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Abstract

Noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are 

follicular-patterned thyroid neoplasms defined by nuclear atypia and indolent behavior. They 

harbor RAS mutations, rather than BRAFV600E mutations as is observed in papillary thyroid 

carcinomas with extensive follicular growth (PTC-EFGs). Reliably identifying NIFTPs aids in safe 

therapy de-escalation, but has proven to be challenging due to interobserver variability and 

morphologic heterogeneity. The genomic scoring system BRS (BRAF-RAS score) was developed 

to quantify the extent to which a tumor’s expression profile resembles a BRAFV600E or RAS-

mutant neoplasm. We proposed that deep learning prediction of BRS could differentiate NIFTP 

from other follicular-patterned neoplasms. A deep learning model was trained on slides from a 

dataset of 115 thyroid neoplasms to predict tumor subtype (NIFTP, PTC-EFG, or classic PTC), 

and was used to generate predictions for 497 thyroid neoplasms within The Cancer Genome Atlas 

(TCGA). Within follicular-patterned neoplasms, tumors with positive BRS (RAS-like) were 8.5 

times as likely to carry a NIFTP prediction than tumors with negative BRS (89.7% vs 10.5%, 

P<0.0001). To test the hypothesis that BRS may serve as a surrogate for biological processes that 

determine tumor subtype, a separate model was trained on TCGA slides to predict BRS as a linear 

outcome. This model performed well in cross-validation on the training set (R2=0.67, 

dichotomized AUC=0.94). In our internal cohort, NIFTPs were near universally predicted to have 

RAS-like BRS; as a sole discriminator of NIFTP status, predicted BRS performed with an AUC of 

0.99 globally and 0.97 when restricted to follicular-patterned neoplasms. BRAFV600E-mutant 
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PTC-EFG had BRAFV600E-like predicted BRS (mean −0.49), non-mutant PTC-EFG had more 

intermediate predicted BRS (mean −0.17), and NIFTP had RAS-like BRS (mean 0.35; P<0.0001). 

In summary, histologic features associated with the BRAF-RAS gene expression spectrum are 

detectable by deep learning and can aid in distinguishing indolent NIFTP from PTCs.

Introduction

Thyroid neoplasms can be broadly categorized as papillary carcinomas or follicular-

patterned neoplasms. Classic papillary thyroid carcinoma (PTC-classic) are infiltrative, often 

metastasize to lymph nodes, and frequently harbor BRAFV600E mutations (~45%), RET-

PTC rearrangements (~20%), and/or a BRAFV600E-like gene expression signature (1–3). 

Follicular thyroid neoplasms have been described with several historical frameworks. Due to 

high interobserver variability and observed behavioral heterogeneity, definitions of the 

various follicular-patterned neoplasms have come under recent attention. Modern 

descriptions of follicular-patterned neoplasms (excluding conventional follicular adenomas 

and follicular carcinomas) include three main types: PTC with extensive follicular growth 

(PTC-EFG), noninvasive follicular thyroid neoplasms with papillary-like nuclear features 

(NIFTP), and invasive encapsulated follicular variant of PTC (IE-PTC-FV). (4, 5)

1. PTC-EFG neoplasms (alternate nomenclature includes the infiltrative follicular 

variant of PTC, or PTC with prominent follicular architecture) are characterized 

by predominantly follicular architecture, infiltrative growth similar to classic 

PTC, and lymphatic metastases. They may have focal papillae and usually 

demonstrate intranuclear pseudoinclusions. Like classic PTCs, they have been 

observed as having a high frequency of BRAFV600E (but not RAS) mutations.

2. NIFTP is a relatively new classification (2016) with recently updated diagnostic 

criteria (2018). They are defined by follicular growth, circumscription, and 

indolent behavior. They possess nuclear features similar to PTCs. Unlike PTCs, 

however, these neoplasms contain frequent RAS (but not BRAFV600E) 

mutations. (2, 5–15)

3. IE-PTC-FV are histologically and genetically similar to NIFTP, with follicular 

growth, papillary-like nuclei, and RAS mutations, but demonstrate either 

capsular, vascular, or intrathyroidal invasion which precludes the diagnosis of 

NIFTP. IE-PTC-FV are associated with more aggressive behavior, with a 

capacity for hematogenous metastases similar to follicular carcinoma.

Identification of NIFTP is clinically relevant, as their indolent course allows for de-

escalation of therapy compared to conventional PTC. As a result of their indolent behavior, 

NIFTPs are less aggressively managed, and neither thyroidectomy nor radioactive iodine 

ablation are recommended (16). However, diagnosis of NIFTP can be challenging due to the 

variability of nuclear features, geographic heterogeneity within each tumor, and propensity 

for inter-observer variability due to differing diagnostic thresholds among pathologists. (17–

19)
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The most recently proposed diagnostic criteria for NIFTP include: 1) follicular growth with 

no papillae or psammoma bodies and <30% solid/trabecular growth, 2) encapsulation or 

clear demarcation with no vascular or capsular invasion, 3) absence of tumor necrosis and 

mitoses <3 per 10 high-power fields, and 4) significant nuclear features (14, 15). Nuclear 

features are defined as demonstration of sufficient abnormality in at least two of three 

categories: 1) size and shape (enlarged or elongated), 2) membrane irregularities (grooves, 

folds, pseudoinclusions), or 3) chromatin irregularities (glassy nuclei, chromatin clearing or 

margination) (4). In an additional effort to correlate behavior to genetics, presence of 

BRAFV600E mutation, BRAF VE1 immunopositivity, or high-risk mutation (TERT 
promoter, TP53) excludes a diagnosis of NIFTP (15).

While the diagnostic criteria for NIFTP have helped standardize the approach towards 

recognizing and diagnosing this indolent entity, the problem of interobserver variability is 

not entirely ameliorated. While NIFTP neoplasms are overall exceptionally indolent, some 

neoplasms diagnosed as NIFTP have been rarely observed to metastasize, highlighting the 

challenge of excluding rare aggressive neoplasms which may otherwise be classified as 

NIFTP under these diagnostic guidelines (20). Furthermore, these criteria have not been 

well-established in the setting of oncocytic morphology, multifocality, or in sub-centimeter 

lesions. However, some authors suggest that large (>4 cm), small (<1 cm) and oncocytic 

neoplasms otherwise meeting criteria for NIFTP should be considered part of the NIFTP 

spectrum (21–23). Finally, there has been recognition that a more “biologically accurate” 

definition of the indolent NIFTP variant should be pursued, as the current definition fails to 

recognize the variety of biologic behavior in thyroid neoplasms (4). While the presence of 

RAS mutations in NIFTPs and BRAFV600E mutations or RET-PTC fusions in PTCs appear 

specific, the prevalence of these findings is not high enough to consistently guide diagnosis.

In a broad genomic characterization of thyroid cancers in The Cancer Genome Atlas 

(TCGA), Agrawal et al. developed BRAF-RAS score (BRS), a 71-gene expression signature 

designed to quantify the extent to which the gene expression profile of a given tumor 

resembles either the BRAFV600E or RAS-mutant profiles (1). The score is scaled from −1 to 

+1, with negative scores indicating BRAFV600E-like signature and positive scores indicating 

RAS-like expression. The development of BRS has introduced the ability to assess whether 

the gene expression of a non-mutant thyroid neoplasm is similar to that of a BRAFV600E or 

RAS mutant, highlighting the fact that tumors could possess a variety of genomic or 

epigenetic alterations resulting in activation of the same oncogenic pathways driven by 

BRAFV600E or RAS mutations. In addition to being highly specific for BRAFV600E or RAS 
mutations, BRAFV600E-like gene expression (negative BRS) identified BRAF fusions, RET 
fusions, and was enriched for tumors with poor differentiation, classical and tall cell 

histology, and ERK pathway activation. RAS-like expression (positive BRS) was seen 

mostly in follicular tumors and corresponded to predicted PI3K/AKT and MAPK signaling.

Deep learning tools are becoming increasingly popular for histologic analyses and have been 

used to predict tumor biomarker status, clinical variables, tumor subtypes, and mutation 

status in a variety of cancers (24–27). In thyroid cancer specifically, several groups have 

demonstrated that histologic features associated with BRAFV600E and RAS mutations are 

detectable using deep learning (28, 29). However, it is not yet known whether non-mutant 
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BRAFV600E-like or RAS-like tumors, as defined by the BRS, retain similar histologic 

features to their mutated counterparts, nor is it known whether these image features have any 

relevance to the diagnosis of follicular-patterned thyroid neoplasms.

In light of the observation that NIFTP are associated with RAS mutations while PTC-EFGs 

tend to have BRAFV600E mutations, we hypothesized that NIFTPs possess RAS-like gene 

expression signatures, even in the absence of a RAS mutation, which portend phenotypic 

similarity to their mutated counterparts. If true, this could allow for the use of BRS to help 

distinguish between NIFTPs and PTCs with extensive follicular growth. We thus sought to 

investigate whether consideration of BRAF-RAS spectrum gene expression could aid in the 

distinction between subtypes of follicular-patterned neoplasms.

Materials and Methods

Data preparation

H&E-stained slides were prepared for 115 neoplasms, with a distribution of diagnoses listed 

in Table 1 and Figure 1A, were scanned at 40x (using either Philips Ultra Fast Scanner 1.8 

(Philips, Best, The Netherlands) or Aperio ScanScope XT (Leica Biosystems, Buffalo 

Grove, IL, USA)), and were digitally annotated by pathologists (AT, NAC) with regions of 

interest (ROI) encircling tumors. Image tiles of size 299 pixels × 299 pixels were extracted 

from slides in a grid-wise pattern within corresponding regions of interest at 302 μm × 302 

μm (effective optical magnification: 10X). Background tiles were filtered by examining each 

image tile in the HSV color space, identifying “grayspace” pixels by counting the number of 

pixels with a hue value less than 0.05, and discarding the tile if the grayspace fraction was 

above 50%. Digital tile images were then standardized with Tensorflow to give each image a 

mean of zero and variance of one (30).

Training deep learning models on an institutional dataset

Deep learning models were trained on extracted image tiles from our institutional dataset 

using an Xception-based network in Tensorflow, trained to predict tumor subtype (31). 

Category-level balancing was used when generating batches for training, such that each 

batch contained equal proportion of tiles from each category in an attempt to reduce bias. 

Before training, data were separated into three equal k-folds, and a brief hyperparameter 

search was performed by training with 2/3 of the data and validating on the left out one-

third. Hyperparameters evaluated included all possible combinations of learning rate 

(0.0001, 0.001), batch size (8, 16), post-convolution pooling (‘max’ vs ‘average’), number of 

post-convolution hidden layers (0, 1) and epochs (1–10). The hyperparameter search did not 

include further parameters or a wider breadth of parameter searching due to computational 

constraints. After this brief search, hyperparameters were selected as detailed in 

Supplementary Table S1, and three-fold cross validation was finished with these parameters 

(Figure 1B). Predictions were generated on held-out validation sets for each k-fold. AUCs 

for each category were generated by varying the number of predicted-positive tiles needed to 

result in a positive slide-level prediction. A final model was then trained to the entire dataset 

(DL-UCM-ST).
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In order to appreciate the variability of learned image features, the final DL-UCM-ST model 

was used to generate and visualize post-convolution layer activations for all image tiles. 

Each image tile was presented to the DL-UCM-ST model as input, and activation values for 

each of the 2048 nodes in the final post-convolution layer were calculated. Each node in this 

layer is activated by a learned image feature, and in this way, the activations vector 

represents a complex summary of detected image features. Once calculated, activation 

vectors across all tiles were then mapped with the dimensionality reduction technique 

UMAP (32).

Evaluating deep learning model performance on TCGA cohort

Digital slides from the thyroid cancer cohort of TCGA (THCA) were downloaded using the 

official TCGA data portal, restricted to slides with an annotated tumor subtype of “Papillary 

adenocarcinoma, NOS” (PTC-NOS), “Papillary adenocarcinoma, columnar cell” (PTC-tall) 

or “Papillary carcinoma, follicular variant” (PTC-FV). Two slides were excluded due to poor 

slide quality. The final dataset comprised 354 PTC-NOS, 38 PTC-tall, and 105 PTC-FV 

(Figure 1A). Regions of interest were annotated by pathologists and tiles were extracted and 

processed as above. The deep learning model trained on our institutional dataset was then 

used to create subtype predictions for all slides in the TCGA cohort. Since TCGA samples 

do not contain benign tissue, model predictions were constrained to only PTC-classic, PTC-

EFG, or NIFTP. Predictions generated by this model were compared between annotated 

diagnosis using Chi-squared tests. BRAF-RAS scores (BRS) for TCGA slides were 

downloaded from data published by Agrawal (1). BRS was available for 386 tumors (269 

BRAFV600E-like, 117 RAS-like). BRS was compared between categories using both Chi-

squared tests (when scores were dichotomized to either BRAFV600E-like or RAS-like) and 

ANOVA (when comparing linear score values). Post-convolution layer activations were 

calculated for all TCGA slides and visualized using UMAP.

Training a deep learning model on the TCGA cohort to predict BRS

We then trained a deep learning model on the TCGA cohort using BRS as a linear outcome. 

As previously, the TCGA dataset was split into thirds for the purpose of performing cross-

validation. The model was built using the same parameters as previously determined, except 

with mean squared error as the loss function, and the number of epochs was re-determined 

in the first k-fold; the optimal number of epochs was determined to be two, which was then 

used for the other two k-folds. Predicted BRS in the validation cohorts were calculated and 

aggregated across k-folds, with performance assessed by calculating R2. BRS was then 

dichotomized to either RAS-like (positive score) or BRAFV600E-like (negative score), and 

model performance was assessed on these dichotomized outcomes using receiver operator 

curves and calculating AUCs. A final model was then trained across the entire TCGA dataset 

(DL-TCGA-BRS), which was then used to generate BRS predictions on our institutional 

dataset. Slide-level BRS predictions were generated by averaging all tile-level predictions 

for a given slide. We compared predicted BRS among the FAs, NIFTP, PTC-EFG, and PTC-

classic subtypes using both Chi-squared and ANOVA as described. We again calculated 

post-convolution layer activations using the trained BRS model, which were subsequently 

mapped using UMAP.
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Mosaic maps

In order to better appreciate image features detected by the deep learning models, mosaic 

maps were created from post-convolution layer activations. Activations were calculated for 

each tile as previously described and mapped with UMAP. These activations were overlaid 

onto a 50×50 grid, and for each grid space containing mapped tiles, a tile image was chosen 

for display. When multiple tiles were eligible for display in a given grid space, the tile 

nearest to centroid with respect to post-convolution layer activations was displayed.

Results

Deep learning models distinguish tumor subtypes

A deep learning model was trained on 115 pathologist-annotated slides in a local 

institutional dataset, with distribution of diagnoses as reported in Table 1, to predict tumor 

subtype (DL-UCM-ST) (Figure 1, C and D). Aggregated cross-validated performance 

revealed high sensitivity and specificity for NIFTP (sensitivity 89.4%, specificity 89.7%), 

high sensitivity for PTC-classic (sensitivity 94.7%, specificity 79.2%), and high specificity 

but low sensitivity for both PTC-EFG (sensitivity 39.1%, specificity 97.8%) and benign FA 

(sensitivity 42.9%, specificity 100%).

In order to better understand the relationship of detected histologic features between tumor 

subtypes, a UMAP plot was generated from post-convolution layer activations for each tile 

across all slides (Figure 2A). For each slide, the tile nearest to centroid was identified, 

displayed on the plot, and labeled according to its subtype. NIFTPs clustered distinctly from 

PTCs, with benign follicular adenomas demonstrating similarity to NIFTPs in their 

distribution. PTC-classics clustered distinctly from NIFTPs, whereas PTC-EFGs 

demonstrated greater spread; approximately half of PTC-EFGs possessed an activation 

signature similar to PTC-classics, while the other half were closer to, yet still distinct from, 

NIFTPs.

Assessment of tumor subtype prediction with TCGA

To assess the ability of this model to differentiate thyroid subclasses on an external 

validation set, predictions were generated for all slides in the TCGA thyroid cancer cohort 

(THCA) using the final trained DL-UCM-ST model, with predictions constrained to only 

PTC-classic, PTC-EFG, and NIFTP (Table 2). Interestingly, most of the follicular-patterned 

neoplasms were predicted to be NIFTP rather than PTC-EFG (71.7% vs 17.2%). Examining 

mutation status revealed a strong association between NIFTP prediction and RAS 
aberrations, with 86.0% of RAS-mutant tumors predicted to be NIFTP, compared to 30.9% 

NIFTP prediction within RAS non-mutants (P<0.0001). Similarly, the occurrence of PTC-

classic subtype prediction within RAS-mutant tumors was lower than RAS non-mutants 

(4.0% vs. 51.3%, P<0.0001).

An additional UMAP was generated as previously, using post-convolution layer activations 

calculated from the subtype prediction model (Figure 2B). PTC-EFGs cluster together with a 

moderate amount of overlap with PTC-NOS. PTC-tall tumors cluster separately from PTC-

EFGs within the larger PTC-NOS cluster. The UMAP was then labeled with slide-level 
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predictions (Figure 2C). Slides predicted to be PTC-classic clustered distinctly from those 

predicted to be NIFTP, with a small degree of overlap. Slides predicted to be PTC-EFG lie 

predominantly at the border between predicted-NIFTP and predicted-PTC-classic.

Next, given the association between subtype prediction and RAS mutation status, we 

investigated the role of the BRAF-RAS axis on detectable histologic features by comparing 

BRS among predicted subtypes (Figure 2D). A positive BRS (RAS-like) score was found to 

be strongly associated with NIFTP prediction. Within follicular-patterned PTCs, tumors with 

positive BRS were 8.5 times as likely to carry a NIFTP prediction than tumors with negative 

BRS (89.7% vs 10.5%, P<0.0001). Tumors predicted to be PTC-EFG were more likely to 

contain BRAFV600E-like signatures than RAS-like signatures (79.7% vs 20.3%, P<0.0001), 

as were predicted PTC-classics (95.3% vs 4.7%, P<0.0001).

BRAF-RAS Score Prediction and Association with Tumor Subtype

In a reverse strategy, we then trained a deep learning model on the TCGA cohort to predict 

BRS as a linear outcome, with the goal of generating predicted scores on our internal dataset 

(Figure 1, E and F). R2 of slide-level predictions across the three k-folds were 0.67, 0.73, 

and 0.61, with a scatterplot of performance aggregated across k-folds shown in Figure 3A. 

Dichotomizing BRS predictions to either BRAFV600E-like or RAS-like resulted in 

aggregated AUC of 0.935 across the three k-folds. While we were unable to validate the 

BRS directly on our institutional dataset as the BRS weights are unpublished, we generated 

BRS predictions and compared these predictions to a subset of tumors with known 

BRAFV600E and/or RAS mutation status. All 34 BRAFV600E mutant tumors had a BRS of 

less than 0, indicating a predicted BRAFV600E-like phenotype. Similarly, all 21 RAS-mutant 

tumors had a BRS of greater than 0, indicating a predicted RAS-like phenotype.

Predicted BRS was highly associated with both FA and NIFTP, to a higher degree even than 

the prior model trained to predict tumor subtype directly (Figure 3, B and C). NIFTPs had a 

mean predicted BRS of 0.35 ± 0.03, compared to a predicted score of −0.60 ± 0.03 in PTC-

classics and −0.30 ± 0.06 in PTC-EFGs. Only one NIFTP was predicted to have 

BRAFV600E-like, rather than RAS-like, phenotype (BRS −0.50). BRAFV600E mutant PTC-

EFGs were all predicted to have negative BRS (mean −0.49), while BRAF non-mutant PTC-

EFGs were more variable (mean −0.17), though still distinguishable from NIFTP (mean 

0.35; P < 0.0001). As a discriminator of NIFTP vs. non-NIFTP across 107 PTC-classics, 

PTC-EFGs, and NIFTPs, the test has an AUC of 0.99 and a sensitivity and specificity of 

97.9% and 96.6% (Figure 3D). As a test to identify NIFTP within only follicular-patterned 

neoplasms, the BRS prediction model has an AUC of 0.98, with a sensitivity and specificity 

of 97.9% and 90.0% (Figure 3E).

Histologic Features of the BRAF-RAS Spectrum

In an effort to describe the histologic features detected by the BRS prediction model, final 

layer activations were generated from this model across slides in the institutional cohort and 

plotted using UMAP (Figure 4). Predicted BRS neatly increases near-linearly from left to 

right, with the highest predicted BRS occurring within NIFTP clusters. Overall, the tumor 

subtypes clustered similarly to the model trained directly to tumor subtype (Figure 2), with 
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NIFTPs clustering separately from PTCs, follicular adenomas clustering near/within 

NIFTPs, and PTC-EFGs falling largely between PTC-classics and NIFTPs, with some PTC-

EFGs clustering within PTC-classics. A mosaic map was generated from these predictions, 

with three areas corresponding to high PTC-EFG, PTC-classic, and NIFTP density 

magnified to help illustrate some of the histologic features observed in these two categories 

(Figure 4C). Tiles within area 1, predominantly from PTC-EFGs, are marked by variably-

sized follicles with some stromal fibrosis, dark-stained colloid with occasional scalloping, 

and irregular, wrinkled, cleared nuclei. Area 2 contains mostly PTC-classic tiles and displays 

extensive stromal fibrosis with infiltration by neoplastic follicles and papillae. Area 3 is 

enriched for tiles from NIFTP tumors with high predicted BRS, showing predominantly 

tightly packed microfollicles with variable amounts of nuclear atypia.

Finally, to explore the histologic landscape of the PTC-EFG subtype in greater detail, both 

BRS and tumor subtype were predicted using the models mentioned above for all PTC-EFG 

tiles in the institutional cohort (Figure 5). Tiles were plotted according to predicted BRS on 

the x-axis and likelihood of PTC-EFG prediction on the y-axis. By examining the top of this 

graph, one can visualize how the histology of PTC-EFG tumors is predicted to vary 

according to BRS status. Tiles in the top-left corner (area 1), corresponding to PTC-EFG 

subtype prediction and a BRAFV600E-like phenotype, possess variably-sized follicles and 

occasional scalloped colloid. Tiles in the top-right corner (area 3), still predicted to be PTC-

EFG but with a more RAS-like phenotype, display tightly packed microfollicles with more 

pronounced nuclear clearing. The bottom-left corner (area 4) contains tiles with low 

likelihood of PTC-EFG prediction and a more PTC-classic appearance exemplified by 

collagenous stroma with infiltrative neoplastic cells.

Discussion

In order to test our hypothesis that NIFTPs are associated with RAS-like BRS, we began 

with evaluating slides of thyroid neoplasms in the THCA cohort of TCGA. Our aim was to 

assess whether NIFTPs had higher BRS (RAS-like) on average than PTCs. Since TCGA 

annotations do not account for the NIFTP subtype, we created a deep learning model, 

trained on an institutional dataset to predict thyroid neoplasm subtype, that could generate 

modern diagnostic predictions for slides in TCGA. Our goal was to assess whether BRS 

among tumors predicted to be NIFTP were significantly different from BRS among tumors 

predicted to be PTCs.

Our training set was composed of 115 slides across 4 different subtypes - much lower than 

the 497 slides in TCGA. For this reason, we anticipated that this first deep learning model 

would be unlikely to generate perfectly generalizable predictions, and in fact, we did not 

possess an external validation dataset to assess its predictive accuracy. Rather, we used this 

model as a first-pass attempt to determine if an association between NIFTPs and BRS 

existed by assessing whether tumors with higher BRS (RAS-like expression) were more 

likely to be predicted NIFTPs. Within follicular-patterned tumors, RAS-like tumors were 

more than eight times as likely to be predicted as NIFTP by this deep learning model. 

Tumors predicted to be PTC-EFG were approximately 3.9 times more likely to contain 

BRAFV600E-like signatures than RAS-like signatures, and predicted PTC-classics were more 
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than 20 times as likely to contain BRAFV600E-like signature. Taken together, this first deep 

learning model demonstrated that histologic features of NIFTP are more likely to be seen in 

tumors with RAS-like gene expression than BRAFV600E-like expression.

To further test our hypothesis that NIFTPs are defined by RAS-like gene expression, we then 

sought to determine whether a model trained to directly predict BRS - irrespective of tumor 

subtype - would be sufficient to differentiate NIFTPs from other thyroid neoplasms. We 

started by testing the feasibility of training a model to predict BRS by performing cross-

validation training on TCGA, and found that histologic features associated with BRS were 

successfully detected with deep learning, with aggregated predictive accuracy for these 

cross-validated models demonstrating an R2 of 0.67. As a dichotomized variable, the cross-

validated performance within the TCGA cohort was able to distinguish RAS-like expression 

from BRAFV600E-like expression with an AUC of 0.94.

After determining that BRS could be predicted from tumor histology, we trained a final 

model across the entire TCGA dataset and generated BRS predictions for our internal 

cohort. While we were unable to validate the scores directly, as the components and weights 

of the gene expression score are not published, we found that predicted RAS-like gene 

expression was highly specific for the NIFTP subtype within malignant neoplasms. Using 

predicted RAS-like gene expression as a sole discriminator of NIFTP status, the test 

performed exceedingly well with an AUC of 0.99 across all malignant slides in our dataset, 

and 0.98 when restricted to follicular-patterned malignant neoplasms. In fact, only one 

NIFTP had a grossly BRAFV600E-like prediction. Interestingly however, this particular 

NIFTP was atypical in that it was an oncocytic neoplasm, for which the NIFTP diagnosis 

has not been adequately assessed. Additionally, review of the slide demonstrated the 

presence of focal papillary architecture, which under the newest diagnostic criteria should 

preclude the diagnosis of NIFTP (15). Lastly, next generation sequencing of this neoplasm 

was negative for both BRAFV600E and RAS mutations. Therefore, it is not entirely certain 

why this tumor resulted in a BRAFV600E-like prediction in this study.

We found remarkable similarity between NIFTPs and benign FAs, both with respect to 

overall histologic features as well as predicted BRS. When examining post-convolution 

activations generated by DL-UCM-ST, we observed significant overlap in the image features 

detected in NIFTPs and FAs, as evidenced by the UMAP shown in Figure 2A. NIFTPs and 

FAs also clustered together when post-convolution activations generated by DL-TCGA-BRS 

were plotted with UMAP (Figure 4B). Furthermore, as with NIFTPs, the DL-TCGA-BRS 

model predicted that all seven FAs had RAS-like BRS. These findings suggest that the 

histologic features seen in NIFTP have more in common with benign FAs than malignant 

PTCs, which is consistent with the observation that these indolent neoplasms have benign 

behavior.

One of the great challenges of successful deep learning models is understanding the image 

features that have been learned after training. In order to assess the histologic differences 

associated with RAS-like and BRAFV600E-like gene expression signatures, we generated 

mosaic maps using post-convolution layer activations from our deep learning model and 

visually inspected image tiles associated with these two classes. On the whole, image tiles 
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highly predictive of BRAFV600E-like morphology in PTC-EFGs tended to have variably-

sized and/or dilated follicles, often associated with stromal fibrosis, and prominent nuclear 

membrane irregularities and/or clearing. Image tiles highly predictive of RAS-like gene 

expression in NIFTPs tended to have more tightly packed microfollicles with variable 

amounts of nuclear atypia. While NIFTPs are typically thought of as having nuclear features 

and follicles on the same spectrum as PTC, these results suggest that the follicles and high-

power cellular features are distinct between NIFTP and PTC-EFG, particularly in the 

presence of a BRAFV600E mutation.

Taken together, these results demonstrate that the histologic features associated with BRAF-

RAS spectrum are detectable by deep learning, and furthermore, that automated detection of 

these image features can aid in distinguishing indolent NIFTP from PTCs. The fact that a 

deep learning model trained to predict BRS, irrespective of subtype, was able to successfully 

distinguish NIFTPs from other follicular thyroid neoplasms suggests that the gene 

expression score is reflective of underlying tumor biology, and the image features associated 

with these biological processes are sufficiently prevalent to allow for differentiation of these 

subtypes.

Identifying a neoplasm as either RAS-like or BRAFV600E-like may aid in distinguishing 

indolent neoplasms from their more aggressive counterparts, providing better 

prognostication and safer de-escalation of therapy. This is well exemplified by the recent 

report of a thyroid neoplasm, initially diagnosed as NIFTP, which unexpectedly metastasized 

and was found to possess a BRAFV600E mutation (20). Current NIFTP criteria exclude 

tumors harboring BRAFV600E or other aggressive (TERT promoter or TP53) mutation. It is 

possible that routine incorporation of molecular diagnostics, which may include both 

mutational testing and either direct gene expression assessment or estimation of BRS 

through deep learning, may assist with ensuring that the NIFTP diagnosis is restricted to 

indolent neoplasms. Given the strong association between predicted RAS-like phenotype 

and both NIFTPs and benign FAs, these results advocate for further validation of the use of 

BRS testing as an aid for diagnosing follicular-patterned neoplasms, either directly or 

through a deep learning-based prediction surrogate. With further validation, we propose that 

a BRAFV600E-like signature should exclude the diagnosis of NIFTP. This suggestion is 

consistent with a recent proposal by Johnson to broadly reclassify follicular-patterned 

neoplasms into RAS-like (NIFTP, FA, IE-PTC-FV) and BRAFV600E-like (PTC-EFG, classic 

PTC). (5)

Of note, the deep learning approach described herein is limited by a lack of evaluation for 

circumscription or encapsulation, an assessment of which is necessary before a diagnosis of 

NIFTP can be rendered in order to avoid missing IE-PTC-FVs. This is due both to the nature 

of the deep learning method – which analyzes tiles at a fixed 10X magnification – and 

because the pathologist annotations on the physical slide media preclude accurate 

assessment of tumor capsules. For this reason, we do not envision that a deep learning tool 

such as what we have described would be sufficient to render a diagnosis alone. Rather, we 

envision assessment of BRS status as an ancillary tool for pathologists at the time of 

diagnosis.
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In summary, the histologic features associated with the BRAF-RAS gene expression 

spectrum are detectable by deep learning and can aid in distinguishing indolent NIFTP from 

PTCs. Given high degree of interobserver variability in the diagnosis of the follicular-

patterned thyroid neoplasms resulting in the need for simplified definitions and numerous 

exclusion criteria, the prospect of using a deep learning model to help standardize the 

distinction between RAS-like and BRAFV600E-like histologic and nuclear features, or at 

least aid in the diagnosis of particularly difficult cases, is appealing. These results advocate 

for further validation of the use of BRS testing as a diagnostic aid for follicular-patterned 

neoplasms, either calculated directly or performed through a deep-learning based prediction 

surrogate. Improving identification of NIFTP by assessment of the BRAF-RAS axis may 

help ensure it remains an indolent neoplasm, assist with safe de-escalation of therapy, and 

prevent overtreatment.
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Figure 1. Deep learning experimental strategy.
A. Distribution of thyroid neoplasm subtypes within the institutional (University of Chicago 

Medicine, UCM) and TCGA datasets. The institutional dataset contained a total of 115 

slides across four subtypes, as detailed here. The TCGA thyroid cohort (THCA) contained 

497 slides across three subtypes: papillary thyroid carcinoma, not otherwise specified (PTC-

NOS), papillary thyroid carcinoma, follicular variant (PTC-FV), and papillary thyroid 

carcinoma, columnar cell variant (PTC-tall). As the annotated subtypes in TCGA use an 

older naming convention before the recognition of NIFTP, these annotations cannot be 

directly compared between datasets. B. Cross-validation plan for training a deep learning 

model. A deep learning model was first trained on the institutional dataset to predict tumor 

subtype, using three-fold cross-validation as illustrated here. Patients were separated into 

three categories of 39, 38, and 38 patients per category, with annotated subtypes balanced 

between categories. For each of three iterations, two-thirds of the dataset was used for 

training and one-third was used for validation to generate predictions. Predictions in each of 

the left-out validation sets were aggregated across the three k-fold iterations in order to 

generate the reported cross-validation performance statistics. C. Overview of the deep 

learning training strategy used to generate cross-validated subtype predictions on the 

institutional dataset, as also described in B. D. After cross-validation was completed, a final 

model (DL-UCM-ST) was trained across the entire institutional dataset to predict subtype. 

This model was applied to the TCGA dataset, for which subtype predictions were generated. 

E. Deep learning models were trained on the TCGA dataset to predict BRS, using cross-

validation as described in B. F. After cross-validation was completed, a final model (DL-

TCGA-BRS) was trained across all TCGA slides to predict BRS. This model was then used 

to generate BRS predictions on the institutional dataset.
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Figure 2. UMAPs of post-convolution activations generated by deep learning models trained to 
predict tumor subtype.
A. An Xception-based deep learning model was trained on 115 slides from an institutional 

database of thyroid cancer to predict tumor subtype (DL-UCM-ST). Post-convolution layer 

activations were calculated on all tiles and mapped with UMAP. For each slide, the tile 

nearest to centroid was plotted and labeled according to its tumor subtype. NIFTP slides can 

be seen to cluster distinctly from the PTC subtypes, clustering near follicular adenomas. 

Several PTC-EFGs cluster near PTC-classics, but approximately half are found between the 

NIFTP and PTC-classic clusters. B. The DL-UCM-ST model was used to generate slide-

level predictions in the TCGA thyroid cohort. Slides with follicular-pattern cluster together, 

but demonstrate overlap with slides labeled as “Papillary thyroid carcinoma, not otherwise 

specified” (PTC-NOS). C. Same as B, with slides labeled according to their predicted 

subclass. Many of the true PTC-EFG tumors are predicted to be NIFTPs, as can be seen by 

comparing this plot to B. Tumors which are predicted to be NIFTP cluster distinctly from 

those predicted to be PTC-classic. Many of the tumors falling on the border of these two 

clusters are predicted to be PTC-EFGs. D. Same as B, with slides labeled according to their 

BRS, as calculated by Agarwal using a 71-gene mRNA expression signature (1). Tumors 

with BRS >0 are RAS-like, and BRS <0 indicate BRAFV600E-like phenotype. Tumors with 

high BRS, and thus RAS-like phenotype, are highly associated with the cluster of tumors 

predicted to be NIFTPs, as can be appreciated by comparing this plot with C. The majority 

of BRAFV600E-like tumors are predicted to be either PTC-classics or PTC-EFGs.
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Figure 3. Performance of deep learning models trained to predict BRS.
A. Xception-based deep learning models were trained on the TCGA thyroid cohort to 

predict BRS as a linear outcome using three-fold cross validation. For each slide in the the 

left-out validation sets, slide-level score predictions were generated by averaging predictions 

across constituent tiles. Predicted BRS was plotted against true BRS for each k-fold, with R2 

calculated 0.67, 0.73, and 0.61 for each of the k-folds. The three plots were then aggregated 

across k-folds as shown in A, with an aggregated R2 of 0.67. B. A final model was generated 

by training across the entire TCGA thyroid cohort (DL-TCGA-BRS) and was used to predict 

BRS for slides in the institutional dataset. Distribution of BRS predictions can be seen 

across NIFTP, PTC-classic, and PTC-EFG slides. NIFTP tumors had significantly higher 

predicted BRS, indicating a more RAS-like phenotype, than either of the PTC subclasses, as 
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calculated using ANOVA (p < 0.0001). C. BRS predictions across slides in the institutional 

dataset, separated by tumor subtype. NIFTPs are near universally predicted to be RAS-like, 

with PTC-classics predominantly BRAFV600E-like. PTC-EFG tumors are largely 

BRAFV600E-like but demonstrate somewhat greater heterogeneity. D. Predicted BRS is an 

excellent discriminator of NIFTP status; using predicted BRS as a surrogate for NIFTP 

prediction, the test has an AUC of 0.99 when applied across all PTC-classic, PTC-EFG, and 

NIFTP tumors in the institutional dataset. E. Used as a discriminator solely between PTC-

EFG and NIFTP tumors, predicted BRS has an AUC of 0.98.
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Figure 4. Mosaic map of institutional cohort, mapped with post-convolution activations 
generated from the DL-TCGA-BRS model.
A. Post-convolution layer activations for all image tiles in the institutional cohort were 

calculated by using a model trained on TCGA slides to predict BRS. Tile activations were 

then mapped using UMAP, and centroid tiles for each slide were plotted as with Figure 2. 

Slides are colored according to predicted BRS, with dark purple indicating high predicted 

BRS and light purple indicating low predicted BRS. Boxes correspond to the areas of 

interest highlighted in C. B. Same as A, with slides labeled according to tumor subtype. C. 
All tiles, rather than just slide-level centroid tiles, were plotted using UMAP as with A and 

B. A mosaic map was then created from this UMAP plot by replacing plotted tiles with their 

corresponding images, organized into a grid pattern. Three areas were chosen for magnified 

display. Area 1 is enriched for tiles that come predominantly from PTC-EFG slides, with 

low predicted BRS, as can be seen by comparing this area with A and B.
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Figure 5. Map of predicted BRAF-RAS score and subtype prediction within PTC-EFG tumors.
A. Tiles from PTC-EFG slides were mapped in two dimensions, according to predicted BRS 

on the x-axis (−1 on the left to +1 on the right) and PTC-EFG subtype prediction on the y-

axis (low likelihood of PTC-EFG subtype at the bottom, high likelihood at the top). Tiles are 

annotated according to BRAF mutation status of their corresponding slides and were 

subsampled to only include 2000 points for display. B. Tile points as calculated in A were 

replaced with corresponding tile images, organized into a grid. Four areas are selected for 

magnified display in C. C. Magnified display of four areas noted in B. Areas 1, 2, and 3 all 

correspond to tiles with high-likelihood of PTC-EFG prediction. Area 1 contains tiles with 

low predicted BRS (BRAFV600E-like), with tiles increasing in predicted BRS from left to 

right. In this way, these are tiles with image features specific to the PTC-EFG subtype. Area 

2 contains tiles with intermediate predicted BRS, increasing left to right, indicating tiles 

sufficient for identification of a follicular pattern but nonspecific with regard to BRAF-RAS 

features. Area 3 contains tiles with high predicted BRS (RAS-like), increasing left to right, 

indicating tiles that are more consistent with a RAS-like phenotype and NIFTP diagnosis.
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Table 1.

Distribution of thyroid cancer subtypes in institutional dataset.

Subtype Abbreviation # of slides

Papillary thyroid carcinoma, classic PTC-classic 38

Papillary thyroid carcinoma, extensive follicular growth PTC-EFG 23

Noninvasive follicular thyroid neoplasm with papillary-like nuclear features NIFTP 47

Benign follicular adenomas FA 7
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Table 2.

Subtype predictions across TCGA subtype labels, by BRAF/RAS mutation status.

Molecular alteration Predictions

PTC-classic PTC-EFG NIFTP

PTC-FV

RAS mutant 0 (0%) 3 (10%) 27 (90%)

BRAF mutant 8 (42%) 6 (32%) 5 (26%)

RAS/BRAF non-mutant 3 (6%) 8 (16%) 39 (78%)

PTC-NOS

RAS mutant 2 (10%) 2 (10%) 16 (80%)

BRAF mutant 145 (63%) 33 (14%) 54 (23%)

RAS/BRAF non-mutant 24 (30%) 25 (31%) 31 (39%)

PTC-tall

RAS mutant 0 (0%) 0 (0%) 0 (0%)

BRAF mutant 30 (94%) 2 (6%) 0 (0%)

RAS/BRAF non-mutant 4 (100%) 0 (0%) 0 (0%)

PTC-FV
BRAF-like 9 (47%) 8 (42%) 2 (11%)

RAS-like 1 (1%) 6 (9%) 61 (90%)

PTC-NOS
BRAF-like 125 (57%) 41 (19%) 55 (25%)

RAS-like 6 (13%) 7 (15%) 35 (73%)

PTC-tall
BRAF-like 27 (93%) 2 (7%) 0 (0%)

RAS-like 1 (100%) 0 (0%) 0 (0%)

Table excludes a single dual RAS/BRAF mutant PTC-NOS.
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