
Conservation of copy number profiles during engraftment and 
passaging of patient-derived cancer xenografts

A full list of authors and affiliations appears at the end of the article.

Abstract

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical 

studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution 

during PDX engraftment and propagation, impacting the accuracy of PDX modeling of human 

cancer. Here we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched 

patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing 

and microarray data displayed substantially higher resolution and dynamic range than gene 

expression-based inferences, and they also showed strong CNA conservation from PTs through 

late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late 

trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-

related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient 
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and PDX tumors were comparable to variations in multi-region samples within patients. Our study 

demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.

Human tumors engrafted into transplant-compliant recipient mice (patient-derived 

xenografts, PDX) have advantages over prior model systems of human cancer (e.g. 

genetically engineered mouse models1,2 and cancer cell lines3) for preclinical drug efficacy 

studies because they allow researchers to directly study human cells and tissues in vivo4-7. 

Comparisons of genome characteristics and histopathology of primary tumors and 

xenografts of various cancer types8-14 have demonstrated that the biological properties of 

patient-derived tumors are largely preserved in xenografts. A growing body of literature 

supports their use in cancer drug discovery and development15-17.

A caveat to PDX models is that intratumoral evolution can occur during engraftment and 

passaging18-22. Such evolution could potentially modify treatment response of PDXs with 

respect to the patient tumors19,23,24, particularly if the evolution were to systematically alter 

cancer-related genes. Recently, Ben-David et al.23 reported extensive PDX copy number 

divergence from the patient tumor of origin and across passages, based mainly on large-scale 

assessment of copy number alterations (CNA) profiles inferred from gene expression 

microarray data. They raised concerns about genetic evolution in PDXs as a consequence of 

mouse-specific selective pressures, which could impact the capacity of PDXs to faithfully 

model patient treatment response. Such results contrast with reports that have observed 

genomic fidelity of PDX models with respect to the originating patient tumors and from 

early to late passages by direct DNA measurements in several dozen PDX models8,11,25.

Here we resolve these contradicting observations by systematically evaluating CNA changes 

and the genes they affect during engraftment and passaging in a large, internationally 

collected set of PDX models, comparing both RNA and DNA-based approaches. The data 

collected, as part of the U.S. National Cancer Institute (NCI) PDXNet (PDX Development 

and Trial Centers Research Network) Consortium and EurOPDX consortium, comprises 

patient tumor (PT) and PDX samples from >500 models. Our study demonstrates that prior 

reports of systematic copy number divergence between PTs and PDXs are incorrect, and that 

there is high retention of copy number during PDX engraftment and passaging. This work 

also finely enumerates the copy number profiles in hundreds of publicly available models, 

which will enable researchers to assess the suitability of each for individualized treatment 

studies.

RESULTS

Catalog of copy number alterations in PDXs.

We have assembled copy number alteration (CNA) profiles of 1,451 unique samples (324 PT 

and 1,127 PDX samples) corresponding to 509 PDX models contributed by participating 

centers of the PDXNET, the EurOPDX consortium, and other published datasets11,26 (see 

Methods, Supplementary Methods, Supplementary Table 1, and Supplementary Fig. 1). We 

estimated copy number (CN) from five data types: single nucleotide polymorphism (SNP) 

array, whole-exome sequencing (WES), low-pass whole-genome sequencing (WGS), RNA 
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sequencing (RNA-seq) and gene expression array data, yielding 1,548 tumor datasets 

including samples assayed on multiple platforms (see Methods, Supplementary Methods, 

and Supplementary Data 1). Paired-normal DNA, and in some cases paired normal RNA, 

were also obtained to calibrate WES and RNA-seq tumor samples.

The combined PDX data represent 16 broad tumor types derived from American, European 

and Asian cancer patients (see Methods), with 64% (n = 324) of the models having their 

corresponding patient tumors assayed and another 64% (n = 328) having multiple PDX 

samples of either varying passages (P0-P21) or varying lineages from propagation into 

distinct mice (Fig. 1a and Supplementary Table 2). The distributions of PT and PDX 

samples across different tumor types, passages and assay platforms (Fig. 1b and 

Supplementary Figs. 2-12) show the wide spectrum of this combined dataset, which, to the 

best of our knowledge, is the most comprehensive copy number profiling of PDXs compiled 

to date (Supplementary Note 1). Additionally, our data include seven patients with multiple 

tumors collected either from different relapse time points or different metastatic sites, 

resulting in multiple PDX models derived from a single patient.

Comparison of CNA profiles from SNP array, WES and gene expression data.

To compare the CNA profiles from different platforms in a controlled fashion, we assembled 

a dataset with matched measurements across multiple platforms (Supplementary Table 3 and 

Supplementary Figs. 13-17). Copy number calling has been reported to be noisy for several 

data types27,28, and we observed that quantitative comparisons between CNA profiles are 

sensitive to: (i) the thresholds and baselines used to define gains and losses, (ii) the dynamic 

range of copy number values from each platform, and (iii) the differential impacts of normal 

cell contamination for different measurements. To control for such systematic biases, we 

assessed the similarity between two CNA profiles using the Pearson correlation of their 

log2(CN ratio) values across the genome in 100-kb windows. Regions with discrepant copy 

number were identified as those with outlier values from the linear regression model (see 

Methods).

CNAs from WES are consistent with CNAs from SNP array data.—As earlier 

studies reported that CNA estimates from WES data have more uncertainties than those from 

SNP arrays29,30, we implemented a WES-based CNA pipeline and validated it against SNP 

array-based estimates31,32 for matched samples. Copy number gain/loss segments (see 

Methods) from SNP arrays were of a higher resolution (Fig. 2a; median/mean segment size: 

1.49/4.05 Mb for SNP, 4.70/14.6 Mb for WES, P < 2.2 × 10−16) and wider dynamic range 

(Fig. 2b; range of log2(CN ratio): −8.62-2.84 for SNP, −3.04-1.85 for WES, P < 2.2 × 

10−16). The difference in range is apparent in the linear regressions between platforms 

(Supplementary Fig. 18). These observations take into account the broad factors affecting 

CNA estimates across platforms, such as the positional distribution of sequencing loci, the 

sequencing depth of WES, and the superior removal of normal cell contamination by SNP 

array CNA analysis workflows using SNP allele frequencies33.

We observed strong agreement between SNP arrays and WES, with significantly higher 

Pearson correlation coefficients on matched samples than samples of different models 
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(range: 0.913-0.957 for matched samples, 0.0366-0.354 for unmatched samples, P = 1.02 × 

10−6), with the exception of two samples that lacked CNA aberrations and were removed 

(Fig. 2c and Supplementary Figs. 13, 18, and 19). The discordant copy number regions 

largely correspond to small focal events (average size 1.53 Mb) detectable by SNP arrays but 

missed by WES (Supplementary Fig. 18 and Extended Data Fig. 1a; see Methods). Hence, 

CNA profiling by WES is reliable in most regions in this small dataset, with 99% of the 

genome locations across the samples consistent with the values from SNP arrays 

(Supplementary Note 2). These PT-based observations are also applicable to PDXs given 

that mouse DNA is absent in SNP array signal and removed from WES reads34-36.

Low accuracy for gene expression-derived CNA profiles.—To compare the 

suitability of gene expression for quantifying evolutionary changes in CNA, we adapted the 

e-karyotyping method23,37,38 for RNA-seq and gene expression array data (Supplementary 

Figs. 15 and 17; see Methods). Copy number segments calibrated by non-tumor expression 

were of higher resolution (Fig. 2a; median/mean segment size: 36.0/51.9 Mb for RNASEQ 

NORM, 48.2/65.3 Mb for RNASEQ TUM, P < 2.2 × 10−16; 62.0/72.4 Mb for EXPARR 

NORM, 80.1/85.2 Mb for EXPARR TUM, P = 2.20 × 10−7) and wider dynamic range (Fig. 

2b; range of log2(CN ratio): −2.07-2.17 for RNASEQ NORM, −1.79-1.81 for RNASEQ 

TUM, P < 2.2 × 10−16; −1.40-1.89 for EXPARR NORM, −1.13-1.59 for EXPARR TUM, P 
= 4.09 × 10−7) compared to segments calculated by calibration with tumor samples. These 

alternative expression calibrations yielded biased gain and loss frequencies (Supplementary 

Note 3 and Supplementary Fig. 20) and strong variability (Pearson correlation range: 

0.218-0.943 for RNASEQ NORM vs. TUM, 0.377-0.869 for EXPARR NORM vs. TUM) in 

the CNA calls (Fig. 2c and Supplementary Fig. 21). This range of correlations was far 

greater than was observed in comparisons between the DNA-based methods (P = 9.37 × 

10−5 and P = 3.28 × 10−7 relative to SNP vs. WES). This indicates the problematic nature of 

RNA-based CNA calling with calibration by tumor samples, which has been used when 

normal samples are not available.

Furthermore, expression-based calling had segmental resolution an order of magnitude 

worse than the DNA-based methods (Fig. 2a and Supplementary Figs. 14-17; median/mean 

segment size: 3.45/14.0 Mb for WES, 36.0/51.9 Mb for RNASEQ NORM, P < 2.2 × 10−16; 

1.73/ 5.18 Mb for SNP, 62.0/72.4 Mb for EXPARR NORM, P < 2.2 × 10−16). The range of 

detectable copy number values was also superior for DNA-based methods (Fig. 2b; range of 

log2(CN ratio): −6.00-5.33 for WES, −2.07-2.17 for RNASEQ NORM, P < 2.2 × 10−16; 

−9.19-4.65 for SNP, −1.40-1.89 for EXPARR NORM, P < 2.2 × 10−16). In addition, there 

was a lack of correlation between the expression-based and DNA-based methods (range: 

0.0541-0.942 for WES vs. RNASEQ (NORM); 0.00517-0.921 for SNP vs. EXPARR 

(NORM)) (Fig. 2c and Supplementary Figs. 22 and 23). CNA estimates after tumor-based 

expression normalization resulted in further discordance with DNA-based copy number 

results (range: −0.182-0.929, P = 0.0468 for WES vs. RNASEQ (TUM); −0.0274-0.847, P = 

2.20 × 10−6 for SNP vs. EXPARR (TUM)). Many focal copy number events detected by 

DNA-based methods, as well as some larger segments, were missed by the expression-based 

methods (Extended Data Fig. 1b-e). Representative examples illustrating the superior 
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resolution and accuracy from DNA-based estimates are given in Figure 2d (correlations 

shown in Extended Data Fig. 2).

Concordance of PDXs with patient tumors and during passaging.

We next adopted a pan-cancer approach to elucidate potential tumor type-independent copy 

number evolution in PDXs driven by the mouse host. We tracked the similarity of CNA 

profiles during tumor engraftment and passaging by calculating the Pearson correlation of 

gene-level copy-number for samples measured on the same platform (see Methods, 

Extended Data Fig. 3, and Supplementary Figs. 24-60 and 62). All pairs of samples derived 

from the same PDX model were compared, yielding 501 PT-PDX and 1,257 PDX-PDX 

pairs (Supplementary Note 4).

For all DNA-based platforms, we observed strong concordance between matched PT-PDX 

and PDX-PDX pairs, significantly higher than between different models from the same 

tumor type and the same center (P < 2.2 × 10−16) (Fig. 3a-c, correlation heatmaps in 

Supplementary Figs. 24-60). We observed no significant difference in the correlation values 

between PT-PDX and PDX-PDX pairs for SNP array data (median correlation PT-PDX = 

0.950, PDX-PDX = 0.964; P > 0.05), though there were small but statistically significant 

shifts for WES (PT-PDX = 0.874, PDX-PDX = 0.936; P = 2.31 × 10−16) and WGS data (PT-

PDX = 0.914, PDX-PDX = 0.931; P = 0.000299). PT samples have a smaller CNA range 

than their derived PDXs (median ratio PT/PDX / PDX/PDX: 0.832/0.982, P = 0.000120 for 

SNP; 0.626/0.996, P < 2.2 × 10−16 for WES; 0.667/1.00, P < 2.2 × 10−16 for WGS; 

Supplementary Fig. 62b and Extended Data Fig. 4), which can be attributed to stromal DNA 

in PT samples “diluting” the CNA signal. In PDXs, the human stromal DNA is reduced11,13. 

The minimal effect for SNP array data confirms this interpretation as human stromal DNA 

contributions can be removed from SNP arrays based on allele frequencies of germline 

heterozygous sites, while such contributions to WES and WGS have higher uncertainties. 

We also performed intra-model comparisons using RNA-based approaches, which showed 

that the expression-based comparison of CNA profiles between PT and PDXs can lead to the 

overestimation of copy number changes during engraftment and passage (Supplementary 

Fig. 63 and Supplementary Note 5).

Late PDX passages maintain CNA profiles similar to early passages.—
Systematic mouse environment-driven evolution, if present, should reduce CN correlations 

at each subsequent passage. However, we observed no apparent effect during passaging on 

the SNP, WES, or WGS platforms (Fig. 3d-f and Extended Data Fig. 5). For example, the 

SNP data showed no significant difference between passages (Fig. 3d and Extended Data 

Fig. 5a). For those models having very late passages, there was a small but statistically 

significant correlation decrease compared to models with earlier passages (P < 8.98 × 10−5, 

Extended Data Fig. 6b), indicating some copy number changes can occur over long-term 

passaging (Supplementary Fig. 35). However even at these late passages, the correlations to 

early passages remained high (median = 0.896). In any given comparison, only a small 

proportion of the genes were affected by copy number changes (median: 2.72%, range: 

1.03-11.9%). Genes that are deleted and subsequently gained in the later passages (top left 

quadrant of regression plots, Extended Data Fig. 6a) suggest selection of preexisting minor 
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clones as the key mechanism in these regions. For WES and WGS data, more variability in 

the correlations can be observed (Fig. 3e,f and Extended Data Fig. 5b,c), likely due to a few 

samples having more stromal contamination or low aberration levels (Supplementary Fig. 

62b and Extended Data Fig. 4). However, the lack of downward trend over passaging was 

also apparent in these sets (Supplementary Note 6).

PDX copy number profiles trace lineages.—We next compared the similarity of 

engrafted PDXs of the same model with the same passage number. Surprisingly, we 

discovered that these pairs were not more similar than pairs of PDXs from different passage 

numbers (Fig. 3d,e, Extended Data Fig. 5, and Supplementary Note 7). Such similarity in 

correlations suggested that copy number divergence might be associated with effects other 

than passaging. To further this analysis, we defined, for JAX SNP array and PDMR WES 

datasets, samples within a lineage as those differing only by consecutive serial passages, 

while we defined lineages as split when a tumor was divided and propagated into multiple 

mice (Fig. 3g). For the EurOPDX CRC and BRCA WGS datasets, such lineage splitting was 

due only to cases with initial engraftment of different fragments of the PT, i.e., PDX samples 

of different passages were considered as different lineages if they originate from different 

PT fragments. We observed lower correlation between PDX samples from different lineages 

compared to within a lineage (Fig. 3h, P = 0.0233 for SNP, P = 0.00119 for WES, P = 

0.000232 for WGS), despite a majority of these pairwise comparisons exhibiting high 

correlation (>0.9) (Supplementary Notes 8 and 9). This suggests that lineage-splitting is 

often responsible for deviations in CNAs between samples, and that copy number evolution 

during passaging mainly arises from evolved spatial heterogeneity24.

We further explored whether the stability of copy number during engraftment and passaging 

is affected by mutations in genes known to impact genome stability (see Methods). Overall, 

we observed that presence of mutations in such genes does not lead to increased copy 

number changes during PDX engraftment and passaging (Supplementary Note 10 and 

Supplementary Fig. 66).

Genes with copy number alterations acquired during engraftment and passaging show no 
preference for cancer or treatment-related functions.

Next, we investigated which genes tend to undergo copy number changes. Genes with 

changes during engraftment or during passaging were identified based on a residual 

threshold with respect to the improved linear regression39 (see Methods; Extended Data Fig. 

3). To test for functional biases, we compared CNA-altered genes to gene sets with known 

cancer- and treatment-related functions40-43 (see Methods). We calculated the proportion of 

altered genes for sample pairs from each model across all platforms and tumor types. In 

agreement with the high maintenance of CNA profiles described above, we found the 

proportion of altered protein-coding genes to be low (median/IQR: 1.90%/ 4.11% PT-PDX, 

1.25%/ 3.60% PDX-PDX pairs, Fig. 4a). Only 8.78% of PT-PDX pairs and 4.53% PDX-

PDX pairs showed >10% of their protein-coding genes altered. We observed no significant 

increase (P > 0.1) in alterations among any of the cancer gene sets compared to the 

background of all protein-coding genes, for either the PT-PDX or PDX-PDX comparisons. 

This provides evidence that there is no systematic selection for CNAs in oncogenic or 
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treatment-related pathways during engraftment or passaging. We next considered tumor-

type-specific effects, focusing on tumor types with larger numbers of models to ensure 

statistical power. We observed no significant increase in alterations in tumor-type-specific 

driver gene sets significantly altered in TCGA44-47 compared to the background (P > 0.1) for 

either PT-PDX or PDX-PDX comparisons (Fig. 4b and Supplementary Note 11).

Low recurrence of altered genes across models.—We observed a very low 

recurrent frequency (Fig. 4c, see Methods), with only 12 and 2 genes recurring at > 5% 

frequency for PT-PDX and PDX-PDX comparisons, respectively (Supplementary Table 4). 

No gene had a recurrence frequency higher than 8.96% (Supplementary Note 12). None of 

these recurrent genes overlapped cancer- or treatment-related gene sets, nor did they 

intersect genes (n = 3) reported by Ben-David et al.23 to have mouse-induced copy number 

changes associated with drug response in the CCLE48,49 database (Supplementary Note 12).

Absence of CNA shifts in 130 WGS patient tumor, early passage PDX and late passage 
PDX trios.

We next investigated whether recurrent CNA changes occur in PDXs in a tumor-type 

specific fashion. To this aim, we analyzed further the WGS-based CNA profiles of large 

metastatic colorectal (CRC) and breast cancer (BRCA) series, composed of matched trios of 

PT, PDX at early passage (PDX-early) and PDX at later passage (PDX-late). Genomic 

Identification of Significant Targets in Cancer (GISTIC)50,51 analysis was applied separately 

to identify recurrent CNAs in each PT, PDX-early and PDX-late cohorts of CRC and BRCA 

(see Methods, Supplementary Table 6). As expected, CRCs and BRCAs generated different 

patterns of significant CNAs, but within each tumor type, GISTIC profiles of the PT, PDX-

early, and PDX-late cohorts were virtually indistinguishable (Fig. 5a, Extended Data Fig. 7, 

and Supplementary Note 13), demonstrating no gross genomic alteration systematically 

acquired or lost in PDXs.

We then carried out gene-level analysis, where each gene was attributed the GISTIC score 

(G-score) of the respective segment (Supplementary Table 7). In both the CRC and BRCA 

cohorts, gene-level G-scores of the PTs were highly correlated with the respective PDX-

early and PDX-late cohorts (Fig. 5b,c). Moreover, PT versus PDX correlations were 

comparable to PDX-early versus PDX-late correlations. To search for progressive shifts, we 

compared the change in G-score (ΔG): (i) from tumor to PDX-early and (ii) from PDX-early 

to PDX-late. Correlations in these two ΔG values were absent or even slightly negative 

(bottom-right panels of Fig. 5b,c and Supplementary Note 13). Overall, these results 

confirmed the absence of systematic CNA shifts in PDXs even under high resolution, gene-

level analysis. To evaluate the possibility of systematic copy number evolution at the 

pathway level in these trios, we performed Gene Set Enrichment Analysis (GSEA)52,53 

using G-scores to rank genes in each cohort (see Methods and Supplementary Note 14). For 

both CRC and BRCA, the Normalized Enrichment Score (NES) profiles for the ~8,000 gene 

sets of PTs were highly correlated with the respective PDX-early and PDX-late cohorts (Fig. 

5d,e). Moreover, PT versus PDX correlations were comparable to PDX-early versus PDX-

late correlations. To search for progressive shifts, we calculated for each significant gene set 

ΔNES values between PT and PDX-early, as well as between early and late PDX. Similar to 
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what was observed for the ΔG-scores, correlations were absent or at most slightly negative 

(bottom-right panels of Fig. 5d,e), confirming the absence of systematic CNA-based 

functional shifts in PDXs.

CNA evolution across PDXs is no greater than variation in patient multi-region samples.

As a reference for the treatment relevance of PDX-specific evolution, we compared to levels 

of copy number variation in multi-region samples of patient tumors. For this we used copy 

number data from multi-region sampling of non-small-cell lung cancer from the TRACERx 

Consortium54, performing analogous CNA correlation and gene analyses between multi-

region pairs (Supplementary Fig. 69). We observed no significant differences in correlation 

(P > 0.05) between patient multi-region and lung cancer PT-PDX pairs, while PDX-PDX 

pairs in fact showed significantly better correlation than the multi-region pairs (P < 0.05, 

Fig. 6a), consistent across all lung cancer subtypes. Cancer gene set analyses confirmed 

these results, with multi-region samples showing greater differences than either PT-PDX or 

PDX-PDX comparisons, across all cancer gene sets considered (P < 0.05; Fig. 6b and 

Extended Data Fig. 8). These results show that PDX-associated CNA evolution is no greater 

than what patients experience naturally within their tumors. Our PDX collection also 

contains a few cases in which the patient tumor was assayed at multiple time points (relapse/

metastasis) or multiple metastatic sites, allowing for controlled comparison of intra-patient 

variation versus PDX evolution (Supplementary Figs. 3, 4, and 7). Despite a lower median in 

correlations among intra-patient samples, the difference compared to CNA evolution during 

engraftment (PT-PDX) is not statistically significant (P > 0.05, Fig. 6c). CNA profiles for 

these samples are shown visually in Figure 6d.

DISCUSSION

Here we have investigated the evolutionary stability of patient-derived xenografts, an 

important model system for which there have been prior reports of mouse-induced copy 

number evolution. To better address this, we assembled the largest collection of CNA 

profiles of PDX models reported to date, comprising PDX models with multiple passages 

and their originating patient tumors. Our analysis demonstrated the reliability of copy 

number estimation by DNA-based measurements over RNA-based inferences, which are 

substantially inferior in terms of resolution and accuracy (Supplementary Note 15). The 

importance of DNA measurements is supported by the inconsistent conclusions by two 

independent studies, Ben-David et al.23,55 and Mer et al.56, on the same PDX expression 

array dataset by Gao et al.15. Ben-David et al. concluded that drastic copy number changes, 

driven by mouse-specific selection, often occur within a few passages. On the other hand, 

Mer et al. reported high similarity between passages of the same PDX model based on direct 

correlations of gene expression, consistent with our findings in large, independent DNA-

based datasets.

The CN shifts inferred by Ben-David et al. are inherently impacted by major technical 

issues. First, the microarray signal for PT samples is diluted by introgressed human stromal 

cells, while in PDXs mouse stromal transcripts hybridize only to a fraction of the human 

probes57. Consequently, PT samples with substantial stromal content would display a 
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reduced signal compared to the corresponding PDX, which can lead to an erroneous 

inference of systematic increase in aberrations during PDX engraftment when gain/loss 

regions are directly compared. Second, the mouse host microenvironment can affect the 

transcriptional profile of the PDX tumor58 and the quantity of mouse stroma can vary across 

passages. This can result in variability in the expression signal which can be wrongly 

inferred as CN changes, both from the tumor itself and through cross hybridization of mouse 

RNA to the human microarray. Although improved concordance in expression between PT 

and PDX can be achieved with RNA sequencing with the removal of mouse reads59,60, we 

observed that expression-based copy number inferences still have low resolution and 

robustness. Hence, many cancer-driving genes, which are found mainly in focal events with 

a size of 3 Mb or lower61-64, cannot be evaluated for PDX-specific alterations. These issues 

are further worsened by the lack of tissue-matched normal gene expression profiles for 

calibration37, which have been only intermittently available but can substantially impact 

copy number inferences. Because of these considerations, the question of how much PDXs 

evolve as a consequence of mouse-specific selective pressures cannot be adequately 

addressed by expression data.

The studies we have presented here take into account the above issues by use of DNA data, 

as well as by assessing copy number changes by pairwise correlation/residual analysis to 

control for systematic biases, and they overall confirm the high retention of CNA profiles 

from PDX engraftment to passaging. We do observe larger deviations between PT-PDX than 

in PDX-PDX comparisons, though this is likely due to dilution of PT signal by human 

stromal cells. Interestingly, we found that a major contributor to the differences between 

PDX samples is lineage-specific drift associated with splitting of tumors into fragments 

during PDX propagation. This spatial evolution within tumors appears to affect sample 

comparisons more than time or the number of passages. This suggests that PDX expansion 

and passaging is the bottleneck of copy number evolution in PDXs, reflecting stochasticity 

in sampling within spatially heterogenous tumors (Supplementary Note 16).

A challenge for evaluating any model system is that there is no clear threshold for genomic 

change that determines whether the model will still reflect patient response. Genetic 

variation among multi-region samples within a patient can shed light on this point54,65-68 

since the goal of a successful treatment would be to eradicate all of the multiple regions of 

the tumor. We found that the copy number differences between PT and PDX are no greater 

than the variations among multi-region tumor samples or intra-patient samples. Thus, 

concerns about the genetic stability of the PDX system are likely to be less important than 

the spatial heterogeneity of solid tumors themselves. This result is consistent with our results 

on lineage effects during passaging, which indicate that intratumoral spatial evolution is the 

major reason for genetic drift.

We observed no evidence for systematic mouse environment-induced selection for cancer or 

treatment-related genes via copy number changes, though individual cases vary (see example 

in Extended Data Fig. 6c). Moreover, only a small fraction of sample pairs (2.44%, 43 out of 

1,758) shows large CNA discordance (see Methods), suggesting that clonal selection out of a 

complex population is rare. These results indicate that the variations observed in PDXs are 
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mainly due to spontaneous intratumoral evolution rather than murine pressures 

(Supplementary Note 17).

In summary, our in-depth tracking of CNAs throughout PDX engraftment and passaging 

confirms that tumors engrafted and passaged in PDX models maintain a high degree of 

molecular fidelity to the original patient tumors and their suitability for pre-clinical drug 

testing. At the same time, our study does not rule out that PDXs will evolve in individual 

trajectories over time, and for therapeutic dosing studies, the best practice is to confirm the 

existence of expected molecular targets and obtain sequence characterizations in the cohorts 

used for testing as close to the time of the treatment study as is practical.

METHODS

Experimental details for sample collection, PDX engraftment and passaging, and array or 
sequencing.

See Supplementary Methods.

Consolidating tumor types from different datasets.

As the terminology of tumor types/subtypes by the different contributing centers were not 

consistent, we used the Disease Ontology database69 (http://disease-ontology.org/), cancer 

types listed in NCI website (https://www.cancer.gov/types) and in TCGA publications70,71 

to unify and group the tumor types/subtypes under broader terms as shown in Figure 1 and 

Supplementary Table 2.

Copy number alteration (CNA) estimation methods.

SNP array.—The estimation of CNA profiles from SNP array were detailed previously34. 

In short, for Affymetrix Human SNP 6.0 arrays, PennCNV-Affy and Affymetrix Power 

Tools72 were used to extract the B-allele frequency (BAF) and Log R Ratio (LRR) from the 

CEL files. Due to the absence of paired-normal samples, the allele-specific signal intensity 

for each PDX tumor were normalized relative to 300 randomly selected sex-matched 

Affymetrix Human SNP 6.0 array CEL files obtained from the International HapMap 

project73. For Illumina Infinium Omni2.5Exome-8 SNP arrays (v1.3 and v1.4 kit), the 

Illumina GenomeStudio software was used to extract the B-allele frequency (BAF) and Log 

R Ratio (LRR) from the signal intensity of each probe. The single sample mode of the 

Illumina GenomeStudio was used, which normalizes the signal intensities of the probes with 

an Illumina in-house dataset. The single tumor version of ASCAT33 (v2.4.3 for JAX SNP 

data, v2.5.1 for SIBS SNP data) was used for GC correction, predictions of the heterozygous 

germline SNPs based on the SNP array platform, and estimation of ploidy, tumor content 

and allele-specific copy number segments. The resultant copy number segments were 

annotated with log2 ratio of total copy number relative to predicted ploidy from ASCAT.

Whole-exome sequencing (WES) data.—Aligned bams (see Supplementary Methods) 

were subset to target region by GATK 4.0.5.1, and SAMTools74 v0.1.18 was used to 

generate the pileup for each sample. Pileup data were used for CNA estimation as calculated 

with Sequenza29 v2.1.2. Both tumor and normal data, which utilized the same capture array, 
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were used as input. pileup2seqz and GC-windows (-w 50) modules from sequenza-utils.py 

utility were used to create the native seqz format file for Sequenza and compute the average 

GC content in sliding windows from hg38 genome, respectively. We ran the three Sequenza 

modules with these modified parameters (sequenza.extract: assembly = “hg38”, sequenza.fit: 

chromosome.list = 1:23, and sequenza.results: chromosome.list = 1:23) to estimate the 

segments of copy number gains/losses. Finally, segments lacking read counts, in which 

≥50% of the segment with zero read coverage, were removed. A reference implementation 

of this workflow (Supplementary Fig. 71) is developed and deployed in the Cancer 

Genomics Cloud by Seven Bridges (https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-

wf-commit2/wes-cnv-tumor-normal-workflow/, https://cgc.sbgenomics.com/public/

apps#pdxnet/pdx-wf-commit2/pdx-wes-cnv-xenome-tumor-normal-workflow/).

Low-pass whole-genome sequencing (WGS) data.—For EuroPDX CRC liver 

metastasis data, raw copy number profiles for each sample were estimated by QDNAseq75 R 

package v1.20 by dividing the human reference genome in non-overlapping 50 kb windows 

and counting the number of reads (see Supplementary Methods) in each bin. Bins in 

problematic regions were removed76. Read counts were corrected for GC content and 

mappability by a LOESS regression, median-normalized and log2-transformed. Values 

below −1,000 in each chromosome were floored to the first value greater than −1,000 in the 

same chromosome. Raw log2 ratio values were then segmented using the ASCAT33 

algorithm implemented in the ASCAT R package v2.0.7. For EuroPDX BRCA tumors, raw 

copy number profiles were estimated for each sample by dividing the human reference 

genome in non-overlapping 20-kb windows and counting the number of reads (see 

Supplementary Methods) in each bin. Only reads with at least mapping quality 37 were 

considered. Bins within problematic regions (i.e. multimapper regions) were excluded. 

Downstream analysis to estimate copy number was conducted as described above.

RNA-sequencing (RNA-seq) and gene expression microarray (EXPARR) data.
—For expression-based copy number inference, we referred to the previous protocols for e-

karyotyping and CGH-Explorer37,38,77,78. For each cancer type, expression values (see 

Supplementary Methods) of tumor and corresponding normal samples were merged in a 

single table, and gene identifiers were annotated with chromosomal nucleotide positions. 

Genes located on sex chromosomes were excluded. Genes which values below 1 TPM 

(RNA-seq) or probeset log2-values below 6 (microarray) in more than 20% of the analyzed 

dataset were removed. Remaining gene expression values below the thresholds were 

respectively raised to 1 TPM or log2-value of 6. In the case of multiple transcripts (RNA-

seq) or probesets (microarray) per gene, the one with the highest median value across the 

entire dataset was selected. According to the e-karyotyping protocol, the sum of squares of 

the expression values relative to their median expression across all samples was calculated 

for each gene, and 10% most highly variable genes were removed. For each gene, the 

median log2 expression value in normal samples was subtracted from the log2 expression 

value in each tumor sample and subsequently input in CGH-explorer. For tumor-only 

datasets, the median log2 expression value in the same set of tumor samples was instead 

subtracted. The preprocessed expression profiles of each sample were individually analyzed 

using CGH-Explorer (http://heim.ifi.uio.no/bioinf/Projects/CGHExplorer/). CGH-PCF 
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analysis was carried out to call copy number according to parameters previously reported23: 

least allowed deviation = 0.25; least allowed aberration size = 30; winsorize at quantile = 

0.001; penalty = 12; threshold = 0.01.

Statistical methods.

All statistical analysis for data comparison were performed using either one-tailed or two-

tailed Wilcoxon rank sum test, two-tailed Kolmogorov–Smirnov test, or one-tailed Wilcoxon 

signed rank test.

Filtering and gene annotation of copy number segments.

Copy number (CN) segments with log2 copy number ratio estimated from the various 

platforms were processed in the following steps (Extended Data Fig. 3). Segments <1 kb 

were filtered based on the definition of CNA79. In addition, SNP array segments had to be 

covered by >10 probes, with an average probe density of 1 probe per 5 kb. The copy number 

segments were then binned into 10-kb windows to derive the median log2(CN ratio), which 

was subsequently used to re-center the copy number segments. Median-centered copy 

number segments were visualized using IGV80 v2.4.13 and GenVisR81 v1.16.1. Median-

centered copy number of genes was calculated by intersecting the genome coordinates of 

copy number segments with the genome coordinates of genes (Ensembl Genes 93 for human 

genome assembly GRCh38, Ensembl Genes 96 for human genome assembly GRCh37). In 

the case where a gene overlaps multiple segments, the most conservative (lowest) estimate of 

copy number was used to represent the copy number of the entire intact gene.

Comparison of CN gains and losses.

For the comparison of resolution, range of CN values and frequency of gains and losses 

between different platforms and analysis methods, we defined copy number gain or loss 

segments as – Gain: log2(CNratio) > 0.1; Loss: log2(CN ratio) < −0.1.

Correlation of CNA profiles.

The overall workflow to compare CNA profiles is shown in Extended Data Figure 3. PDX 

samples without passage information were omitted in the following downstream analysis. 

The copy number segments were binned into 100-kb windows or smaller using Bedtools82 

v2.26.0, and the variance of log2(CN ratio) and 5-95% inter-percentile range of log2(CN 

ratio) values across all the bins were calculated as a measure of degree of aberration for each 

CNA profile. A non-aberrant profile results in a low variance or range. While variance can 

be biased for CNA profiles with small segments of extreme gains or losses, we preferred the 

use of 5-95% inter-percentile range of log2(CN ratio) to identify samples with low degree of 

aberration, such that a narrow range indicates ≥90% of the genome has very low-level gains 

and losses. The similarity of two CNA profiles is quantified by the Pearson correlation 

coefficient of log2(CN ratio) of 100-kb windows binned from segments or genes between 

two samples. Gene-based and segment-based (100-kb windows) correlations were highly 

similar (data not shown). Using correlation avoided the issue of making copy number gain 

and loss calls based on thresholds. Sample-based variations in baseline due to median-

normalization and range in copy number values could introduce further inconsistencies gain 
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and loss calls between samples. Such variations are further impacted by sample-specific 

variation in human stromal contamination or sensitivity of copy number detection by 

different platforms. As median-centering of each CNA profile approximates normalization 

by the sample ploidy, we confirmed that in general ploidy (estimated from ASCAT analysis 

of SNP array samples) had no association with the copy number correlation values 

(Pearson’s product-moment correlation, P > 0.05, cor = 0.0248). One caveat of our 

approach, however, is that it cannot distinguish genome-wide multiplication of ploidy 

between samples, as the correlation statistic is invariant to such genome-wide 

transformations. As such we cannot assess whether ploidy changes occur between samples 

of a given model.

Comparison of CNA profiles between different platforms.—The copy number 

segments of each pair of data were intersected and binned into 100-kb windows or smaller 

using Bedtools. The Pearson correlation coefficient and linear regression model was 

calculated for the log2(CN ratio) of the windows. Windows with discrepant copy number 

were identified by outliers of the linear regression model defined by ∣studentized residual∣ > 

3. These outlier windows were mapped to their corresponding segments to identify the size 

of CNA events that were discordant between the different copy number estimation methods. 

The proportion of the genome discordant CNA was calculated from the summation of the 

outlier windows.

Identification of genes with CNA between different samples of the same 
model.—To compare the CNA profiles between different samples (PT or PDX) of the same 

model, the Pearson correlation coefficient and linear regression model was calculated for the 

log2(CN ratio) of the genes for each pair of data. Prior to that, deleted genes with log2(CN 

ratio) < −3 were rescaled to −3 to avoid large shifts in the correlation coefficient and linear 

regression model due to extremely negative values on the log scale. Extreme outliers of the 

linear regression model defined by ∣studentized residual∣ > 3 were removed to derive an 

improved linear regression model39 not biased by few extreme values. Genes with copy 

number changes between the samples were identified by the difference in log2(CN ratio) 

relative to the improved linear regression model of ∣standard residual∣ < 0.5. We also 

removed some samples with low correlation due to sample mislabeling as they displayed 

high correlation with samples from other models. We also omitted samples with low 

correlation values (<0.6) which resulted from non-aberrant CNA profiles in genomically 

stable tumors (5-95% inter-percentile range of log2(CN ratio) < 0.3, Supplementary Fig. 62).

Identification of aberrant sample pairs with highly discordant CNA profiles.—
Aberrant CNA profiles were identified based on the 5-95% inter-percentile range of log2(CN 

ratio) >0.5, for both samples. Sample pairs with Pearson correlation <0.6 were selected as 

highly discordant CNA profiles between them.

Association of mutations with copy number correlations.—Mutational calls for 

each WES sample used in this study were obtained using a tumor-normal variant calling 

workflow developed for patient tumor and PDXs35. Subsequently, genes with either 

germline and somatic variants that pass through the quality filters (FILTER = PASS or 
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germline) and IMPACT = MODERATE or HIGH by SnpEff (v4.3) annotation are labeled as 

mutated, and wildtype if otherwise. For SNP array and WGS data, we collected the 

mutational status (wild-type or mutated) of TP53, BRCA1, and BRCA2 per model where 

available, which may or may not be obtained from the exact same tumor samples used in this 

study. For the JAX SNP array dataset, variant calls (tumor-only) were made from various 

targeted sequencing approaches (TruSeq Amplicon Cancel Panel, JAX Cancer Treatment 

Profile panel and whole exome). The workflow and filtering criteria to call mutations is 

described elsewhere34. For the HCI SNP array data, mutations were obtained from whole 

exome sequencing (unpublished data) and were filtered for frameshift, inframe, missense, 

and nonsense and splice-site mutations. For BCM SNP array data, mutational status were 

obtained from clinical samples by immunohistochemistry or Sequenom83 (unpublished 

data). For WGS data, mutations were obtained from whole exome or targeted panel 

sequencing84 (unpublished data) and high-quality and likely functional mutations were 

retained. For each sample pair with copy number correlations, mutational status of TP53 or 

BRCA was obtained for each individual sample for WES data, while the mutational status 

was available on a per model basis for SNP and WGS data. BRCA is labeled as mutated 

when either BRCA1 or BRCA2 is mutated. For mutations in DNA repair genes85 from the 

WES data, each pair of samples was classified as mutated if any DNA repair gene was 

reported to be mutated in either sample.

Annotation with gene sets with known cancer or treatment-related functions.

A low copy number change threshold (∣log2(CN ratio) change∣ > 0.5) was selected to include 

genes with subclonal alterations. Copy number altered genes (∣residual∣ > 0.5) were 

annotated by various gene sets with cancer or treatment-related functions gathered from 

various databases and publications (Extended Data Fig. 3):

1. Genes in 10 oncogenic signaling pathways curated by TCGA and were found to 

be frequently altered in different cancer types40.

2. Genes with gain in copy number or expression, or loss in copy number or 

expression that conferred therapeutic sensitivity, resistance or increase/decrease 

in drug response from the JAX Clinical Knowledgebase41,42 (JAX-CKB) based 

on literature curation (https://ckbhome.jax.org/, as of 06-18-2019).

3. Genes with evidence of promoting oncogenic transformation by amplification or 

deletion from the Cancer Gene Census43 (COSMIC v89).

4. Significantly amplified or deleted genes in TCGA cohorts of breast cancer44, 

colorectal cancer45, lung adenocarcinoma46 and lung squamous cell carcinoma47 

by GISTIC analysis, which identified significantly altered genomic driver 

regions which can be used to differentiate tumor types and subtypes.

Identification of genes with recurrent copy number changes.

A stringent CNA threshold (∣log2(CN ratio) change∣ > 1.0 with respect to linear regression 

model) was selected to distinguish genes with possible functional impact. Genes with 

∣residual∣ > 1.0 with respect to the improved regression linear model (without discriminating 

gain or loss) were selected for each pairwise comparison between different samples of the 
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same model. Pairwise cases in which genes are deleted in both samples (log2(CN ratio) ≤ 

−3 ) are omitted. Recurrent frequency for each gene across all models was calculated on a 

model basis such that genes with copy number between multiple pairs of the same model 

was counted as once. This avoided the bias towards models with many samples of similar 

copy number changes between the different pairs.

Drug response analysis using CCLE data.

We developed a pipeline to evaluate gene copy number effects on drug sensitivity86,87 by 

using the Cancer Cell Line Encyclopedia48,88 (CCLE) cell line genomic and drug response 

data (CTRP v2). We downloaded the CCLE drug response data from Cancer Therapeutics 

Response Portal (www.broadinstitute.org/ctrp), and CCLE gene-level CNA and gene 

expression data from depMap data portal (‘public_19Q1_gene_cn.csv’ and 

‘CCLE_depMap_19Q1_TPM.csv’, https://depmap.org/portal/download/). For CCLE drug 

response data, we used the area-under-concentration-response curve (AUC) sensitivity 

scores for each cancer cell line and each drug. In total, we collected gene-level log2 copy 

number ratio data derived from the Affymetrix SNP 6.0 platform from 668 pan-cancer 

CCLE cell lines, with a total of 545 cancer drugs tested. With the CCLE gene-level CNA 

and AUC drug sensitivity scores, we performed gene-drug response association analyses for 

genes with recurrent copy number changes. Pearson correlation p-values between each 

gene’s log2 (CN ratio) and each drug’s AUC score across all cell lines were calculated, and 

q-values were calculated by multiple testing Bonferroni correction. Significant gene-CNA 

and drug associations were kept (q-value < 0.1) to further evaluate gene-expression and drug 

response associations. If a gene’s expression was also significantly correlated with AUC 

drug sensitivity scores, particularly in the same direction (either positively or negatively 

correlated) as the gene-CNA and drug association, that gene would be considered as 

significantly correlated with drug response based on both its CNA and gene expression.

Genomic Identification of Significant Targets in Cancer (GISTIC) analysis of WGS data.

We carried out GISTIC analysis to identify recurrent CNAs by evaluating the frequency and 

amplitude of observed events. To obtain perfectly matching and comparable PT–PDX 

cohorts, for GISTIC analysis, CRC trios in which at least one sample displaying non-

aberrant CNA profiles were excluded from the analysis resulting in a total of 87 triplets. The 

GISTIC51 algorithm (GISTIC 2.0 v6.15.28) was applied on the segmented profiles using the 

GISTIC GenePattern module (https://cloud.genepattern.org/), with default parameters and 

genome reference files Human_Hg19.mat for EuroPDX CRC data and 

hg38.UCSC.add_miR.160920.refgene.mat for EuroPDX BRCA data. For each dataset, 

GISTIC provides separate results (including segments, G-scores and FDR q-values) 

separately for recurrent amplifications and recurrent deletions. Deletion G-scores were 

assigned negative values for visualization. We observed that the G-Score range was 

systematically lower in PT cohorts, which is likely the result of the dilution of CNA by 

normal stromal DNA. In contrast, human stromal DNA in PDX samples was lower or 

negligible. To account for this difference in gene-level G-scores, PDXs at early and late 

passages were scaled with respect to PT gene-level G-score values using global linear 

regression, separately for amplification and deletion outputs.
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Gene set enrichment analysis (GSEA) of WGS data.

To assess the biological functions associated with the recurrent alterations detected by the 

GISTIC analysis, we performed GSEAPreranked analysis52,53 (GSEA v3.0) on gene-level 

GISTIC G-score profiles for both amplifications and deletions. In particular, we applied the 

algorithm with 1,000 permutations on various gene set collections from the Molecular 

Signatures Database89,90 (MSigDB v6.2): H (Hallmark), C2 (Curated: CGP chemical and 

genetic perturbations, CP canonical pathways), C5 (Gene Ontology: BP biological process, 

MF molecular function, CC cellular component) and C6 (Oncogenic Signatures) composed 

of 50, 4,762, 5,917, and 189 gene sets, respectively. We also included gene sets with known 

cancer or treatment-related functions described in an earlier section. We noted that multiple 

genes with contiguous chromosomal locations, typically in recurrent amplicons, generated 

spurious enrichment for gene sets which consists of multiple genes of adjacent positions, 

while very few or none of them had a significant GISTIC G-score. To avoid this 

confounding issue, we only considered the “leading edge genes”, i.e. those genes with 

increasing Normalized Enrichment Score (NES) up to its maximum value, that contribute to 

the GSEA significance for a given gene set. The leading-edge subset can be interpreted as 

the core that accounts for the gene set’s enrichment signal (http://software.broadinstitute.org/

gsea). We included a requirement that the leading edge genes passing the GISTIC G-score 

significant thresholds based on GISTIC q-value 0.25 (Supplementary Table 8 and Extended 

Data Fig. 7) make up at least 20% of the gene set. This 20% threshold was chosen as the 

minimal threshold at which gene sets assembled from TCGA-generated lists of genes with 

recurrent CNA in CRC or BRCA were identified as significant in GSEA (see Supplementary 

Table 9). Finally, gene sets with a NES > 1.5 and a FDR q-value < 0.05, which passed the 

leading edge criteria, were considered significantly enriched in genes affected by recurrent 

CNAs.

DATA AVAILABILITY

Copy number calls from all datasets are available in Supplementary Data 1, and these are 

used for all figures. Raw sequence data for these calls are a combination of previously 

described sources (notably the publicly available NCI Patient Derived Models Repository, 

pdmr.cancer.gov) and newly sequenced data. New sequence data from the PDXNet are being 

shared as part of the NCI Cancer Moonshot initiative through the Cancer Data Service. For 

further details, contact the authors. The SNP array data generated by The Jackson 

Laboratory can be requested via the Mouse Models of Human Cancer Database 

(tumor.informatics.jax.org). The whole genome sequencing data generated by EurOPDX can 

be made available by directly contacting the EurOPDX consortium (dataportal.europdx.eu). 

Other publicly available data used in the analyses include GSE90653, GSE3526, GSE33006 

and E-MTAB-1503-3, CCLE cell line genomic and drug response data (CTRP v2), MSigDB 

v6.2 and TRACERx NSCLC data (DOI: 10.1056/NEJMoa1616288).

CODE AVAILABILITY

We have used well-established computational sequence analysis and statistical analysis 

techniques, so no code is provided. Full descriptions of all analysis techniques are provided 
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in the Methods. The implementation of the copy number estimation workflow from whole-

exome sequencing data is deployed in the cancer genomics cloud at SevenBridges (https://

cgc.sbgenomics.com/public/ apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-

workflow/, https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/ pdx-wes-cnv-

xenome-tumor-normal-workflow/).

Extended Data

Extended Data Fig. 1. Comparison of segment sizes between different platforms.
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The left panel compares the combined corresponding segment sizes of outlier and non-

outliers from the linear regression of the log2(CN ratio) of 100-kb windows binned from 

copy number segments between matched samples estimated from two different platforms or 

methods combined. Outliers of the linear regression are identified by studentized residuals > 

3 and < −3. a, SNP vs. WES. b, WES vs. RNASEQ (NORM). c, WES vs. RNASEQ (TUM). 

d, SNP vs. EXPARR (NORM). e, SNP vs. EXPARR (TUM) (see Supplementary Table 3). 

The right panel compares the distribution of the segment sizes of outliers and non-outliers 

for the platform or method of higher resolution.

Extended Data Fig. 2. Comparison of copy number between different platforms.
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Pearson correlation and linear regression of the log2(CN ratio) of 100-kb windows binned 

from copy number segments of CNA profiles between matched patient tumor samples 

estimated from different platforms or analysis methods for examples shown in Figure 2d. 

Outliers of the linear regression are identified by studentized residuals > 3 and < −3. RNA-

seq and expression array samples denoted with “PN” or “NORM” are normalized by the 

median expression of normal samples.

Extended Data Fig. 3. Analysis workflow to compare CNA between two samples of the same 
PDX model.
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A correlation and robust regression approach to quantify similarity of CNA profiles and 

identify genes with copy number changes between two samples.

Extended Data Fig. 4. Correlations between PT-PDX and PDX-PDX pairs.
a, The 5-95% inter-percentile range of CNA profiles between PT-PDX or PDX-PDX sample 

pairs from the same model on different platforms as shown in Figure 3a-c. The 5-95% inter-

percentile range of log2(CN ratio) values were calculated across all 100-kb windows per 

sample. P-values were computed by one-sided Wilcoxon rank sum test (ns: non-significant, 

P > 0.05). In the boxplots, the center line is the median, box limits are the upper and lower 

quantiles, whiskers extend 1.5× the interquartile range, and dots represent the outliers. b, 

Pearson correlation of the samples versus the ratio of 5-95% inter-percentile range between 
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two samples (PT/PDX or PDX-1/PDX-2). Samples pairs with ratio of range much greater or 

less than 1 (i.e. one sample is much less aberrant than the other) tend to have lower 

correlations. PDX-1, lower passage PDX; PDX-2, later passage PDX or same passage PDX 

of different lineage.

Extended Data Fig. 5. Distribution of Pearson correlation coefficients of gene-based copy 
number.
a-c, Estimated by SNP array (a), WES (b), and WGS (c) between different combinations of 

patient tumor and PDX passages of the same model. Comparisons relative to passages P1 or 

later passages (refer to Fig. 3d-f for comparisons with PT and P0). In the boxplots, the center 
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line is the median, box limits are the upper and lower quantiles, whiskers extend 1.5× the 

interquartile range, and dots represent all data points.

Extended Data Fig. 6. Comparison of CNA between early and very-late passages.
In the BCM SNP array breast cancer dataset. a, Correlation and robust regression of gene-

based copy number between early (P0-P2) and very-late passages (P18-P21) of the same 

model. Genes with copy number changes between the passages are identified by ∣residual∣ > 

0.5. Some genes show signs of complete deletion (log2(CN ratio) < −2) but then reappear in 

later passages. This can only be explained by the early and late passages being dominated by 

different pre-existing subclones. b, Distribution of Pearson correlation coefficients of gene-

based copy number between early and very-late passages of the same model (14 models/

pairwise correlations) compared to correlation coefficients between lower passages denoted 

as “other passages” (< P4). Correlation for “other passages” are based on models from all 

other non-BCM SNP array datasets (111 pairwise correlations). P-values were computed by 

one-sided Wilcoxon rank sum test. In all boxplots, the center line is the median, box limits 
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are the upper and lower quantiles, whiskers extend 1.5× the interquartile range, and dots 

represent outliers. c, Summary of passage numbers, copy number correlation, and fraction of 

genes of different gene sets with copy number changes (∣residual∣ > 0.5) between passages 

of each breast cancer model.

Extended Data Fig. 7. GISTIC analysis of recurrent CNAs.
a,b, GISTIC plots showing amplified and deleted regions in the EurOPDX WGS of trios of 

PTs and derived PDXs, at early and late passages, of colorectal cancer (a, 87 trios) and 
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breast cancer (b, 43 trios). For each GISTIC plot, the top axis reports the G-score and the 

bottom axis the q-value.

Extended Data Fig. 8. Distribution of proportion of altered genes for lung cancer samples.
Comparison between multi-region tumor pairs from TRACERx, and PT-PDX and PDX-

PDX pairs for various gene sets for LUAD and LUSC. Gene sets and CNA thresholds are 

the same as Figure 4, other gene sets are shown in Figure 6b. P-values were computed by 

one-sided Wilcoxon rank sum test. Numbers of genes per gene set are indicated in the plot 

title, and number of pairwise comparisons are indicated in the horizontal axis labels.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Patient derived xenograft datasets used for copy number profiling across 16 tumor types.
(a) Numbers of PDX models for each tumor type, with models also having multiple PDX 

samples or having matched patient tumor samples specified. (b) Distributions of datasets by 

passage number and assay platform for patient tumors and PDX samples, separated by 

tumor type. “Late” passages include P18, P19 and P21 samples.
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Fig. 2: Comparisons of resolution and accuracy for copy number alterations estimated by DNA-
based and expression-based methods.
(a) Pairwise comparisons of distributions of segment size (Mb) of CNAs estimated by 

different measurement platforms in the validation dataset. CNAs are regions with (∣log2(CN 

ratio)∣ ≥ 0.1). P-values indicate significance of difference between distributions by two-sided 

Wilcoxon rank sum test. (b) Pairwise comparisons of distributions of log2(CN ratio) of CNA 

segments. P-values were computed by two-sided Kolmogorov-Smirnov test. (c) 

Distributions of Pearson correlation coefficient of median-centered log2(CN ratio) in 100-kb 

windows from CNA segments between pairs of samples estimated by different platforms. 

Samples with non-aberrant profiles in SNP array and WES data are omitted (5-95% inter-
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percentile range of log2(CN ratio) < 0.3). P-values were computed by two-sided Wilcoxon 

rank sum test. In the boxplots, the center line is the median, box limits are the upper and 

lower quantiles, whiskers extend 1.5 × the interquartile range, dots represent the outliers. (d) 

Examples of CNA profiles in comparisons of different platforms. Pearson correlation 

coefficients of CNA segments between pairs of samples are shown on the right. In all the 

plots, SNP: SNP array, WES: whole-exome sequencing, RNASEQ: RNA sequencing, 

EXPARR: gene expression array, NORM: normalization by median expression of normal 

samples, TUM: normalization by median expression of tumor samples, see Supplementary 

Table 3 for number of samples per group.
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Fig. 3: Comparisons of copy number alterations from patient tumor to early and late PDX 
passages.
(a-c) Distributions of Pearson correlation coefficient of gene-based copy number, estimated 

by (a) SNP array, (b) WES, and (c) WGS, between: PT-PDX samples from the same model; 

PDX-PDX samples of the same model; samples of different models from a common tumor 

type and contributing center. P-values were computed by one-sided Wilcoxon rank sum test 

(ns: not significant, p > 0.05). Number of pairwise correlations are indicated in the legend. 

(d-f) Distributions of Pearson correlation coefficients of gene-based copy number, estimated 

by (d) SNP array, (e) WES, and (f) WGS, among patient tumor and PDX passages of the 

same model. Comparisons relative to PT and P0 are shown (higher passages are shown in 
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Extended Data Fig. 5). In the boxplots, the center line is the median, box limits are the upper 

and lower quantiles, whiskers extend 1.5 × the interquartile range, dots represent the all data 

points. (g) Schematic of lineage splitting during passaging and expansion of tumors into 

multiple mice. This is a simplified illustration for passaging procedures in which different 

fragments of a tumor are implanted into different mice. (h) Pearson correlation distributions 

for PDX sample pairs of different lineages and sample pairs within the same lineage: for 

JAX SNP array, PDMR WES, and EuroPDX WGS datasets. P-values were computed by 

one-sided Wilcoxon rank sum test. For all boxplots and violin plots, number of pairwise 

correlations are indicated in the horizontal axis labels.
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Fig. 4: Cancer gene sets analysis for copy number altered genes during engraftment and 
passaging.
(a) Distribution of proportion of altered genes between pairwise PT-PDX or PDX-PDX 

comparisons of the same model in various gene sets. Protein-coding: protein-coding genes 

annotated by Ensembl; Oncogenic pathways: genes in oncogenic signaling pathways 

identified by TCGA; JAX CKB Amp/Del: genes with copy number gain or over-expression / 

copy number loss or under-expression associated with therapeutic sensitivity or resistance or 

changes in drug response; Census Amp Del: genes from Cancer Gene Census frequently 

altered by amplifications or deletions. CNA genes were identified by ∣residual∣ > 0.5 from 
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linear regression model. (b) Distribution of proportion of altered genes between pairwise PT-

PDX or PDX-PDX comparisons of the same model in various gene sets within breast cancer, 

colorectal cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) 

models. TCGA Gistic Amp/Del: significantly amplified/deleted genes from TCGA GISTIC 

analysis for the corresponding tumor type. For all violin plots, P-values were computed by 

one-sided Wilcoxon rank sum test (ns: not significant, p > 0.1); number of pairwise 

comparisons are indicated in the plot title, number of genes per gene set is indicated in the 

horizontal axis labels. (c) Recurrence frequency of protein coding genes with copy number 

alterations, ∣residual∣ > 1, across all models in PT-PDX and PDX-PDX comparisons. 

Number of models is indicated in the horizontal axis labels.
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Fig. 5: Absence of mouse-driven recurrent CNAs during engraftment and propagation of 
colorectal (CRC) and breast cancer (BRCA) PDXs.
(a) Bar charts representing genome-wide GISTIC G-score for amplifications and deletions 

in each of the three cohorts of CRC (87 trios) and BRCA (43 trios): PT, PDX-early (P0-P1 

for CRC, P0-P2 for BRCA), PDX-late (P2-P7 for CRC, P3-P9 for BRCA). (b-c) Scatter 

plots comparing gene-level GISTIC G-score between each of the three cohorts, for (b) CRC 

and (c) BRCA. Bottom-right panels of (b) and (c): scatter plots comparing ΔG-scores from 

PT to PDX-early and from PDX early to PDX-late. (d-e) Scatter plots comparing GSEA 

Normalized Enrichment Score (NES) for gene sets between each of the three cohorts, for (d) 

CRC (e) and BRCA. Bottom-right panels of (d) and (e): scatter plots comparing ΔNES from 

PT to PDX-early and from PDX-early to PDX-late.
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Fig. 6: Comparison of CNA variation during PDX engraftment and passaging to CNA variation 
among patient multi-region, tumor relapse, and metastasis samples.
(a) Distributions of Pearson correlation coefficients of gene-based copy number for lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and other lung cancer 

subtypes, comparing different datasets. TracerX multiregion: multi-region tumor samples of 

the same patient from TRACERx (92 patient tumors, 295 multi-region samples); PT-PDX 

samples of the same model; PDX-PDX samples of the same model. P-values were computed 

by two-sided Wilcoxon rank sum test (ns: not significant, p > 0.05). (b) Distributions of 

proportion of altered genes between multi-region tumor pairs from TRACERx, and PT-PDX 
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and PDX-PDX pairs for various gene sets for LUAD and LUSC. Gene sets and CNA 

thresholds are the same as Fig. 4. TCGA Gistic Amp/Del and JAX CKB Amp Del gene sets 

are shown (other gene sets are shown in Extended Data Fig. 8). P-values were computed by 

one-sided Wilcoxon rank sum test. Number of genes per gene set are indicated in the plot 

title. (c) Distributions of Pearson correlation coefficients of gene-based copy number 

between intra-patient PT (primary/relapse/metastasis) pairs from the same patient and 

corresponding PT-PDX (derived from the same model; a different PT sample from the same 

patient generates a different model) pairs for the same set of patients. P-values were 

computed by two-sided Wilcoxon rank sum test (ns: not significant, p > 0.05). Number of 

patients and models are indicated in the plot title. For all box plots and violin plots, number 

of pairwise comparisons are indicated in the horizontal axis labels. In all boxplots, the center 

line is the median, box limits are the upper and lower quantiles, whiskers extend 1.5 × the 

interquartile range, dots represent the all data points. (d) CNA profiles of PT and PDX 

samples from patients with PDX models derived from multiple PT collection (primary/

relapse/metastasis).
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