A ,

where, ϕ1 (·) and ϕ3 (·) were unspecified smooth functions. It is important to note that the 

MICE approach imposes additivity assumptions in all three imputation models, and it 

additionally imposes a distributional assumption for the event or censoring time X. In 

contrast, the SIPW approach imposes only an additivity assumption in a single model. In 

both MICE and SIPW approaches, estimation of the unspecified smooth functions was based 

on cubic B-spline sieve spaces. For the SIPW approach, the number of internal knots was set 

equal to the largest integer that is less than or equal to 0.5n1/3, which is consistent with 

O(n1/3). For MICE, we use the same rule but we replaced the total number of observations n 

with the number of non-missing observations (i.e. the size of the dataset to be used to fit the 

imputation models). We used Rubin’s rules to conduct inference based on the MICE 

approach. Standard error estimation for the SIPW estimator was based on the nonparametric 

bootstrap with 100 replications.

In this simulation study we considered three scenarios according to the sample size and the 

probability of missingness. For Scenarios 1 and 2, these figures were chosen in an effort to 

evaluate the performance of the method under less extreme settings compared to the data 

example presented in Section 4. The sample size and percent of missingness in Scenario 3 

(n=20,000 and 87% missingness) were chosen to mimic the data example. We must note that 

there were many cases where the MICE estimators could not be calculated for event 1 

(17.8% of the datasets in Scenario 1, 28.6% in Scenario 2, and 24.0% in Scenario 3), 

because of non-convergence issues in at least one of the imputation models. Such issues in 

MICE were minimal for event 2 (less than 0.8% of the datasets in all scenarios). These 

problematic estimates were not considered further in the simulation study. In many cases, 

both the logistic imputation models for MICE and the missingness model for SIPW 

exhibited perfect prediction issues as a result of their flexibility. The resulting estimates were 

not discarded from this simulation study.
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Scenario 1: n=2,000 and ~51% missingness

Results regarding the covariate effect estimators from this scenario are shown in Table 1. 

The complete-case, MICE and SIPW estimates are shown for the two events along with the 

percent bias, the Monte Carlo standard deviation (MCSD) and the average of the bootstrap 

standard error (ASE) estimates. The attainment of a nominal coverage probability (CP) of 

95% is also assessed.

These simulation results indicate that the complete-case analysis is associated with 

significant levels of bias and suffers from lower than desired coverage probability. Its 

slightly lower MCSD and ASE, compared to the SIPW, in some cases, is attributed to the 

additional variability of the estimated weights in the SIPW approach. The MICE estimator 

for the regression parameter of the event two is biased, and the corresponding coverage 

probabilities are lower than the nominal level. This can be attributed to a misspecification of 

the imputation models for X and Δ2, since the true structure of these models is quite 

complicated in competing risks situations. In contrast, the SIPW estimator is virtually 

unbiased and the corresponding coverage probabilities close to the nominal level.

Average estimates of the cumulative baseline cause-specific hazard functions along with the 

corresponding true values are shown in Figure 4.

Similarly to the results for the covariate effect estimators, the estimate of the cumulative 

baseline cause-specific hazard from the complete case analysis is quite biased. Additionally, 

this estimate from the MICE approach is biased for the event 2. On the contrary, the 

corresponding estimate from the SIPW method exhibits negligible bias.

Scenario 2: n=5,000 and ~74% missingness

The results from this scenario are presented in Table 2 and Figure 5.

The results shown in Table 2 are similar as in Scenario 1 (Table 1). The complete-case 

analysis is associated with substantial levels of bias and small coverage probabilities in all 

cases as opposed to the proposed SIPW estimator. The MICE estimators for event two are 

also biased and the corresponding coverage probabilities have a poor coverage rate. The 

biases of the complete-case and MICE analyses are more pronounced in Scenario 2, as a 

result of the larger percent of missingness. Also, the MICE estimator for event one exhibits a 

somewhat larger bias in Scenario 2, and the coverage probability for β21 is quite low. A 

similar pattern in bias is observed with respect to the estimation of the baseline cumulative 

cause-specific hazard (Figure 5).

Scenario 3: n=20,000 and ~87% missingness

The results from this scenario are presented in Table 3 and Figure 6.

A similar pattern to the simulation results from Scenarios one and two is observed here. 

Specifically, the complete-case and the MICE analyses provide biased estimates, while the 

SIPW estimates are virtually unbiased. As expected, the biases of the complete-case and 

MICE analyses are more pronounced in Scenario 3 as a result of the higher missingness 
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percent. Moreover, the empirical coverage probabilities were even lower for the complete-

case and MICE analyses.

Analysis of return to care and death after the first gap in care

We illustrate the proposed methodology by analyzing data from AMPATH, a large HIV care 

and treatment program in western Kenya. The study sample consisted of 18,892 patients 

who initiated ART in one of the clinics in the AMPATH program and then became lost to 

clinic after ART initiation. Loss to clinic was defined here as no clinic visits for two months 

after the next scheduled visit (usually 90 days from their last clinic visit). This definition is 

clinically meaningful, because patients who miss a scheduled clinic visit for at least two 

months are expected to have run out of ART supplies for at least a month in our setting. It 

has been found that ART interruption is associated with a steep increase in HIV-RNA in the 

first few months (Touloumi et al. 2006), and that a treatment interruption can have a 

detrimental effect on the immune system of the patient (Mussini et al. 2009). Using a longer 

amount of time, one would miss many clinically important cases of a gap in care. 

Characteristics of these patients are shown in Tables 4, 5.

In total, AMPATH’s outreach program was applied to 4,118 (21.8%) lost patients. Of them, 

2,538 (61.6%) were successfully traced and had their vital status actively ascertained. Out of 

these patients, 491 (19.3%) were found to be deceased and this indicates a substantial death 

under-reporting issue. Among the non-successfully traced lost patients, 8,580 (52.5%) 

returned to care and, therefore, these patients had a true gap in care. The potential predictors 

of interest included patient gender, pregnancy status at last clinic visit, age and CD4 count at 

ART initiation, HIV status disclosure, travel time to clinic, and the level of care of the clinic 

attended by each patient. To make the key MAR assumption more plausible, we also 

considered the ratio of the number of outreach workers to the average daily number of adult 

patients in the clinic as an auxiliary variable that could plausibly be related to the probability 

that a patient lost to program would be outreached (Table 5). In addition, this variable is 

expected to be associated with the outcome of death after a gap in care. This is because a 

clinic with more outreach workers (relatively to the daily number of patients) is expected to 

be better funded, better staffed, and to provide better care. These characteristics are in turn 

expected to be associated with a lower risk of death even in patients who become lost after 

having received care for some time. The overall estimated cumulative incidences of death 

and return to care after a gap in care, based on the SIPW method, are given in Figure 7.

In Figure 7, it appears that a large proportion of patients who have a gap in care return to 

care quickly after the gap in care and continue to re-engage over the next two years after the 

gap in care. The estimated cumulative incidence of return to care at 6, 12 and 24 months 

from the missed visit is 0.465, 0.568, and 0.638, respectively. The corresponding figures for 

the cumulative incidence of death are 0.051, 0.095, and 0.134. Effect estimates, based on the 

SIPW method, for factors potentially associated with the hazards of death and return to care 

after a gap in care are provided in Tables 6, 7 respectively. In these Tables, we also provide 

results from the naïve complete-case analysis and the MICE approach considered in Section 

3.
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Factors associated with a decreased hazard of death after a gap in care based on the SIPW 

approach, include longer time on ART, pregnancy status (marginally significant result, p-

Value=0.073 – pregnant women have generally less advanced disease), higher CD4 cell 

count, shorter travel time to clinic (marginally significant result, p-Value=0.098), and being 

treated at a primary clinic (Table 6). The naïve complete-case analysis of the successfully 

traced lost patients provides a less pronounced effect of travel time to clinic which is not 

statistically significant (p-Value=0.221), and a less pronounced effect of being in a primary 

care clinic. The MICE approach provides an effect of the opposite direction for pregnancy 

status (non-significant result, p-Value=0.883). Additionally, the MICE analysis provides a 

less pronounced effect of CD4 cell count (marginally significant result, p-Value=0.093), 

while it gives a more pronounced effect for travel time to clinic (significant result, p-

value=0.037). Finally, the effect of a primary care clinic is only marginally significant based 

on the MICE analysis (p-Value=0.098). Factors associated with a higher rate of return to 

care after a gap in care based on the SIPW approach, include longer time on ART, male 

gender (marginally significant result, p-Value=0.080), older age (marginally significant 

result, p-Value=0.060), shorter duration of travel time to clinic, and being treated at a 

primary clinic (Table 7).

Based on the complete-case analysis, the effects of male gender and age appear attenuated 

and not statistically significant (p-Value: 0.274 and 0.140, respectively), while the effect of 

being in a primary care clinic appears more pronounced. Based on the MICE analysis, the 

effect of pregnancy is more pronounced and statistically significant (p-Value=0.017), the 

effect of male gender is statistically significant (p-Value=0.011), while the effects of travel 

time to clinic and of being in a primary care clinic are attenuated and the latter effect is not 

significant (p-Value=0.263). The discrepancy between the results from the naïve complete-

case analysis and the proposed SIPW approach is attributed to the fact that the former 

approach does not take into account the auxiliary variable “number of outreach workers to 

average daily number of adult patients”, which needs to be accounted in order to make the 

MAR assumption more plausible in our setting. The discrepancy between the results from 

the MICE analysis and the proposed SIPW approach is attributed to the fact that the former 

approach imposes more model assumptions, some of which may be violated. The MICE 

approach requires all the three imputation models to be correctly specified and, also, that the 

distributional assumption on the event or censoring time X is correct. In contrast, the 

proposed SIPW approach only requires that the additivity assumption (i.e. no interactions) 

on the missingness probability model is satisfied.

We must one that, in this analysis, the computation time for the SIPW approach with 100 

bootstrap replications for standard error estimation was only 60 s for each event type. No 

computational problems in the SIPW and MICE approaches were encountered in this 

analysis. The analysis of the remaining transitions in the model depicted in Figure 2, i.e. 

death while in care and gap in care after ART initiation, is presented in the Appendix.

Discussion

In this paper we propose a sieve inverse probability weighting (SIPW) estimator for 

semiparametric analysis of return to care and death after a gap in care. Analysis of these 
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outcomes based on programmatic data is quite challenging as a result of death under-

reporting. To recover part of the unreported mortality, we used information obtained from an 

intensive program of tracing patients who miss a clinic visit (double-sampling). These 

incomplete data on patient outcomes, combined with patient and clinic characteristics 

available prior to a gap in care plus auxiliary variables, were used to make more plausible 

the key missing at random (MAR) assumption. Our SIPW approach utilizes a generalized 

additive logit model for the probability of missingness, which is considerably more flexible 

compared to the traditional parametric logit models. Generalized additive models (Hastie 

and Tibshirani 1986) have been previously used for sensitivity analyses regarding the 

nonignorable missingness assumption, in the simpler case of univariate and non-censored 

incomplete outcome data (Scharfstein and Irizarry 2003). The estimation of the generalized 

additive model for the probability of missingness in our approach relies on B-spline sieve 

maximum likelihood estimation (Shen and Wong 1994; Zhang, Hua, and Huang 2010). Our 

simulation studies provide evidence for the validity of the proposed SIPW approach. They 

also indicate that a simple complete case-analysis can provide severely biased estimates in 

the presence of auxiliary variables which are associated with the probability of missingness. 

The bias from the complete-case analysis is proportional to the proportion of missingness. 

Moreover, our simulation experiments indicate that an MICE approach can provide biased 

estimates as a result of imposing more assumptions compared to the SIPW approach.

In this analysis, we considered the ratio of outreach workers to the average daily number of 

adult patients as an auxiliary variable. This variable is clearly associated with the probability 

of a successful patient outreach, that is the probability of non-missingness. It is also 

expected to be associated with the outcome process (even after conditioning on the 

covariates of interest), since a larger number of outreach workers is associated with more 

funding for the clinic, better staffing, and the provision of better care, which in turn are 

associated with better patient outcomes. Therefore, taking this variable into account via the 

SIPW method is crucial in order to make the MAR assumption more plausible in our setting. 

We must note that the SIPW approach is not useful for situations where the auxiliary 

variable is expected to be independent of the outcome given the covariates of interest. If one 

is willing to assume that the auxiliary variable is independent of the outcome given the 

covariates of interest, and if this variable is associated with missingness, a better approach to 

use is the instrumental variable framework (Bärnighausen et al. 2011; Tchetgen Tchetgen 

and Wirth 2017). This framework can deal with some missing not at random scenarios.

We must note here that, to estimate the time until return to care or death after a gap in care, 

we must only use data from patients who were traced. Including data from all patients who 

ultimately returned to care would render the MAR assumption invalid. This is because 

inclusion of data from patients returning to care who were not previously traced modifies the 

missingness indicator to Ri
⋆ = max Ri, Δi2  (i.e., data are recovered from all those who 

returned plus those who were found by outreach). It is straightforward to understand why 

this new missingness indicator depends on the incomplete variables even after adjusting for 
covariates and auxiliary variables, thus violating the key MAR assumption, that is,
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Pr Ri⋆ = 1 ∣ Gi, Xi, Δi1, Δi2, W i ≠ Pr Ri⋆ = 1 ∣ W i .

Our simulations (not shown) indicated that using outcome information from non-

successfully traced patients could lead to bias in the effect estimates up to 115%. The 

probability of a successful outreach was higher for males or pregnant females, patients from 

clinics with more outreach workers, those with shorter travel time to clinic, older patients, 

and those with HIV status disclosed. Our MAR assumption allows the probability of a 

successful outreach to depend on all these factors. However, conditionally these factors and 

total time on ART, CD4 cell count at ART initiation, and level of care, the probability of 

successful outreach is assumed to be independent of the vital status, return to care status, and 

the time from the gap in care to death or return to care. A possible violation of our key MAR 

assumption is the scenario where outreach increases the likelihood of the traced patients 

returning to care. However, as shown in Table 4, the overall proportion of return to care 

among those who were traced was lower to that among those who were not traced. In 

addition, we do not have reasons to believe that, conditional on the variables included in the 

missingness probability model, the probability of a successful outreach is related to the vital 

status of the patient. Nevertheless, if concerns remain about a possible violation of the MAR 

assumption, one can perform a sensitivity analyses under a missing not at random selection 

model. This approach sheds light upon the potential robustness of the SIPW estimates 

against violations of the MAR assumption.

The results from our data analysis are consistent with ad hoc analyses of return to care 

performed to date (Geng, Odeny, and Lyamuya 2016; Rebeiro, Bakoyannis, and Musick 

2017). Those analyses showed that a large percentage of patients with a gap in care re-

engage in care shortly after the gap. This process of re-engagement in care has direct 

implication on estimates of retention in care, which would otherwise be underestimated if 

one simply used programmatic data without augmenting them with patient tracing or 

additional information on patients who are lost to program. On the other hand, the 

implications of undocumented transfers on the continuity of care of these patients are 

unknown. Clearly many patients re-engage quickly into care, but others appear to remain 

disengaged from care for extended periods of time (Geng, Odeny, and Lyamuya 2015).

An alternative approach to the B-spline sieve spaces used for the missingness probability 

model, is to use regression splines (such as B-splines) with a small number of internal knots 

(e.g. 3–5) that does not depend on sample size n. Even though this approach is less flexible 

compared to our original approach, it can be better suited for situations with many 

continuous covariates in the missingness model and/or a small sample size n and/or a small 

double-sample size. In such cases, estimating the parameters of the generalized additive 

model for the missingness probability based on B-spline sieve maximum likelihood may be 

problematic as some parameters may not be estimable. A practically relevant question is 

what is the smallest number of double-sampled observations under which the method is 

expected to have good performance. With small numbers of non-missing observations, it 

may be more appropriate to use parametric regression splines as mentioned above. In such 

cases, and assuming that the double-sampled observations are fewer than the non-double-
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sampled observations, one can use the rule of thumb of having at least 10 double-sampled 

observations per parameter to be estimated in the missingness model (Agresti 2002).

We must recognize that the IeDEA data are cluster-correlated as patients from the same 

clinic are expected to have correlated outcomes, and this was not addressed in the analyses 

presented in this article. To address this issue under the MAR assumption imposed in this 

paper, one needs to use GEE under a working independence assumption to estimate the 

probability of missingness, and then use the pseudo partial score function to estimate the 

parameters βj. If the estimator for the missingness probability is consistent, then the 

arguments in Spiekerman and Lin (1998) imply that our estimator is consistent for the 

population-averaged parameters of the competing risks process under study. Standard error 

estimation can be easily performed using the nonparametric cluster bootstrap (Bakoyannis 

2020; Field and Welsh 2007).

The proposed methodology provides a robust approach for valid inferences about return to 

care and death during a gap in care, in settings with death under-reporting. This 

methodology should be useful for a more complete accounting of the patient transition 

through the HIV care cascade. More realistic estimates of return to care and death will have 

profound effects on the validity of estimates on patient retention in care. Ultimately, these 

estimates will have significant consequences on program construction, resource allocation, 

policy and decision making at the highest levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix:: Analysis of the hazards of a first gap in care and death

In this Appendix, we provide the analysis of the hazards of death while in care and of a gap 

in care after ART initiation (i.e. the remaining hazards in the multi-state churn model 

depicted in Figure 2). Here, we focus on the first occuring event (death or gap in care) after 

ART initiation and, thus, the analysis can be based on methods for competing risks data 

(Bakoyannis and Touloumi 2012; Putter, Fiocco, and Geskus 2007). To account for the 

missing event types (i.e. death or gap in care) due to death under-reporting among the non-

Bakoyannis et al. Page 15

Stat Commun Infect Dis. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outreached lost patients, we use appropriate pseudolikelihood methods (Bakoyannis, Zhang, 

and Yiannoutsos 2019, 2020). In this analysis we include 38,490 patients who initiated ART 

in one of the clinics in the AMPATH program. These patients are a superset of the 18,892 

patients who were identified as lost to clinic and analyzed in the main text of this 

manuscript. Characteristics of the 38,490 patients are shown in Table A1.

Of the 38,490 patients in our sample, 18,892 (49.1%) patients were identified as lost to 

clinic, 1,979 (5.1%) were reported as deceased without a prior gap in care, while the 

remaining 17,619 (45.8%) patients were alive and without a gap in care at the date of data 

request. In total, 2,538 (13.4%) lost patients were successfully traced by AMPATH outreach 

workers (Table A1). Of them, 491 (19.3%) were found to have died within two months from 

the next scheduled visit and this indicates a substantial death under-reporting issue. The 

potential predictors of interest included patient gender, pregnancy status at last clinic visit, 

age and CD4 count at ART initiation, HIV status disclosure, travel time to clinic, and the 

level of care of the clinic attended by each patient. To make the key MAR assumption more 

plausible, we also considered the ratio of the number of outreach workers to the average 

daily number of adult patients in the clinic as an auxiliary variable that could plausibly be 

related to the probability that a patient lost to program would be outreached (Table A1). The 

pseudolikelihood methods we use here require the specification of a (parametric) logistic 

model for the probability of an unreported death among the lost patients. For flexibility, we 

use cubic B-splines with three internal knots for the continuous covariates in this model 

(regression splines). Note that here, unlike the SIPW approach, the number of knots does not 

depend on the sample size n and thus the model involves only a finite-dimensional parameter 

(i.e. it is a parametric model). The overall estimated cumulative incidences of a first gap in 

care and death prior to the first gap in care are, based on the nonparametric maximum 

pseudolikelihood estimator by Bakoyannis et al. (2019), are given in Figure A1.

Table A1:

Descriptive characteristics of the study sample for the analysis of the first gap in care and 

death prior to the first gap.

Passively ascertained outcome p-Value

In care Death LTC
a

(n=17,619) (n=1,979) (n=18,892)

n(%) n(%) n(%)

Outreach

 Not attempted 0 (−) 0 (−) 14,774 (78.2) -

 Not found 0 (−) 0 (−) 1,580 (8.4)

 Found 0 (−) 0 (−) 2,538 (13.4)

True outcome
b

 Death 0 (−) 0 (−) 491 (19.3) -

 Gap in care 0 (−) 0 (−) 2,047 (80.7)

Gender

 Female & non-pregnant
c

9,412 (58.9) 726 (43.1) 8,058 (51.8) <0.001

Bakoyannis et al. Page 16

Stat Commun Infect Dis. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Female & pregnant
c

1,076 (6.7) 32 (1.9) 1,190 (7.6)

 Male 5,488 (34.4) 926 (55.0) 6,320 (40.6)

HIV status disclosed

 No 6,269 (35.6) 670 (33.9) 6,972 (36.9) 0.003

 Yes 11,350 (64.4) 1,309 (66.1) 11,920 (63.1)

Travel time to clinic

 <30′ 4,570 (25.9) 480 (24.3) 4,752 (25.2) <0.001

 30–59′ 6,153 (34.9) 679 (34.3) 5,936 (31.4)

 1–2 h 4,346 (24.7) 482 (24.4) 4,659 (24.7)

 2 + h 2,550 (14.5) 338 (17.1) 3,545 (18.8)

Level of care

 Primary 5,777 (32.8) 649 (32.8) 5,814 (30.8) <0.001

 Secondary 9,561 (54.3) 1,176 (59.4) 9,967 (52.8)

 Tertiary 2,281 (12.9) 154 (7.8) 3,111 (16.5)

Median (IQR) Median (IQR) Median (IQR) p-Value

Age
d
, years 37.9 (32.0, 45.4) 37.8 (31.7, 45.2) 36.0 (30.3, 43.1) <0.001

CD4
d
, cells/μL 186 (113, 263) 106 (52, 179) 155 (83, 234) <0.001

Outreach worker ratio
e
 (×100) 5.0 (3.6, 5.9) 5.0 (4.0, 5.9) 5.0 (4.0, 5.9) <0.001

a
Lost to clinic.

b
Ascertained through outreach.

c
At or prior to ART initiation.

d
At ART initiation.

e
# of outreach workers to total daily # of adult patients.
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Figure A1: 
Cumulative incidence of death while in care and gap in care after ART initiation.

Table A2:

Factors associated with death while in care after ART initiation.

CSHR
a

95% CI p-Value

Gender

 Female & non-pregnant 1.000 - -

 Female & pregnant 0.529 (0.341, 0.820) 0.004

 Male 1.306 (1.164, 1.465) <0.001

Age
b
, per 10 years 1.110 (1.035, 1.192) 0.004

CD4
b
, per 100 cell/μL 0.663 (0.608, 0.723) <0.001

HIV status disclosed 1.072 (0.914, 1.257) 0.395

Travel time to clinic >30′ 1.081 (0.945, 1.235) 0.256

Level of care

 Secondary/Tertiary 1.000 - -

 Primary 0.804 (0.652, 0.992) 0.042

a
Cause-specific hazard ratio

b
At ART initiation
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Table A3:

Factors associated with a first gap in care after ART initiation.

CSHR
a

95% CI p-Value

Gender

 Female & non-pregnant 1.000 - -

 Female & pregnant 1.169 (1.072, 1.274) <0.001

 Male 1.108 (1.042, 1.179) 0.001

Age
b
, per 10 years 0.769 (0.742, 0.797) <0.001

CD4
b
, per 100 cell/μL 0.981 (0.960, 1.002) 0.070

HIV status disclosed 0.927 (0.869, 0.990) 0.023

Travel time to clinic >30′ 1.038 (0.987, 1.092) 0.148

Level of care

 Secondary/Tertiary 1.000 - -

 Primary 1.067 (0.979, 1.163) 0.142

a
Cause-specific hazard ratio

b
At ART initiation

In Figure 7, it appears that a large proportion of patients who initiate ART have a subsequent 

gap in care. The estimated cumulative incidence of a gap in care at 1, 2, and 5 years since 

ART initiation is 0.187, 0.314, and 0.505, respectively. The corresponding figures for the 

cumulative incidence of death while in care are 0.108, 0.131, and 0.170. Effect estimates for 

factors potentially associated with the hazards of death while in care and gap in care are 

provided in Tables A2, A3 respectively.

Factors associated with a decreased hazard of death while in care, include pregnancy status 

(pregnant women have generally less advanced disease), female gender, younger age, higher 

CD4 cell count and being treated at a primary clinic (Table A2). Factors associated with a 

higher rate of a gap in care after ART initiation includes pregnancy, male gender, younger 

age, and non-disclosure of the HIV status (Table 7).
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Figure 1: 
Competing risks model of disengagement from care and death after ART initiation.
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Figure 2: 
Multi-state model of patient churning in an out of care after ART initiation.
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Figure 3: 
Double-sampling in AMPATH.
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Figure 4: 
Simulation results corresponding to Scenario 1.
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Figure 5: 
Simulation results corresponding to Scenario 2.
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Figure 6: 
Simulation results corresponding to Scenario 3.
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Figure 7: 
Cumulative incidence of death and return to care after the first gap in care.
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Table 1:

Results from Scenario 1 (n=2,000 and about 51% missingness) based on the naïve complete case analysis 

(CC), the multiple imputation by chained equations approach (MICE), and the proposed sieve inverse 

probability weighting approach (SIPW).

Analysis Event 1 Event 2

β11 β21 β12 β22

CC % Bias −14.330 −17.478 23.845 3.144

MCSD
a 0.056 0.106 0.071 0.125

ASE
b 0.055 0.105 0.069 0.130

CP
c 0.740 0.621 0.604 0.959

MICE % Bias −6.876 −8.080 −15.471 −15.429

MCSD
a 0.055 0.100 0.050 0.091

ASE
b 0.065 0.120 0.055 0.097

CP
c 0.963 0.936 0.721 0.882

SIPW % Bias 0.565 0.695 0.685 0.448

MCSD
a 0.062 0.119 0.070 0.125

ASE
b 0.063 0.122 0.070 0.129

CP
c 0.944 0.961 0.954 0.960

a
Monte Carlo standard deviation of the estimates.

b
Average of the standard error estimates.

c
Empirical coverage probability.
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Table 2:

Results from Scenario 2 (n=5,000 and and ~74% missingness) based on the naïve complete case analysis 

(CC), the multiple imputation by chained equations approach (MICE), and the proposed sieve inverse 

probability weighting approach (SIPW).

Analysis Event 1 Event 2

β11 β21 β12 β22

CC % Bias −19.870 −20.374 32.168 20.748

MCSD
a 0.045 0.093 0.064 0.122

ASE
b 0.043 0.090 0.063 0.122

CP
c 0.375 0.388 0.279 0.875

MICE % Bias −9.884 −11.248 −26.093 −26.087

MCSD
a 0.044 0.083 0.041 0.074

ASE
b 0.057 0.105 0.042 0.076

CP
c 0.931 0.866 0.216 0.647

SIPW % Bias 0.408 0.256 0.405 −0.656

MCSD
a 0.058 0.118 0.068 0.126

ASE
b 0.056 0.117 0.068 0.125

CP
c 0.937 0.941 0.949 0.950

a
Monte Carlo standard deviation of the estimates.

b
Average of the standard error estimates.

c
Empirical coverage probability.
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Table 3:

Results from Scenario 3 (n=20,000 and and ~87% missingness) based on the naïve complete case analysis 

(CC), the multiple imputation by chained equations approach (MICE), and the proposed sieve inverse 

probability weighting approach (SIPW).

Analysis Event 1 Event 2

β11 β21 β12 β22

CC % Bias −22.842 −21.349 36.646 37.663

MCSD
a 0.030 0.064 0.047 0.092

ASE
b 0.029 0.064 0.046 0.092

CP
c 0.028 0.091 0.019 0.473

MICE % Bias −9.713 −11.929 −30.823 −31.537

MCSD
a 0.032 0.063 0.027 0.050

ASE
b 0.042 0.077 0.028 0.050

CP
c 0.873 0.780 0.011 0.276

SIPW % Bias −0.376 −0.546 0.467 0.269

MCSD
a 0.043 0.092 0.052 0.098

ASE
b 0.042 0.090 0.053 0.097

CP
c 0.947 0.938 0.949 0.942

a
Monte Carlo standard deviation of the estimates.

b
Average of the standard error estimates.

c
Empirical coverage probability.
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Table 4:

True gap in care and event status according to the successful patient tracing status.

Successful patient tracing

No Yes

n(%) n(%)

True gap in care

 No (=unreported death) 0 (−) 491 (19.3)

 Yes 8,580 (52.5) 2,047 (80.7)

 Unknown 7,774 (47.5) 0 (−)

Event

 No event/unknown 7,774 (47.5) 1,387 (54.6)

 Death 0 (−) 195 (7.7)

 Return to care 8,580 (52.5) 956 (37.7)

16,354 2,538
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Table 5:

Descriptive characteristics of the study sample.

Successful patient tracing p-Value

No Yes

(n=16,354) (n=2,538)

n(%) n(%)

Gender

 Female & non-pregnant
a 9,946 (60.8) 1,279 (50.4) <0.001

 Female & pregnant
a 1,019 (6.2) 328 (12.9)

 Male 5,389 (33.0) 931 (36.7)

HIV status disclosed

 No 6,111 (37.4) 861 (33.9) 0.001

 Yes 10,243 (62.6) 1,677 (66.1)

Travel time to clinic

 <30′ 4,122 (25.2) 630 (24.8) 0.015

 30–59′ 5,075 (31.0) 861 (33.9)

 1–2 h 4,047 (24.7) 612 (24.1)

 2 + h 3,110 (19.0) 435 (17.1)

Level of care

 Primary 5,004 (30.6) 810 (31.9) <0.001

 Secondary 8,714 (53.3) 1,253 (49.4)

 Tertiary 2,636 (16.1) 475 (18.7)

Median (IQR) Median (IQR) p-Value

Age
b
, years

36.0 (30.2, 42.9) 36.5 (30.6, 43.6) 0.007

CD4
b
, cells/μL

155 (84, 235) 153 (81, 229) 0.352

Months on ART 10.5 (2.9, 24.4) 10.2 (2.9, 23.3) 0.394

Outreach worker ratio
c
 (×100)

5.0 (4.0, 5.9) 5.0 (3.6, 5.9) 0.003

a
Prior to first loss to clinic

b
At ART initiation.

c
# of outreach workers to total daily # of adult patients.
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Table 6:

Factors associated with death after a gap in care based on the naïve complete case analysis that ignores the 

non-outreached patients (CC), the multiple imputation by chained equations method with five imputations 

(MICE), and the proposed approach (SIPW).

CC MICE SIPW

CSHR
a
 (p-Value) CSHR

a
 (p-Value) CSHR

a
 (p-Value)

Time on ART (per six months) 0.64 (<0.001) 0.80 (0.154) 0.62 (<0.001)

Gender

 Female & non-pregnant 1.00 (−) 1.00 (−) 1.00 (−)

 Female & pregnant 0.52 (0.057) 1.07 (0.883) 0.52 (0.073)

 Male 0.90 (0.476) 1.07 (0.691) 0.99 (0.937)

Age
b
 (per 10 years)

1.05 (0.565) 1.00 (0.998) 1.03 (0.798)

CD4
b
 (per 100 cell/μL)

0.72 (<0.001) 0.79 (0.093) 0.72 (<0.001)

HIV status disclosed 0.84 (0.250) 0.85 (0.368) 0.83 (0.252)

Travel time to clinic >30′ 1.26 (0.221) 1.69 (0.037) 1.40 (0.098)

Level of care

 Secondary/Tertiary 1.00 (−) 1.00 (−) 1.00 (−)

 Primary 0.66 (0.022) 0.48 (0.098) 0.50 (<0.001)

a
Cause-specific hazard ratio.

b
At ART initiation.
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Table 7:

Factors associated with return to care after a gap based on the naïve complete case analysis that ignores the 

non-outreached patients (CC), the multiple imputations by chained equations method with five imputations 

(MICE), and the proposed approach (SIPW).

CC MICE SIPW

CSHR
a
 (p-Value) CSHR

a
 (p-Value) CSHR

a
 (p-Value)

Time on ART (per six months) 1.19 (<0.001) 1.24 (<0.001) 1.19 (<0.001)

Gender

 Female & non-pregnant 1.00 (−) 1.00 (−) 1.00 (−)

 Female & pregnant 1.14 (0.204) 1.41 (0.017) 1.14 (0.182)

 Male 1.08 (0.274) 1.16 (0.011) 1.15 (0.080)

Age
b
 (per 10 years)

1.06 (0.140) 1.07 (0.012) 1.09 (0.060)

CD4
b
 (per 100 cell/μL)

0.98 (0.422) 1.00 (0.633) 0.99 (0.535)

HIV status disclosed 1.01 (0.939) 1.03 (0.754) 1.01 (0.936)

Travel time to clinic >30′ 0.81 (0.005) 0.91 (0.001) 0.81 (0.008)

Level of care

 Secondary/Tertiary 1.00 (−) 1.00 (−) 1.00 (−)

 Primary 1.37 (<0.001) 1.09 (0.263) 1.28 (0.003)

a
Cause-specific hazard ratio.

b
At ART initiation.
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