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Abstract

The stepped wedge cluster randomized design has received increasing attention in pragmatic 

clinical trials and implementation science research. The key feature of the design is the 

unidirectional crossover of clusters from the control to intervention conditions on a staggered 

schedule, which induces confounding of the intervention effect by time. The stepped wedge design 

first appeared in the Gambia hepatitis study in the 1980s. However, the statistical model used for 

the design and analysis was not formally introduced until 2007 in an article by Hussey and 

Hughes. Since then, a variety of mixed-effects model extensions have been proposed for the design 

and analysis of these trials. In this article, we explore these extensions under a unified perspective. 

We provide a general model representation and regard various model extensions as alternative 

ways to characterize the secular trend, intervention effect, as well as sources of heterogeneity. We 

review the key model ingredients and clarify their implications for the design and analysis. The 

article serves as an entry point to the evolving statistical literatures on stepped wedge designs.
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1 Introduction

Cluster-randomized trials (CRTs), also known as group-randomized trials, are frequently 

designed to evaluate the effect of an intervention administered at the cluster level, such as 

clinics, hospitals or geographical units.1–4 Common reasons for randomizing at the cluster 

level include minimization of treatment contamination, administrative convenience, among 

others. The design and analysis of CRTs have been an active area of research over the past 

four decades and comprehensive reviews of recent methodological developments can be 

found in Turner et al.5,6 and Murray et al.7 In parallel designs, usually half of the clusters are 

randomized to each arm. While parallel randomization ensures valid comparisons of post-

treatment outcomes at the same point in time, concurrent implementation of the intervention 

may demand extensive administrative planning and logistical infrastructure.8

The stepped wedge CRT is an alternative design that allows for phased implementation of an 

intervention. In a stepped wedge CRT, clusters are randomized to intervention sequences 

that differ by the time points when the intervention starts to roll out.9,10 An attractive feature 

of the stepped wedge CRT is that all clusters eventually receive the intervention, which can 

help facilitate recruitment when cluster stakeholders perceive the intervention to be 

beneficial.11–13 Stepped wedge designs have also received increasing attention in recent 

pragmatic clinical trials (PCTs) embedded in health care delivery systems; see, for example, 

the Lumbar Imaging with Reporting of Epidemiology study (LIRE)14 and the Trauma 

Survivors Outcomes and Support study (TSOS)15 as two recent Demonstration Projects 

supported by the U.S. National Institutes of Health (NIH) Health Care Systems Research 

Collaboratory.16 Because of their unique features, stepped wedge CRTs usually require more 

complex statistical considerations compared to parallel CRTs. Mixed-effects regression is 

one of several approaches proposed for CRTs, and has been the most commonly used 

approach in analyzing stepped wedge CRTs. The objective of this article is to provide an 

overview of mixed-effects models developed for stepped wedge CRTs. In an effort to clarify 

their assumptions and implications, this article provides an entry point to the evolving 

statistical literatures on stepped wedge CRTs.

Several systematic reviews emphasized the conducting and reporting related to both the 

design and analysis of stepped wedge CRTs. For example, Martin et al.17 and Grayling et al.
18 assessed the quality of reporting and design features of stepped wedge CRTs and found 

that many studies did not adhere to the guidelines recommended in the earlier CONSORT 

extension to CRTs.19 In particular, statistical methods for the sample size determination 

varied across studies, and insufficient details on modeling assumptions were provided. 

Variations in statistical models had been first observed in an earlier systematic review by 

Brown and Lilford,20 even before the standard method was published in Hussey and Hughes.
9 Davey et al.21 and Barker et al.22 surveyed the statistical methodology used for stepped 

wedge CRTs in practice and also noticed substantial variations in model specification, to 

which the sample size calculation and model-based inference could be sensitive. The various 

model specifications in practice motivated us to integrate the current toolkit of analytical 

models for stepped wedge designs.
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Hemming et al.23,24 recently introduced the CONSORT extension for the stepped wedge 

CRTs and encouraged clear reporting of analytical models specified for sample size 

calculation (item 7a) as well as for the primary and secondary analyses (items 12a and 12 b). 

In what follows, we consider the specification of the secular trend, the intervention, and 

sources of heterogeneity as three essential components of a model, and describe different 

formulations of each component. Our overview complements the CONSORT extension in 

clarifying the similarities and differences among models and in facilitating their proper 

application. The scope of this article differs from previous systematic reviews due to the fact 

that it is focusing on the statistical formulations and assumptions of the models used to 

describe the individual-level outcome trajectories. We took a top-down approach by 

providing a general model representation that separates the three essential components (i.e. 

secular trend, intervention effect, and sources of heterogeneity). We then cast a number of 

model variants as special cases of the general representation to explain their assumptions 

and implications for the design and analysis.

The rest of this article is organized as follows. Section 2 introduces the notation and the 

general model representation. Section 3 provides an overview of existing mixed-effects 

models and clarifies their assumptions and properties. Section 4 reviews the estimation and 

inference strategies in stepped wedge trials, and Section 5 concludes with a discussion.

2 A general model representation

2.1 Notation

Throughout the paper, we consider a stepped wedge CRT with I participating clusters 

followed over J (J ≥ 3) time periods. We assume that individuals are included in each cluster 

and the outcome assessment is scheduled during each period at the individual level; in other 

words, we only consider complete designs,25 and refer readers to Kasza and Forbes26 and 

Kasza et al.27 for methodological developments on incomplete designs. Based on the 

terminology of Murray and Hannan28 and Feldman and Mckinlay,29 we will distinguish 

between cross-sectional and closed-cohort stepped wedge designs. In a cross-sectional 

design, different individuals are observed in each cluster over time, whereas in a closed-

cohort design, individuals are identified at the start of the trial and scheduled for repeated 

outcome assessment. In addition, Copas et al.30 discussed a third option, the open-cohort 
design, which allows for attrition of members from and addition of new members to the 

original cohort in each cluster. We will describe the notation for each one of these three 

designs, and consistently use these notation when discussing model development.

For the cross-sectional design, we assume Nij individuals are included during period j (j = 1, 

…, J) in cluster i(i = 1, …, I); the cluster-period sizes may vary. For the closed-cohort 

design, we define Ni as the cohort size in cluster i as repeated measurements are taken from 

the same individuals. The open-cohort design can be considered as a mix of a cross-sectional 

design and a closed-cohort design, and we still assume Nij individuals are included during 

period j in cluster i. However, in this case, there exists an overlapping number (0 ≤ ni(j, l) ≤ 

min{Nij, Nil}) of individuals for period j and period l in cluster i, depending on the degree of 

cohort openness. The notation of the open-cohort design generalizes that of the previous two 

designs, because the cross-sectional design is obtained as a special case with ni(j, l) = 0 for 
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all j and l (maximum degree of openness) and the closed-cohort design is obtained with ni(j, 
l) = Nij = Nil for all j and l (minimum degree of openness). Such notation becomes useful in 

Section 3.6. For all three types of designs, each cluster typically starts out in the control 

condition; clusters or sets of clusters are then randomized to intervention sequences and all 

clusters will be exposed to the intervention condition before the end of the trial. Figure 1 

provides a schematic illustration of a design with I=8 clusters and J=5 periods. Notably, each 

one of the four distinct intervention sequences is fully determined by the time period during 

which the intervention is first implemented. We define the total number of distinct 

intervention sequences by S(S ≤ J − 1), and there are in total S=4 pre-planned sequences in 

Figure 1.

2.2 Outcome model

The analysis of stepped wedge CRTs usually involves the characterization of a cluster-level, 

time-specific outcome trajectory. Here, we focus on the class of conditional models that 

require specification of fixed effects for the group-average structure and random effects for 

the heterogeneity. We will return to a brief discussion of marginal models in Section 5. The 

conditional models and marginal models have their own advantages and disadvantages, and 

our experience suggests there are more off-the-shelf software routines to fit conditional 

models with a complex random-effects structure. The review of Barker et al.22 also 

suggested that 61 out of 102 stepped wedge CRTs specified a linear or generalized linear 

mixed model for the primary analysis.

We define Yijk(s) as the potential outcome of individual k during period j in cluster i, had 

cluster i received, possibly to contrary to fact, an intervention sequence s.31 We borrow the 

potential outcome framework of Rubin32 to clearly indicate the dependence of elements on 

intervention sequences. We index each distinct sequence by s, which is defined as the time 

interval when the intervention will be first introduced. Formally, s ∈ S ⊆ 2, …, J , and the 

total number of sequences is the cardinality, S = card S . Define μijk(s) as the expectation of 

Yijk(s). We use a generalized linear mixed model to characterize the mean potential outcome 

as

g μijk s = F i j, s ′θ + Rik j, s ′αi (1)

where g is a link function. Similar model representation has been previously introduced by 

Sitlani et al. in the context of longitudinal observational studies.33

On the link function scale, Fi(j, s)′θ represents the group-average component and vector θ 
includes the parameter of interest (i.e. the intervention effect), while Rik(j, s)′αi represents 

the cluster-specific, time-specific, and/or individual-specific departure from the group 

average. By design, the assignment of intervention to clusters is monotone and confounded 

with time. Hence, it is common practice to separate Fi(j, s) into a baseline component F0(j) 
characterizing the background secular trend in the absence of intervention, and a time-

dependent intervention component Fi
1 j, s = I j ≥ s . Then, the group-average component can 

be expressed as
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F i j, s ′θ = F 0 j ′β + Fi
1 j, s Δ j, s (2)

where β is the parameter encoding the secular trend without intervention, and Δ(j, s) is the 

change in the mean outcome at period j due to sequence s. To summarize, the ingredients for 

a potential mean outcome model are

g μijk(s) = F 0 j ′β
secular trend

+ Fi
1 j, s Δ j, s

intervention effect 
+ Rik j, s ′αi

heterogeneity 
(3)

With such a formulation, the potential outcome Yijk(s) is then assumed to follow a 

parametric distribution with mean μijk(s) and variance as a function of μijk(s). For example, 

if the potential outcome is continuous and assumed normally distributed, we use an identity 

link for g and obtain the linear mixed model

Y ijk s = F 0 j ′β + Fi
1 j, s Δ j, s + Rik j, s ′αi + ϵijk (4)

where ϵijk’s are independent and identically distributed as N 0, σϵ2 . Assume that there are no 

hidden variations of the intervention (i.e. the intervention is well defined), and we can link 

the observed outcome to the potential outcome by equating Yijk = Yijk(s), if cluster i receives 

sequence s. This allow us to use the observed data to estimate all model parameters. As will 

be seen in Section 3, another typical assumption of models (3) and (4) is that the 

heterogeneity parameter αi is assumed independent across clusters and follows a common 

parametric distribution. This assumption implies that the potential outcomes are independent 

across clusters, and would not be affected by the intervention sequences received by other 

clusters.31 On the other hand, the heterogeneity parameter αi can induce correlation between 

potential outcomes of different individuals in the same cluster. Finally, because the majority 

of the literature on stepped wedge designs has focused on a continuous outcome, we will 

start with the identity link function and review existing models as special cases of the 

general representation (4).

3 Modeling considerations and implications

3.1 The Hussey and Hughes model

The standard analytical model for stepped wedge designs was proposed in the seminal paper 

by Hussey and Hughes.9 Assuming an identity link function g, the observed outcome Yijk is 

modeled as

Y ijk = μ + βj + δXij + αi + ϵijk (5)

where μ is the grand mean, βj is the jth period effect (with β1 = 0 for identifiability), Xij is a 

time-varying intervention indicator for cluster i during period j (Xij=1, if exposed to 

intervention; and Xij=0, otherwise), δ is the intervention effect, αi is the random cluster 

effect assumed to follow N 0, τα2 , and ϵijk N 0, σϵ2  is the residual error independent of αi.
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The Hussey and Hughes model is a special case of model (4). We observe that the secular 

trend is assumed as

F0 j ′β = μ + β2I j = 2 + ⋯ + βJI j = J

where I ⋅  is an indicator function. Because the average secular trend is assumed to be a 

distinct value during each period, this representation requires J parameters and is considered 

saturated. Further, the intervention effect, Δ(j, s) = δ, does not depend on the time interval 

during which the intervention was initiated. Finally, inherited from the models for analyzing 

parallel CRTs, the heterogeneity term, Rik(j, s)′αi = αi, captures the cluster-specific 

departure from the average but is assumed to be homogeneous across time periods, 

intervention sequences, and individuals.

The assumptions of the Hussey and Hughes model may be considered restrictive. For 

example, the intervention effect Δ(j, s) could be cumulative and explicitly depend on the 

time when the intervention was initiated, which is not captured by a constant intervention 

effect. In addition, the single cluster random effect postulates a simple exchangeable within-

cluster correlation structure. In other words, the correlation between any pair of observations 

k, m in any two periods j, l and across all sequences s is assumed to be a nonnegative 

constant

corr Y ijk s , Y ilm s = ρ = τα2/ τα2 + σϵ2 (6)

where corr[x, y] is a symmetric correlation operator. The value of ρ is referred to as the 

intraclass correlation coefficient (ICC).1 Such a simple correlation structure also does not 

account for repeated measurements from the same individual, and so applies only to the 

cross-sectional setting.

The Hussey and Hughes model has been frequently used to estimate the required sample size 

for cross-sectional stepped wedge CRTs. Assuming equal cluster-period sizes Nij = N and 

known variance components, Hussey and Hughes derived the variance of the intervention 

effect estimator.9 Let λ1 = 1 − ρ and λ2 = 1 + (JN – 1)ρ we can re-write the variance of the 

intervention effect estimator as

var δ = σtot 2 /N IJλ1λ2
U2 + IJU − JW − IV λ2 − U2 − IV λ1

(7)

where σtot2 = τα2 + σϵ2 is the total variance, U = ∑i = 1
I ∑j = 1

J Xij, W = ∑j = 1
J ∑i = 1

I Xij
2
 and 

V = ∑i = 1
I ∑j = 1

J Xij
2
 are design constants that depend on the assignment of intervention 

sequences to clusters. Using the results in Li et al.,34 we can show that λ1 and λ2 are two 

distinct eigenvalues of the simple exchangeable correlation matrix. In fact, we will see in 

due course that expression (7) is a general form that applies to several other model variants, 

with slight changes in values for the total variance and the eigenvalues. The Hussey and 

Hughes variance formula is the basis for a number of subsequent methodological 
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investigations. For instance, Woertman et al.35 used the variance to derive a design effect, or 

variance inflation factor, relative to the individually randomized trial, under a balanced 
allocation of clusters to intervention sequences. The variance formula or design effect also 

motivated the study of optimal stepped wedge designs in the cross-sectional setting; see, for 

example, Lawrie et al.36 and Thompson et al.37 Girling and Hemming38 considered optimal 

designs within a larger design space that includes hybrid designs (i.e. designs having both 

parallel and stepped wedge components), and found that the most efficient design was a 

hybrid design. Grayling et al.39 proposed a group sequential design for stepped wedge 

CRTs. Rhoda et al.40 and Hemming and Girling41 studied the relative efficiency between 

stepped wedge and parallel designs, and found that the relative efficiency depends on the 

number of periods J, cluster-period sizes N and the intraclass correlation coefficient ρ. The 

impact of variable cluster sizes, based on the Hussey and Hughes model, was studied in 

Kristunas et al. and Martin et al.42,43 Even though the reduction in efficiency due to unequal 

cluster sizes can be dramatic in a given randomization scheme,43 the average reduction in 

efficiency is generally smaller in a stepped wedge CRT compared to that in a parallel CRT. 

Harrison et al.44 further developed an optimization algorithm for power calculation that 

accounts for unequal cluster sizes.

Taljaard et al.45 and Bond46 pointed out a possible limitation of the Hussey and Hughes 

model from a variance perspective. Specifically, one can show that the variance of the 

intervention effect estimator, var δ , converges to zero if the cluster-period sizes N → ∞. 

This implies that the required number of clusters for an anticipated power converges to unity 

as N increases indefinitely, which may not be realistic. Nevertheless, both Barker et al.22 and 

Martin et al.17 found in their systematic reviews that the Hussey and Hughes model was the 

most widely used approach for designing and analyzing stepped wedge CRTs.

In what follows, we will review extensions of the Hussey and Hughes model, with an 

emphasis on alternative considerations on modeling F0(j)′β, Δ(j, s) and Rik(j, s)′αi. The 

considerations for modeling the group-average component (i.e. secular trend and 

intervention effect) are typically the same between cross-sectional, closed-cohort and open-

cohort designs; therefore, we will not consider them separately. However, the considerations 

for modeling heterogeneity can differ between designs, and will be separately discussed in 

Sections 3.4, 3.5 and 3.6.

3.2 Considerations for modeling the secular trend

Because the intervention is confounded with time, modeling the background secular trend is 

necessary to remove the bias in estimating the effect attributed solely to the intervention.9,47 

Recall that F0(j)′β models the group-average secular trend in the absence of intervention 

across J time periods, and one may generally write

F 0 j ′β = β1B1 j + ⋯ + βpBp j (8)

where F0(j) = (B1(j), …, Bp(j))′ is a p-dimensional basis function, and p is generally no 

larger than J for identifiability. Different choices of the basis function results in different 

Li et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formulations of the average secular trend. For instance, the Hussey and Hughes model 

assumes a saturated J-dimensional basis function with

F0 j = 1, I j = 2 ⋯, I j = J ′

while Hemming et al.47 explored a linear trend specification such that p = 2 and F0(j) = (1, j)
′. In principle, as long as p ≤ J is required for identifiability, one could expand on the linear 

trend specification by including higher-order polynomial terms or their orthogonal 

counterparts.48 In a recent simulation study, Nickless et al.49 examined the quadratic 

specification with F0(j) = (1, j, j2)′ and found that such models performed generally well in 

terms of bias when the approximation to the true secular trend was adequate, even if the data 

were generated from complex nonlinear time effects.

From a bias perspective, it is natural to consider a nonparametric representation of F0(j)′β, 

which would favor the saturated specification as in the Hussey and Hughes model. For 

example, when the true secular trend is nonlinear, the saturated specification could 

adequately control for the time effect, while the linear trend specification may lead to a 

biased intervention effect estimate. While the saturated time parameterization is adequate for 

trials with a limited number of discrete periods (J = 5) such as in the Washington State EPT 

Study,50 it may not be the most efficient if there are a large number of periods relative to the 

number of clusters, due to the reduced degree of freedom available for estimating the 

intervention effect. For example, Hemming et al.47 analyzed a stepped wedge CRT of 10 

midwifery teams (with each team forming a cluster) to evaluate the effectiveness of a 

training package to promote sweeping membranes in post-term women in the UK. The trial 

collected outcomes from each team during each of the 40 weeks of the study, and would 

have required 39 categorical time parameters if the Hussey and Hughes model had been 

considered. In general, including many fixed-effects parameters with a limited number of 

clusters may decrease the precision of the intervention effect, so that it becomes much less 

likely to locate a true effect signal.47,51 In this particular case, it seems attractive to look at a 

parsimonious specification of F0(j)′β, such as the linear trend or a polynomial specification 

to a fixed degree.

Grantham et al.52 provided an interesting result on time parameterization in stepped wedge 

CRTs from a variance perspective. In the planning stage, sample size and power calculation 

critically depend on the variance of the intervention effect, var δ . In the linear mixed model 

setting with equal cluster-period sizes Nij = N, Grantham et al.52 showed that var δ  was 

invariant to time parameterization as long as the sum of the intervention sequences across 

clusters

∑
i = 1

I
Xi1, …, ∑

i = 1

I
XiJ ′

lay in the column space of F0, where F0 = (F0(1), …, F0(J))′ is the design matrix for the 

secular trend. An implication from this result is that, if there is a balanced allocation of 
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clusters to each sequence ranging from (0, …, 0, 1)′ to (0, 1, …, 1)′, the saturated time 

specification in the Hussey and Hughes model and the linear trend specification yield the 

same expression for var δ . Further, var δ  does not change with polynomial specifications as 

long as the linear time term is included. This invariance property suggests that, with the 

same trial configuration, the sample size estimates become identical irrespective of the 

above two time parameterizations.52 However, it is important to realize that such variance 

comparisons assume known variance components, and are relevant only for design purposes. 

In the analysis stage, under-specification of the secular trend could result in bias relative to 

the true intervention effect, and thus variance appears to be a secondary consideration.49

For sample size and power calculation, Heo et al.53 used a linear mixed model that forwent 

any secular trend, namely assuming F0(j)′β = 0. While Zhou et al.54 argued that ignoring 

the secular trend might be reasonable in trials with a very short duration, a number of 

authors9,47 have cautioned against the general application of models without a secular trend 

due to the potential of bias. In fact, one can show analytically that, holding all other 

conditions equal, the variance of the intervention effect estimator, var δ , becomes strictly 

smaller when the secular trend is omitted.54 This implies that the required sample size could 

be underestimated when it is incorrectly assumed that there is no time effect.

3.3 Considerations for modeling the intervention effect

In the general model formulation (4), the intervention effect, Δ(j, s), depends on both period 

index j and sequence index s, which suggests the possibility for going beyond a constant 

treatment effect. Formal extensions on modeling a time-varying intervention effect appeared 

in Hussey and Hughes9 and Hughes et al.55 From Hughes et al.,55 a saturated but stationary 

intervention effect representation is given by the general time-on-treatment effect, where

Δ j, s = δj − s = δ0I j = s + δ1I j = s + 1 + ⋯ + δJ − sI j = J (9)

We call this representation stationary because Δ(j, s) is not a saturated function of (j, s) but a 

saturated function of j – s for j ≥ s. The general time-on-treatment effect allows the group-

average intervention effect to be different depending on the elapsed number of time intervals 

since the intervention was first introduced. For example, the model assumes that the 

intervention effect at time j ≥ s is δj−s, if the intervention is introduced at time s. In this case, 

the global test for H0: δ0 = δ1 = ⋯ = δJ−2 = 0 is used to assess the overall intervention effect. 

Nickless et al.49 reported that a linear mixed model with the time-on-treatment effect 

assumption had minimum bias and carried close-to-nominal coverage in estimating the 

average intervention effect under a wide range of scenarios. Further, because the constant 

intervention effect representation is nested within equation (9), a global test for H0: δ0 = δ1 

= ⋯ = δJ−2 provides a mechanism to assess the plausibility of constant intervention effect 

assumption.

The general time-on-treatment model requires J − 2 parameters for the intervention effect (as 

compared to only 1 parameter in the Hussey and Hughes model (5)), and could be 

challenging to estimate in trials with a limited number of clusters. Parsimonious versions of 

the time-on-treatment effect model have been suggested. Assuming that the periods are 
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equally spaced, Hughes et al.55 introduced the linear time-on-treatment effect representation, 

where

Δ j, s = δ0 + δ1 j − s (10)

or more simply, Δ(j, s) = δ(j − s + 1), which was assumed as a linear function of the elapsed 

number of periods since the intervention was first introduced. Such parameterizations are 

especially useful when the intervention takes more than a single time period to fully develop, 

or when there is a strengthening or weakening of intervention effect over time. Alternatively, 

representation (10) can be considered as a constant treatment effect plus a treatment-by-

linear-time interaction.

In the presence of a delayed treatment effect, one could also incorporate prior knowledge to 

such delay and model

Δ j, s = δπ0I j = s + δI j > s (11)

where π0 ∈ [0, 1] is a constant value representing how effective the intervention will be 

during the time interval when it is just introduced.55 For example, if the intervention is 

known to be 50% effective when it is first introduced and 100% effective afterwards, we can 

set π0 = 1/2. Had one known from prior knowledge that the intervention will be 100πj−s 

percent effective when it has been introduced j – s periods (with πj−s = 0 if j < s), the general 
delayed treatment effect representation can be formalized as

Δ j, s = δπ0I j = s + δπ1I j = s + 1 + ⋯ + δπJ − sI j = J (12)

Clearly, when prior knowledge suggests an arithmetic increase in effectiveness such that π1 

– π2 = π2 – π3 = … = πj−s−1 – πj−s, representation (12) is an equivalent parameterization to 

equation (10).

Finally, et al.55 provided an example of a nonlinear model for the time-on-treatment effect, 

where the intervention effect is considered to increase nonlinearly over time until it reaches 

the maximum long-term effect. In that model, the time indicator j indexes the exponential 

rate of increase, and so the model is no longer nested within equation (9). To facilitate the 

understanding of various intervention effect assumptions, we provide schematic illustrations 

of four typical examples in Figure 2.

3.4 Considerations for modeling heterogeneity in cross-sectional designs

There have been extensive discussions of alternative strategies for modeling the random-

effects structure in stepped wedge trials, especially for those involving cross-sectional 

designs. Because such discussion has been centered on extensions to the Hussey and Hughes 

model, they have almost exclusively adopted the constant intervention effect and the 

categorical time parameterization. We conjecture that assuming no treatment-by-time 

interaction in the analytical model has gained popularity since trial planning and sample size 

estimation are more convenient once a scalar target parameter is assumed. To focus on ideas 

and stay consistent with the current literature, we will review variants of random-effects 

structures by assuming a linear link, categorical secular trend (except for the random 
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coefficient model which uses a linear trend specification) as well as a time-invariant 

intervention effect. To provide a quick reference, we also list selected model variants in 

Table 1.

3.4.1 Nested exchangeable correlation model—The first notable extension to the 

Hussey and Hughes model was found in Hooper et al.56 and Girling and Hemming.38 This 

model has also been referred to as the Hooper/Girling model,57 and is written as

Y ijk = μ + βj + δXij + αi + γij + ϵijk (13)

Compared to the Hussey and Hughes model, there is an additional term, γij N 0, τγ2 , 

representing the random cluster-by-time interaction. This additional random effect is 

assumed independent of the random cluster effect αi. As a special case of the general model 

representation, the nested exchangeable correlation model specifies the heterogeneity term 

as

Rik j, s ′αi = αi + γij (14)

and therefore allows the deviation from the group average to be both cluster-specific and 

period-specific. Notice that similar ideas on random cluster-by-time interaction date back to 

the earlier work of Murray et al.58 for parallel CRTs with repeated measurements. Hemming 

et al.47 pointed out that it might be convenient to consider γij as a latent factor arising from 

the unmeasured time-varying characteristics within a cluster.

The nested exchangeable correlation model distinguishes between two different types of 

correlation parameters: the within-period ICC and the between-period ICC. Specifically

corr Y ijk s , Y ilm s =
ρw = τα2 + τγ2 / τα2 + τγ2 + σϵ2 , j = l

ρb = τα2/ τα2 + τγ2 + σϵ2 , j ≠ l

where the within-period ICC, ρw, describes the correlation between two within-cluster 

observations collected during the same period, and the between-period ICC, ρb, describes 

the correlation between two within-cluster observations collected in different periods. Since 

the variance components are positive, the between-period ICC is constrained to be no larger 

than the within-period ICC. Such a nested exchangeable correlation model has also been 

previously studied in three-level and crossover CRTs.59,60 An example matrix form of the 

nested exchangeable correlation structure is provided in Table 2.

On the other hand, Hooper et al.56 characterized the nested exchangeable correlation 

structure based on ρw and the cluster autocorrelation (CAC), which was defined as

CAC = τα2/ τα2 + τγ2 = ρb/ρw (15)

Different from the individual-level correlation ρb, the CAC has been interpreted as the 

correlation between two population means from the same cluster at different times (also see 

Feldman and Mckinlay29 for this interpretation). Here we clarify that CAC should actually 
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be interpreted as the limit of the correlation between two cluster-period means. Specifically, 

if we define the cluster-period mean as Y ij + = Nij
−1∑k = 1

Nij Y ijk, then the variance, 

covariance and correlation of cluster-period means can be calculated as

var Y ij + = σtot2 1 + Nij − 1 ρw
Nij

,    cov Y ij + , Y il + = σtot2 ρb

corr Y ij + , Y il + =
cov Y ij + , Y il +

var Y ij + var Y il +
=

Nijρb
1 + Nij − 1 ρw

CAC,  as Nij ∞

and CAC is the limit of correlation between Y ij +  and Y il +  when the cluster-period size Nij 

increases indefinitely. Girling and Hemming38 also defined the cluster mean correlation 

(CMC) as the proportion of the variance of a cluster mean Y i + + = ∑j = 1
J ∑k = 1

Nij Y ijk that 

came from random effects that were independent of time. Assuming equal cluster-period 

sizes Nij = N, the CMC is the proportion of variability of Y i + +  explained by αi, and can 

actually be rewritten as

CMC = NJρb
1 + N − 1 ρw + N J − 1 ρb

= NJ × CAC
1/ρw + (N − 1) + N(J − 1)CAC

(16)

which is a function of CAC, within-period ICC, number of periods and the cluster-period 

size. In what follows, we will use the individual-level ICCs to characterize different 

correlation structures, but the CAC and CMC are two alternative parameterizations.

Hooper et al.56 and Girling and Hemming38 provided a closed-form expression for the 

variance of the intervention effect based on model (13). Assuming equal cluster-period sizes 

Nij = N, one can use the results in Li et al.34 to show that the form of the variance formula is 

identical to equation (7), except that we replace

σtot2 = τα2 + τγ2 + σϵ2

λ1 = 1 + N − 1 ρw − Nρb

λ2 = 1 + N − 1 ρw + N J − 1 ρb

In particular, the two parameters, λ1 and λ2, have been shown to be two distinct eigenvalues 

of the nested exchangeable correlation matrix.34 Interestingly, the cluster mean correlation 
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(16) also depends only on the two eigenvalues as we can show CMC = 1 λ1/λ2. Further, 

unlike the Hussey and Hughes model, the nested exchangeable correlation model is 

considered to be more realistic for cross-sectional studies since the limit of the variance

lim
N ∞

 var δ = σtot2 I ρw − ρb ρw + J − 1 ρb
IU − W ρw + J − 1 ρb + U2 − IV ρb

> 0 (17)

is a positive quantity as long as ρw ≠ ρb.

3.4.2 Exponential decay model—Kasza et al.57 extended the nested exchangeable 

correlation model (13) by allowing the between-period correlation to decay exponentially 

over time. The model is written as

Y ijk = μ + βj + δXij + γij + ϵijk (18)

where the heterogeneity term is

Rik j, s ′αi = γij

The collection of random effects in cluster i is assumed to follow 

γi = γi1, …, γiJ ′ N 0, τγ2M , and M had a symmetric Toeplitz structure

M =

1 r12 r13 … r1J
r21 1 r23 … r2J
⋮ ⋮ ⋮ ⋱ ⋮

rJ1 rJ2 rJ3 … 1

(19)

where rjl = rlj for all l and j.

Clearly, an unrestricted Toeplitz correlation structure could include up to J(J – 1)/2 unknown 

parameters, which may not be easy to interpret from a design perspective. Therefore, Kasza 

et al.57 focused on the following autoregressive structure for trial planning. Specifically, the 

structure matrix M could include two parameters r0 and r and is written as

M = M r0, r =

1 r0r r0r2 … r0rJ − 1

r0r 1 r0r … r0rJ − 2

⋮ ⋮ ⋮ ⋱ ⋮
r0rJ − 1 r0rJ − 2 r0rJ − 3 … 1

(20)

The Hussey and Hughes model and the nested exchangeable correlation model are returned 

by M(1, 1) and M(r0, 1), while the exponential decay model of Kasza et al.57 is returned by 

M(1, r). Although the Hussey and Hughes model is a special case of the nested 

exchangeable correlation model, it is important to realize that the exponential decay and 
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nested exchangeable correlation models do not have a clear nesting relationship. The 

exponential decay model implies the following correlation structure

corr Y ijk s , Y ilm s =
ρw = τγ2/ τγ2 + σϵ2 , j = l

ρb, j − l = τγ2r j − l / τy2 + σϵ2 , j ≠ l

An example matrix form the exponential decay correlation structure is provided in Table 2.

For sample size estimation, the variance of δ  may not be obtained analytically with the 

exponential decay model, but could be computed numerically following the general variance 

formula of Kasza et al.57 Kasza et al.57 compared var δ  using the nested exchangeable 

correlation model and the exponential decay model, and concluded that var δ  was sensitive 

to the random-effects assumptions. Specifically, when the exponential decay model is the 

true model, the variance could either be overestimated or underestimated if the nested 

exchangeable correlation model is incorrectly assumed, and vice versa. Therefore, Kasza et 

al.57 recommended examination of the plausibility of alternative correlation structures based 

on preliminary data, whenever possible. From a data analytic perspective, Kasza and 

Forbes61 further considered the misspecification of the random-effects structure on the 

estimation of the treatment effect and variance components. They found that incorrectly 

omitting the decay parameter r (namely assuming the Hussey and Hughes model or the 

nested exchangeable correlation model when the true model induces an exponential 

correlation decay) might lead to an inflated type I error rate and invalid inference.

The exponential decay model (18) assumes that the correlation decay is a function of the 

distance between time periods, which is considered appropriate if all individuals in the same 

period are measured at approximately the same time. For this reason, this model is also more 

explicitly referred to as the discrete-time exponential decay model. Grantham et al.62 

extended the discrete-time exponential decay model to accommodate continuous enrollment, 

and allowed for the correlation decay to depend on the distance between the actual 

measurement times of each individual. They concluded that incorrectly assuming the Hussey 

and Hughes model in the presence of continuous-time correlation decay would likely 

underestimate the required sample size in the design stage. We are not aware of any existing 

numerical studies that examine the implications for the statistical analysis due to continuous 

correlation decay. In fact, Hooper and Copas indicated that the current literature on stepped 

wedge designs had not differentiated between continuous enrollment and discrete individual 

sampling, and therefore new statistical models and methods would be required to address the 

challenges associated with continuous enrollment.63

3.4.3 Random intervention model—Several authors have suggested extensions to the 

Hussey and Hughes model and accounted for potential variation across clusters in the 

magnitude of intervention effects.47,55,64 For example, Hemming et al.47,64 considered a 

model parameterized as

Y ijk = μ + βj + δXij + α1iXij + α0i 1 − Xij + ϵijk (21)
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where

α1i
α0i

N 0
0 ,

τ1
2 σ10

σ10 τ0
2

and σ10 is the possibly non-zero covariance between random effects α1i and α01. Within our 

general model representation (4), this model assumes the heterogeneity term to be

Rik j, s ′αi = α1iI j ≥ s + α0iI j < s

and now depends on the intervention sequence assigned for cluster i. The heterogeneity term 

can also be considered as an interaction between the random cluster effect and treatment 

assignment. An implication of this interaction term is that the intervention not only affects 

the group average through Fi
1 j, s ′Δ j, s = δXij, but also affects the marginal dispersion 

through the variance components. Hemming et al.64 showed that the following within-cluster 

correlation structure holds

corr Y ijk s , Y ilm s

ρ0 = τ0
2/ τ0

2 + σϵ2 , j < s, l < s

ρ1 = τ1
2/ τ1

2 + σϵ2 , j ≥ s, l ≥ s

ρ10 = σ10/ τ0
2 + σϵ2 τ1

2 + σϵ2 , j ≥ s, l < s,  or j < s, l ≥ s

where ρ0 is the correlation for two observations collected under the control condition, ρ1 is 

the correlation for two observations collected under the intervention condition, and ρ10 is the 

correlation for two observations collected under different conditions (one under control and 

the other under intervention condition). The random intervention model does not permit a 

closed-form derivation of the variance, var δ , and therefore sample size estimates must 

proceed by numerical calculations. To date, only simulation-based approaches have been 

examined to estimate sample size from the random intervention model.65

An alternative parameterization of (21) is to directly include a random cluster-by-treatment 

interaction in the Hussey and Hughes model.55 The model can be written as

Y ijk = μ + βj + δ + νi Xij + αi + ϵijk (22)

where

αi
νi

N 0
0 ,

τα2 σαν
σαν τν2

and σαv is a possibly non-zero covariance between αi and vi. This model assumes the 

heterogeneity term
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Rik j, s ′αi = αi + νiI j ≥ s

Hemming et al.64 discussed alternative parameterizations that allowed for treatment effect 

heterogeneity, and recommended the use of equations (21) and (22) because other 

parameterizations induced unnecessary and sometimes implausible assumptions on the 

correlation structure. Baio et al.65 pointed out that term (δ + vi) in model (22) could be 

interpreted as a cluster-varying random slope for the intervention effect.

3.4.4 Random coefficient model—Another modeling technique, proposed for 

analyzing parallel longitudinal CRTs, is the random coefficient model.58 Although such a 

model has not yet been formally investigated in the context of stepped wedge designs, there 

has been recent interest in exploring their operating characteristics (Section 4 of Kasza and 

Forbes61 mentioned such models), and we briefly discuss the model assumptions here. The 

random coefficient model usually specifies a linear secular trend but allows for cluster-

specific time slopes

Y ijk = μ + β + ξi T j + δXij + αi + ϵijk (23)

In this model, we use Tj = j to represent the linear time basis function, β as the fixed time 

slope and ξi as the random slope. Within the general model representation, the heterogeneity 

term is written as

Rik j, s ′αi = αi + jξi

The random intercept and slope are assumed to be independent of the residual error, but 

could covary following a bivariate normal distribution

αi
ξi

N 0
0 ,

τα2 σαξ

σαξ τξ
2

The following within-cluster correlation structure between a pair of outcomes results from 

the above model

corr Y ijk s , Y ilm s = ρjl =
τα2 + j + l σαξ + jlτξ

2

τα2 + 2jσαξ + j2τξ
2 + σϵ2 τα2 + 2lσαξ + I2τξ

2 + σϵ2

which is specific to both time period indices j and l. It is not immediate what correlation 

pattern is implied from the above expression, except that it is symmetric, namely, ρjl = ρlj. 

Therefore, we plot the within-period and between-period ICCs in a hypothetical trial with 

J=5 periods in Figure 3 under different assumptions of the covariance parameters. When ran 

σαξ ≥ 0 as in panels (b) and (c), our finding suggests that the within-period ICC is often an 

increasing function of time j. In addition, the between-period ICC also increases as the 

distance in time, |j − l|, increases, which is opposite to the correlation structure implied by 
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the exponential decay model. Finally, when the covariance ran σαξ < 0, the random 

coefficient model could imply negative between-period ICCs. These observations point out 

that the within-cluster correlation structure induced from the random coefficient model may 

be challenging to interpret, especially because the pattern of the between-period ICC 

contradicts that of the exponential decay model, and the latter has been considered plausible 

in several settings.57 Further simulation and methodological investigations are required to 

study the performance and interpretation of the random coefficient model versus other 

alternatives in the context of stepped wedge designs.

3.5 Considerations for modeling heterogeneity in closed-cohort designs

3.5.1 The basic model—Considerations for closed-cohort designs were discussed in 

Copas et al.,30 and a simple extension to the Hussey and Hughes model was introduced in 

Baio et al.65 Specifically, the basic model is written as

Y ijk = μ + βj + δXij + αi + ϕik + ϵijk (24)

where ϕik N 0, τϕ
2  is the random effect for the repeated measures from individual k in 

cluster i, and it is assumed to be independent of random cluster effect αi. The heterogeneity 

term

Rik j, s ′αi = αi + ϕik (25)

is modeled as a function of cluster index i and individual index k. This model assumption 

induces the following nested exchangeable within-cluster correlation structure

corr Y ijk s , Y ilm s =
ρa = τα2 + τϕ

2 / τα2 + τϕ
2 + σϵ2 , k = m

ρd = τα2/ τα2 + τϕ
2 + σϵ2 , k ≠ m

where ρa is the correlation between two repeated measurements from the same individual 

(termed the within-individual ICC following Li et al.34) and ρd is the correlation between 

two observations collected from different individuals, regardless of time periods. Although 

not directly pointed out by Baio et al.,65 the additive random structure permits a closed-form 

derivation of the variance of the intervention effect for trial planning once we assume equal 

cohort sizes, Ni = N. In particular, using the results of Li et al.,34 one can show that var δ
shares the same form with expression (7), except that we replace

σtot 2 = τα2 + τϕ
2 + σϵ2,

λ1 = 1 − ρa,

λ2 = 1 + J N − 1 ρd + J − 1 ρa
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where λ1 and λ2 are again the two eigenvalues of the within-cluster correlation matrix 

implied by model (24).

This basic model suggested in Baio et al.65 has the same limitation as the Hussey and 

Hughes model, that is, the limit of the variance, limN ∞ var δ , converges to zero as the 

cohort size approaches infinity. In other words, the required number of clusters converges to 

one for any given level of power as long as one increases the cohort sizes indefinitely, which 

may not be realistic. Nevertheless, models assuming the heterogeneity term (25) appeared in 

a few previous investigations, including all models used in the simulation study of Nickless 

et al.49

3.5.2 Block exchangeable correlation model—The nested exchangeable correlation 

model was extended to include a similar individual-level random intercept to account for the 

correlations between repeated measures. The model appeared in Hooper et al.56 and Girling 

and Hemming38 as

Y ijk = μ + βj + δXij + αi + γij + ϕik + ϵijk (26)

where ϕik N 0, τϕ
2  is the random effect for the repeated measures from individual k in 

cluster i, and is assumed to be independent of αi and γij (αi and γij are defined earlier in 

equation (13)). Using the notation of the general model, the block exchangeable correlation 

model represents the heterogeneity by

Rik j, s ′αi = αi + γij + ϕik

which depends on cluster i, period j as well as individual k. Three ICC parameters are 

implied by the block exchangeable correlation model in the cohort setting, as we can write

corr Y ijk s , Y ilm s =

ρa = τα2 + τϕ
2 / τα2 + τγ2 + τϕ

2 + σϵ2 , j ≠ l, k = m

ρw = τα2 + τγ2 / τα2 + τγ2 + τϕ
2 + σϵ2 , j = l, k ≠ m

ρb = τα2/ τα2 + τγ2 + τϕ
2 + σϵ2 , j ≠ l, k ≠ m

where ρa is the within-individual ICC for repeated measures, ρw and ρb are the within-period 

and between-period ICCs which have the same interpretations as their corresponding 

counterparts in the cross-sectional model. Constant values are assumed for three types of 

ICCs, and therefore the correlation structure does not depend on the intervention sequence s. 

An example matrix form the block exchangeable correlation structure is provided in Table 2.

In the closed-cohort setting, model (26) induces the so-called block exchangeable correlation 

structure, due to the fact that if the correlation structure is written in a matrix form, the 

exchangeability holds both within and across periods.34 The variance expression for the 

treatment effect was derived in Hooper et al.,56 Girling and Hemming,38 and Li et al.,34,66 

using different notation. In our notation, the expression of var δ  is the same as equation (7), 

except that we will redefine the total variance and eigenvalues by
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σtot2 = τα2 + τγ2 + τϕ
2 + σϵ2,

λ1 = 1 + N − 1 ρw − ρb − ρa,

λ2 = 1 + N − 1 ρw + J − 1 N − 1 ρb + J − 1 ρa

Further, as the cohort size N increases to infinity, the limit of the variance, limN ∞ var δ , 

is given in equation (17), which is a positive constant as long as ρb ≠ ρw. Therefore, the 

block exchangeable correlation model is considered more realistic than the basic model in 

the cohort setting, for the same reason argued in Taljaard et al.45 Finally, we can see that 

models (5), (13) and (24) are all nested in the block exchangeable correlation model (26).

The block exchangeable correlation model has facilitated the investigation of several design 

questions in the closed-cohort settings. For example, Li et al.34 reported the roles of the 

three ICC parameters for design efficiency. In particular, they found that larger values of the 

within-period ICC reduced the design efficiency, just as the traditional ICC did in a parallel 

design. However, larger values of both the between-period ICC and/or within-individual ICC 

increase the design efficiency. Further, optimal closed-cohort designs were reported in Li et 

al.,66 who generalized the earlier findings in Lawrie et al. based on the Hussey and Hughes 

model.36 Girling and Hemming38 derived the optimal design within a larger design space 

that includes hybrid designs, and found the hybrid design to be the most efficient within the 

larger design space. Their results apply to both cross-sectional and closed-cohort designs. 

Grayling et al.67 developed an algorithm to search for admissible (cohort) stepped wedge 

designs in the presence of multiple intervention arms.68 Girling69 studied the relative 

efficiency of unequal cluster sizes versus balanced cluster sizes in closed-cohort designs, and 

reported that the loss of precision due to unequal cluster sizes was usually no more than 

12%, which was consistent with prior investigations in cross-sectional designs.42 Defining 

CV as the coefficient of variation for cohort sizes, Girling69 showed that inflating the 

required cohort size by a factor of (1 + CV2), as one would do in a parallel CRT,70 provided 

a valid but conservative sample size estimate for cohort stepped wedge trials. Finally, 

because the nested exchangeable correlation model is a special case of the block 

exchangeable correlation model, these results derived under the latter model apply to the 

cross-sectional setting by setting τϕ
2 = 0.

3.5.3 Proportional decay model—Li71 proposed a model for the design and analysis 

of cohort stepped wedge designs that allowed the exponential decay of between-period ICC 

and within-individual ICC over time. However, Li71 focused on a population-averaged 

model that allowed the direct characterization of the within-cluster correlation structure, but 

did not consider a mixed-effects model counterpart. With a continuous outcome Yijk, we are 

able to find a conditional model that leads to the same inference as the marginal model 
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discussed in Li.71 Specifically, the conditional model that allows correlation decay in the 

closed-cohort design setting shares the same form as the exponential decay model

Y ijk = μ + βj + δXij + γij + ϵijk (27)

where the heterogeneity term is

Rik j, s ′αi = γij

However, in addition to assuming γi = γi1, …, γiJ ′ N 0, τγ2M 1, r , we further assume a 

similar autoregressive structure for residual errors of the kth person in cluster i as

ϵik = ϵi1k, …, ϵiJk ′ N 0, σϵ2M 1, r ,    ϵik ⊥ ϵim,    k ≠ m

where r is the decay rate shared by γi and ϵik, and γi⊥ϵik.

The above decay model implies a proportional decay correlation structure that dates back to 

the analysis of multilevel longitudinal data.72,73 The within-cluster correlations between 

each pair of observations is

corr Y ijk s , Y ilm s =

ρa, j − l = r j − l , j ≠ l, k = m,

ρw = τγ2/ τγ2 + σϵ2 , j = l, k ≠ m,

ρb, j − l = τγ2r j − l / τγ2 + σϵ2 , j ≠ l, k ≠ m

where ρa,|j−l| is the within-individual ICC that decays exponentially over time, ρw and ρb,|j−l| 

are the within-period and between-period ICCs just as their counterparts in the exponential 

decay model. This correlation model is termed the proportional decay model as the same 

decay rate r applies to both the within-individual ICC and the between-period ICC for 

different individuals. An example matrix form the proportional decay correlation structure is 

provided in Table 2. A unique feature of the proportional decay correlation structure is that 

the correlation matrix can be written as a Kronecker product between an exchangeable 

correlation and a first-order autoregressive matrix.73 This separability property allows one to 

derive a closed-form variance for the intervention effect to facilitate sample size and power 

calculation.

Under equal cohort sizes Ni = N, Li71 showed that

var δ = σtot2 /N I 1 − r2 1 + N − 1 ρw
IU − W 1 + r2 − 2 IP − Q r

(28)

where U = ∑i = 1
I ∑j = 1

J Xij and W = ∑j = 1
J ∑i = 1

I Xij
2
 are defined earlier as in the Hussey 

and Hughes model,9. and P = ∑i = 1
I ∑j = 1

J − 1XijXi, j + 1, 
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Q = ∑j = 1
J − 1 ∑i = 1

I Xij ∑i = 1
I Xi, j + 1  are cross-product terms resulting from the first-order 

autoregressive decay. As the cohort size increases to infinity

lim
N ∞

 var δ =
σtot2 I 1 − r2 ρw

IU − W 1 + r2 − 2 IP − Q r
> 0

which is a positive constant as long as |r| < 1. This variance expression suggests that the 

proportional decay model is not subject to the same criticism as the basic model (24). The 

variance expression also permits us to study the role of decay, r, on design efficiency. Li71 

further presented a closed-form expression of the design effect based on equation (27), and 

demonstrated the parabolic relationship between var δ  and r, when all other parameters 

were held constant.

3.5.4 Random intervention model—The random intervention model in the closed-

cohort design has been considered in Kasza et al.,27 although in the context of incomplete 

designs where outcomes may not be measured in certain cluster-periods (e.g. trials with 

implementation periods where outcome data are not collected). The model can be 

represented by

Y ijk = μ + βj + δ + νi Xij + γij + ϕik + ϵijk (29)

where ϕik N 0, τϕ
2  is the random effect for the repeated measures from individual k in 

cluster i, ϵijk N 0, σϵ2  is the residual error, vi is the cluster-specific random intervention 

effect, and γij is the cluster-period-specific random deviation from the group average, as in 

the exponential decay model. Clearly, the heterogeneity term is modeled as

Rik j, s ′αi = γij + ϕik + νiI j ≥ s

Kasza et al.27 assumed the following correlation pattern for the remaining set of random 

effects

γi1, γi2, …, γiJ, νi ′ N
0J × 1
01 × 1

,
τγ2M σγν1

σγν1′ τν2

and the vector (γi1, γi2, …, γiJ, vi)′ was assumed to be independent of ϕik and ϵijk. In the 

above covariance structure, τγ2, τν2 are variance components for γij and vi, σγv is the possibly 

non-zero covariance between them, 1 is the J × 1 matrix of ones, and M is the symmetric 

Toeplitz matrix defined in equation (19). The complicated random-effects structure in fact 

distinguishes between eight types of ICC parameters. Specifically, when two observations 

are measured under the control condition (namely, j < s, l < s), the within-period, between-

period and within-individual ICCs are
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corr Y ijk s , Y ilm s =

ρw =
τγ2

τγ2 + τϕ
2 + σϵ2

, j = l, k ≠ m

ρb =
τγ2rjl

τγ2 + τϕ
2 + σϵ2

, j ≠ l, k ≠ m

ρa =
τγ2rjl + τϕ

2

τγ2 + τϕ
2 + σϵ2

, j ≠ l, k = m

When two observations are measured under the intervention condition (namely, j ≥ s, l ≥ s), 

the within-period, between-period, and within-individual ICCs become

corr Y ijk s , Y ilm s =

ρw =
τγ2 + τν2 + 2σγν

τγ2 + τϕ
2 + τν2 + 2σγν + σϵ2

, j = l, k ≠ m

ρb =
τγ2rjl + τν2 + 2σγν

τγ2 + τϕ
2 + τν2 + 2σγν + σϵ2

, j ≠ l, k ≠ m

ρa =
τγ2rjl + τν2 + 2σγν + τϕ

2

τγ2 + τϕ
2 + τν2 + 2σγν + σϵ2

j ≠ l, k = m

Finally, when one observation is measured under the control condition while the other one 

under the intervention condition (j ≥ s, l < s or j < s, l ≥ s), the correlations are

corr Y ijk s , Y ilm s =

ρb =
τγ2rjl + σγν + τϕ

2

τγ2 + τϕ
2 + τν2 + 2σγν + σϵ2 τγ2 + τϕ

2 + σϵ2
, k = m

ρa =
τγ2rjl + σγν

τγ2 + τϕ
2 + τν2 + 2σγν + σϵ2 τγ2 + τϕ

2 + σϵ2
, k ≠ m

As we explained when we reviewed the exponential decay model in Section 3.4, 

parsimonious parameterization of M may lead to simpler and more interpretable models. For 

example, when M = M 1, 1 , model (29) is a direct extension of model (22) by the addition of 

the random intercept ϕik. When M = M r0, 1 , model (29) extends the block exchangeable 

correlation model (26) with the addition of a random intervention component. When 

M = M 1, r , model (29) extends the exponential decay model (18) by the addition of random 

intercept ϕik and random intervention effect vi. Notice that in the last case, there is no 

guarantee that the between-period ICC for any pair of observations decays at an exponential 

rate, and therefore model (29) does not nest the proportional decay model (27), even though 

both models are developed for closed-cohort designs.

3.6 Considerations for modeling heterogeneity in open-cohort designs

The model development in the cross-sectional and closed-cohort designs have important 

implications for the open-cohort design, as an open-cohort design can be considered a mix 

of the former two. Kasza et al.74 recently discussed several open-cohort sampling schemes 
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for stepped wedge designs and proposed a corresponding sample size calculation procedure 

based on a linear mixed model. We will review the related model variants and their 

connections to the results in Sections 3.4 and 3.5.

3.6.1 Blended exchangeable correlation model—In principle, the block 

exchangeable model developed for the closed-cohort design can still be used to represent the 

outcome trajectory in the open-cohort design, except for a few notational caveats. 

Specifically, the outcome model can still be written as

Y ijk = μ + βj + δXij + αi + γij + ϕik + ϵijk (30)

where all the parameters are defined in Section 3.5.2. Importantly, under the attrition of 

members from and addition of new members to the original cohort, we shall use a distinct 

subscript k to represent a distinct individual in each cluster. The implied within-cluster 

correlation matrix is neither nested exchangeable nor block exchangeable, but becomes a 

blend of these two. We call such a matrix a blended exchangeable correlation structure and 

an example formulation is provided in Table 2.

Assuming that the cluster-period sizes were identical (Nij = N) and there existed the same 

number of overlapping individuals between any two periods (ni(j, l) = n), Kasza et al.74 

derived a closed-form variance of the intervention effect, which could be rewritten in our 

notation as

var δ

= σtot2 /N IJ λ1 + χ ρa − ρb λ2 − χ J − 1 ρa − ρb
U2 + IJU − JW − IV λ2 − χ J − 1 ρa − ρb − U2 − IV λ1 + χ ρa − ρb

(31)

where U, V, W were design constants defined in Section 3.1

σtot2 = τα2 + τγ2 + τϕ
2 + σϵ2,

λ1 = 1 + N − 1 ρw − ρb − ρa,

λ2 = 1 + N − 1 ρw + J − 1 N − 1 ρb + J − 1 ρa

and χ = 1 – n/N ∈ [0, 1] was the common rate of attrition or churn rate. This expression 

permits a convenient sample size formula for open-cohort designs, and unifies the variance 

expressions derived under models (5), (13), (24) and (26). For example, as the churn rate 

approaches one, the open-cohort design reduces to the cross-sectional design and the 

variance (31) reduces to the variance derived under the nested exchangeable model (13). On 

the other hand, as the churn rate approaches zero, the open-cohort design reduces to the 

closed-cohort design and variance (31) reduces to the one derived under the block 

exchangeable correlation model. This unified perspective represents a continuum between 
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cross-sectional and closed-cohort designs, and may help with the efficiency comparisons 

between these two designs. In fact, when the within-individual ICC ρa is larger than the 

between-period ICC ρb, variance (31) is a monotonically increasing function of χ over [0, 1] 

Within a random-effects model (30), ρa is constrained to be no smaller than ρb, and therefore 

the closed-cohort design is usually more efficient than the cross-sectional design, provided 

other parameters are all held equal. On the contrary, if the within-individual ICC ρa is 

smaller than the between-period ICC ρb, variance (31) becomes a monotonically decreasing 

function of χ over [0, 1]. In this case, the closed-cohort design becomes less efficient than 

the cross-sectional design, providing the remaining parameters are held equal. However, 

even though the latter case is mathematically valid (because the resulting correlation matrix 

can still be positive definite, see the eigenvalue conditions of Li et al.34), it may not be 

plausible in practice because serial correlation defined for the same individual is usually 

believed to be stronger than correlation between individuals.

3.6.2 Blended correlation decay model—Kasza et al.74 introduced a linear mixed 

model that allowed correlation decay in open-cohort designs. The model has the same 

conditional mean structure as the exponential decay and the proportional decay model and is 

written as

Y ijk = μ + βj + δXij + γij + ϵijk (32)

where γi = γi1, …, γiJ ′ N 0, τγ2M 1, r  and r is the decay rate at the cluster-period level. 

Here, we use a distinct subscript k to represent a distinct individual in each cluster to allow 

for open-cohort sampling. If individual k in cluster i contributes outcome observations in a 

total of Jk ≤ J periods, the model assumes an autoregressive structure for errors of that 

individual as

ϵik = ϵi1k, …, ϵiJkk ′ N 0, σϵ2M 1, η ,    ϵik ⊥ ϵim,    k ≠ m

where η is the decay rate at the individual level, and the two random effects are independent, 

γi⊥ϵik. Notice that this blended correlation decay model is more general than the 

proportional decay model because? the individual-level decay rate η is allowed to differ 

from the cluster-period-level decay rate r.

The blended correlation decay model implies the following correlation structure

corr Y ijk s , Y ilm s =

ρa, j − l = τγ2r j − l + σϵ2η j − l / τγ2 + σϵ2 , j ≠ l, k = m,

ρw = τγ2/ τγ2 + σϵ2 , j = l, k ≠ m,

ρb, j − l = τγ2r j − l / τγ2 + σϵ2 , j ≠ l, k ≠ m,

where ρa,|j−l| is the within-individual ICC that decays over time depending on both η and r. 
Furthermore, ρw and ρb,|j−l| are the within-period and between-period ICCs just as their 

counterparts in the exponential decay model and the proportional decay model. The blended 

correlation decay model unifies the exponential decay and proportional decay models. For 
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instance, when the churn rate approaches one, the open-cohort design reduces to the cross-

sectional design, and the blended correlation decay structure reduces to the exponential 

decay structure. On the other hand, as the churn rate approaches zero, the open-cohort 

design reduces to the closed-cohort design, and the blended correlation decay structure 

becomes the proportional decay structure when the two decay rates are identical, namely η = 

r. This indicates that the blended correlation decay model represents a continuum between 

cross-sectional and closed-cohort designs, and will be helpful for comparing efficiency 

between cross-sectional and closed-cohort designs under a range of correlation decay 

parameters. We provide an illustrative matrix form of the blended correlation decay structure 

in Table 2, where we assume an equal decay rate at each level (η = r). This illustrative 

formulation in Table 2 also shows that the blended correlation decay structure is a “blend” of 

the exponential decay and proportional decay structures. Unlike the blended exchangeable 

correlation model, the blended correlation decay structure does not admit a closed-form 

variance expression of the intervention effect, even when the churn rate is assumed to be a 

constant. Kasza et al.74 provided a general matrix-based variance formula for numerically 

computing sample size and power, with the two decay parameters as key input. However, 

empirical estimates of these decay rates are lacking, and additional research effort is 

necessary to examine the operating characteristics of model (32) for estimating these decay 

parameters in stepped wedge designs with realistic sample sizes.

3.7 Considerations for modeling binary outcomes

The literature on stepped wedge designs has largely focused on the application of linear 

mixed models and a continuous outcome, and includes few focused discussions of binary 

outcomes. For sample size estimation, Hussey and Hughes9 used variance expression (5) 

derived from the linear mixed model, but approximated σϵ2 ≈ μ 1 − μ . In this particular case, 

the link function g is still identity and thus the intervention effect could be interpreted as the 

risk difference. Although this variance approximation may be adequate when there is 

minimal secular trend and a small intervention effect,25,75 it may either underestimate or 

overestimate the true power in other parameter regions.76 To accurately estimate sample 

size, Zhou et al.76 proposed the following variant of the Hussey and Hughes model

μij = μ + βj + δXij + αi (33)

where μij is the proportion of responses in cluster i during period j, and the heterogeneity 

term Rik(j, s)′αi = αi now follows a truncated normal distribution with density

f αi ∣ τα2 ∝ I −l0 < αi < 1 − l1  exp −
αi2

2τα2

where the truncation points l0 = min{μ + βj, μ + βj + δ; j = 1, …, j} and l1 = max{μ + βj, μ + 

βj + δ; j = 1, …, J} are defined to ensure that the probability μij is strictly bounded between 

zero and one. Based on this model, Zhou et al.76 proposed a maximum likelihood approach 

to compute the sample size. It was shown that their approach provided more accurate 
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characterization of the required sample size than the binomial approximation in Hussey and 

Hughes.9

Since μij is a proportion, other common choices of the link function include the log link and 

the logit link, with the respective interpretations of the intervention effect as a risk ratio and 

as an odds ratio. Although sample size methods based on these nonlinear link functions have 

not yet been extensively discussed (except for the simulation-based approach of Baio et al.
65), there have been some investigations of the operating characteristics of these models as 

tools for data analysis. For example, in the cross-sectional setting, Thompson et al.77 

compared the performance between three logistic linear mixed models in a simulation study 

with varying parameter constellations. The three models they examined could be considered 

as the logistic version of the Hussey and Hughes model (5), nested exchangeable correlation 

model (13) and the random intervention model (22). They found that the following logistic 

counterpart of the nested exchangeable correlation model

logit μij = μ + βj + δXij + αi + γij,    αi N 0, τα2 ,    γij N 0, τγ2

had more robust performance in terms of bias and type I error rates across a number of data 

generating processes. Finally, the extension of the exponential decay model to binary 

outcomes and its operating characteristics have not yet been investigated.

4 Estimation and inference for the intervention effect

Estimation and inference for the parameters in mixed-effects models have been extensively 

discussed in a number of textbooks.48,78–80 The basic principles, such as maximum 

likelihood, apply to all model formulations we have reviewed in Section 3. Although not our 

focus, the Bayesian approach is an alternative option, and could potentially be attractive 

especially in the presence of complex random-effects structures.48 Using the general model 

(4) and assuming that the heterogeneity parameter αi follows a parametric distribution f(αi; 

Θ), one could define the likelihood of the observed outcomes by generic notation as

L θ, Θ = ∏
i = 1

I ∫ ∏
j = 1

J
∏

k = 1

Nij
f Y ijk ∣ θ, αi  f αi; Θ dαi (34)

and numerically search for the values of fixed-effects parameter θ and variance components 

Θ that maximize the likelihood. With continuous outcomes and the normality assumption for 

f(Yijk|θ, αi), it is often possible to obtain closed-form expressions for iterative updates 

between θ and Θ.80 More often than not, equation (34) is modified to obtain the restricted 

maximum likelihood (REML), because the estimates of the variance component parameters 

Θ will be unbiased. With binary outcomes and binomial assumptions for f(Yijk |θ, Θ), 

approximation to (34) can be carried out via the Laplace method,78 penalized quasi-

likelihood81 or adaptive Gauss-Hermite Quadrature,82 among others. The variance of the 

MLE can be obtained from computing the approximate information matrix for (θ, Θ). 

Testing the null hypothesis of no intervention effect (i.e. certain components of θ equal zero) 

can proceed by the Wald, likelihood ratio or score statistic based on the large-sample 
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normality theory. These procedures are available in standard software packages, such as 

SAS and R.

Cluster randomized trials usually involve a limited number of clusters, and therefore the 

desired frequentist properties may not be guaranteed for the hypothesis testing procedures 

derived from large-sample theory. Recent systematic reviews confirmed that most stepped 

wedge CRTs recruited fewer than 30 clusters,17,18 and so there could be an emerging interest 

in developing small-sample adaptation of existing testing procedures for better performance. 

In the recent CONSORT extension to stepped wedge CRTs, Hemming et al.23 encouraged 

the incorporation of small-sample corrections in the analysis of stepped wedge designs, 

whenever appropriate (item 12a). Although there has not yet been much investigation of 

small-sample corrections for mixed-effects model-based tests applied to stepped wedge 

trials, there were previous reports of small-sample corrections in parallel CRTs that may 

inspire ideas. For example, Li and Redden83 considered the Wald t-statistic (or the 

equivalent F-statistic) from the logistic linear mixed model in the analysis of parallel CRTs 

with 10 to 30 clusters. They compared five degree-of-freedom approximations in terms of 

type I error rates and power, across scenarios with varying ICCs and cluster sizes. They 

concluded that the between-within degree of freedom84 carried the nominal type I error rates 

and had higher power than its competitors. The between-within approach divides the 

residual degree of freedom into the between-cluster and within-cluster portions. If a fixed-

effect covariate changes within any cluster, the within-cluster degree of freedom is assigned 

to that effect; otherwise, the between-cluster degree of freedom is assigned to the effect. 

Such findings may or may not be directly generalizable to stepped wedge trials, because 

unlike the parallel CRT, the intervention status actually changes over time within a cluster. In 

fact, we can compute the between-within degree of freedom for testing the intervention 

effect in the Hussey and Hughes model to be (I – 1)J, which tends to be larger than its 

counterpart in parallel CRTs. It remains to be explored which degree of freedom 

approximation would be adequate in small stepped wedge designs.

The permutation test is another attractive tool for the inference in CRTs due to its robustness 

in controlling test size.85 Under the strong null hypothesis of no intervention effect, Gail et 

al.86 demonstrated that the type I error rate of the permutation test will not exceed the 

nominal level, even in CRTs with a limited number of clusters. Murray et al.87 and Li et al.
88,89 also showed that the permutation test could achieve a similar level of power as the 

model-based F-test, but had better control of test sizes. Several authors have considered 

permutation-based inference for the analysis of stepped wedge trials; the general idea is to 

obtain the reference distribution of a given test statistic by permuting the intervention 

sequences across clusters. For example, Wang and DeGruttola90 and Ji et al.31 considered 

the estimated treatment effect and the corresponding z-score (Wald statistic) as the test 

statistic for testing H0: δ = 0 based on the Hussey and Hughes model (5) and the nested 

exchangeable correlation model (13); they obtained the exact distribution of the statistic 

from randomly shuffling the intervention sequences within the randomization space 

characterized by the design configuration. They found that the specification of the random-

effects structure (or more generally the heterogeneity term Rik(j, s)′αi) only affected the 

power of the test, but not the validity, and therefore demonstrated its superiority over the 

Li et al. Page 27

Stat Methods Med Res. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model-based test. Ren et al.91 considered permuting the estimated treatment effect and the 

corresponding z-score obtained from a random intervention model (22), but reported an 

inflated type I error rate even when the random intervention model is correctly specified. 

This phenomenon arises likely because the intervention sequence affects both the mean and 

covariance structures, and the exchangeability assumption fails to hold under the null 

hypothesis. Others have considered more nonparametric test statistics. For example, 

Thompson et al.92 proposed a test statistic based on combining the optimally weighted 

within-period comparisons (i.e. the vertical comparisons defined in Davey et al.21 and 

Matthews and Forbes93), and developed a permutation test with fewer modeling 

assumptions. Their test can be applied to both continuous and binary outcomes, and has 

demonstrated adequate control of type I error rate in simulations. Kennedy-Shaffer et al.94 

proposed an ensemble test statistic that combined the within-period and between-period 

contrasts via the Synthetic Control method (their SC method) and difference-in-differences 

(their crossover method). The corresponding permutation test based on the ensemble statistic 

demonstrated higher power than the permutation test in Thompson et al.92 and the 

permutation test based on mixed-effects models31,90 when those models were misspecified. 

Hughes et al.95 provided a design-based test statistic and characterized the closed-form 

variances of the statistic under permutation; they showed that the resulting test carried the 

nominal size even under misspecification of both the mean and covariance structures. 

Furthermore, since the closed-form permutation variance is derived analytically, the 

permutation test in Hughes et al.95 dispenses with intensive enumerations and is considered 

computationally more efficient than previous proposals. To date, there has not been a 

comprehensive simulation study that evaluates the comparative performance of all of the 

above permutation tests under different data generating processes, and more investigations 

are needed to offer practical recommendations on optimal ways to conduct randomization-

based inference for stepped wedge designs.

5 Discussion

We have provided an overview of mixed-effects models that have been applied to the design 

and analysis of stepped wedge CRTs. We offered a unified perspective from a general model 

formulation and illustrated that existing models in the literature were its special cases with 

different assumptions about the secular trend, intervention effect and sources of 

heterogeneity. Our overview suggests that the current literature on stepped wedge designs 

has placed more emphasis on modeling the between-cluster and between-time heterogeneity, 

compared to modeling the secular trend or the intervention effect. We conjecture that this is 

because a number of discussions have focused on sample size calculation, which becomes 

convenient based on a scalar intervention effect but still remains sensitive to the assumptions 

for the random-effects structure. However, given the possibility of a time-varying 

intervention effect, it will be important for future work to address implications of the 

alternative methods reviewed in Section 3.3 on sample size planning and data analysis. In 

addition, there is currently limited guidance on how to select the most appropriate random-

effects structure in the context of stepped wedge designs. Murray et al.58 explored the use of 

information criteria to select appropriate mixed-effects models for the analysis of parallel 

longitudinal CRTs, but recommended against them due to their unreliable performance. 
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More research on identifying the appropriate random-effects structure in both the design and 

analysis stages would be of substantial interest.

We found that there is more development for continuous outcomes than for binary, count or 

time-to-event outcomes, likely due to the availability of closed-form expressions for variance 

and ICCs. Although these closed-form expressions have helped us generate knowledge and 

insights on the role of various design parameters and facilitated the application of these new 

designs, the generalizability of such knowledge to binary or count outcomes requires further 

exploration. Zhou et al.76 pointed out that binary outcomes were fairly common in stepped 

wedge trials, especially in health care studies with an implementation endpoint. However, 

accurate sample size methods for binary outcomes have only been developed based on the 

risk difference scale and a single random cluster intercept, as considered in Zhou et al.76 It 

would be important to extend such approaches for risk ratio and odds ratio measures, and to 

accommodate more complex assumptions on the heterogeneity, such as a model with a 

random cluster-by-time interaction or correlation decay.56,57 Regarding the analysis of 

stepped wedge trials, Thompson et al.77 conducted simulation studies with binary outcomes 

and suggested that the logistic extension of the nested exchangeable correlation model 

performed well in terms of bias and coverage across several data generating processes. To 

date, there has been little work on count or rate outcomes. We are only aware of a simulation 

study by Scott et al.,96 who used a Poisson log-linear mixed-effects model to simulate 

outcomes and examine the operating characteristics of population-averaged models 

estimated by generalized estimating equations (GEE).97

Methods for designing and analyzing stepped wedge trials with time-to-event outcomes also 

need further attention. In the THRio study,98 Moulton et al.99 discussed a log-rank type 

analysis to compare the incidence between intervention and control clusters within each 

period, analogous to the vertical comparison methods21,93 in non-survival settings. They 

used a simulation-based approach to estimate the design effect relative to parallel cluster 

randomization which was then used to compute sample size and power. Zhan et al.100 

developed a discrete-time survival model for analyzing stepped wedge CRTs with terminal 

endpoints and interval censoring (as the exact event time could be unknown within each 

discrete period). The key insight is to reformulate the likelihood using a generalized linear 

mixed model for the binary event history indicators. In this regard, considerations in Section 

3 may still apply, but additional research is necessary. Importantly, closed-form sample size 

estimation procedures and optimal design configurations based on such discrete-time 

survival models remain unavailable and are open questions for future studies.101

As an alternative to mixed-effects models, population-averaged models have been proposed 

to design and analyze parallel CRTs.6,102 While the conditional model we discussed requires 

the specification of a conditional mean structure with an association structure induced by 

random-effects, the population-averaged model counterpart requires the specification of a 

marginal mean and a separate correlation model for the association structure.103,104 The 

conditional intervention effect from the mixed-effects model and the marginal intervention 

effect from the population-averaged model are identical with an identity link but could be 

different with a nonlinear link function.104,105 Further, the interpretation of the marginal 

intervention effect remains the same regardless of the correlation model, while the 
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interpretation of the conditional intervention effect may change according to specifications 

of random effects.106 Though the population-averaged model has several attractive features, 

it has not been as extensively studied in stepped wedge CRTs, with a few exceptions.
34,71,96,107 Specifically, Li et al.34 and Li71 used GEE to estimate the population-averaged 

intervention effect, coupled with the block exchangeable correlation structure (the 

correlation structure implied by model (13) and (26)), and the proportional decay structure 

(the correlation structure implied by model (27)). The GEE has been known to be prone to 

bias with a small number of clusters, both in terms of estimation of correlation parameters 

and variances,108,109 therefore finite-sample corrections have been carefully studied and 

recommended.34,71,96,107

There are other aspects of the applications of models to stepped wedge designs that we have 

not reviewed. Above all, we have restricted the current article to models without cluster-level 

or individual-level covariates, although they could in principle be included in the analytical 

stage, especially when stratification or covariate-constrained randomization is carried out to 

minimize chance imbalance.43,88,89,110 We have also only reviewed models applicable to 

stepped wedge trials with a single level of clustering, while Hemming et al.25 and Teerenstra 

et al.111 proposed extensions of the Hussey and Hughes model that accounted for multiple 

levels of clustering (e.g. patients nested in clinics and clinics nested in counties). Third, we 

have presented models assuming complete outcome information is available for all 

individuals and assumed away individual non-response. In practice, especially in closed-

cohort designs, patient drop-out may occur given that the trial could last for a few years. 

When the drop-out mechanism can be considered as missing at random,112 one may use 

inverse probability weighting or multilevel multiple imputation to reduce the bias due to 

missing outcomes. Turner et al.113 recently studied the relative merits of these two 

mainstream missing data approaches for parallel CRTs, and it would be of interest to 

consider their extensions to stepped wedge CRTs.

Finally, in stepped wedge trials, reporting the values of various ICCs or variance 

components is also critically important to help inform the design of future studies with 

similar endpoints. Our experiences suggest that, although the correlations or variance 

components are essential input in virtually any sample size procedure derived from mixed-

effects models in Section 3, only a very limited number of stepped wedge trials report such 

values. Accurate reporting of correlation estimates or variance components has been 

recommended in the CONSORT extension to stepped wedge designs,23 and an example 

where the within-period and between-period correlations are reported can be found in 

Martin et al.114 and Hemming et al.47 We need more studies to report estimates of ICCs and 

variance components, in particular for the correlation decay and random intervention 

models, to facilitate the design of trials based on these more recent extensions of the Hussey 

and Hughes model.
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Figure 1. 
A schematic illustration of a stepped wedge CRT with I = 8 clusters and J = 5 periods. Each 

white cell indicates a cluster-period under the control condition and each gray cell indicates 

a cluster-period under the intervention condition. There are in total S = 4 distinct 

intervention sequences.
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Figure 2. 
Schematic illustrations of four intervention effect representations in a stepped wedge design 

with I = 4 clusters and J = 5 periods. Each cell with a zero entry indicates a control cluster-

period and each cell with a non-zero entry indicates an intervention cluster-period.
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Figure 3. 
Three examples of within-cluster correlation patterns implied by the random coefficient 

model. A trial with J = 5 is assumed throughout; the diagonal cells present the within-period 

ICC values, while the off-diagonal cells present the between-period ICC values. White color 

indicates a smaller ICC value while red color indicates a larger ICC value. The variance 

components parameters are assumed as σϵ = 6, τα = 1, τξ = 0.5 and the covariance 

parameter (a) σαξ = −0.5, (b) σαξ = 0, (c) σαξ = 0.5. (a) Negative covariance σαξ = −0.5; (b) 

Zero covariance σαξ = 0; (c) Positive covariance σαξ = 0.5.
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Table 1.

Example extensions to the Hussey and Hughes model for stepped wedge cluster randomized trials in cross-

sectional and closed-cohort designs; all models assume a continuous outcome and an identity link function.

Design Extension Feature Example references

Cross-
sectional

Nested Exchangeable* Distinguish between within-period and between-period ICCs Hooper et al.;56 Girling and 
Hemming38

Exponential Decay* Allow the between-period ICC to decay at an exponential rate over 
time

Kasza et al.57 Kasza and 
Forbes61

Random Intervention Include random cluster-specific intervention effects, and ICC 
depends on intervention status

Hughes et al.55 Hemming et al.47

Random Coefficient Include random cluster-specific time slopes; ICC tends to be an 
increasing function of distance in time

Murray et al.58

Closed-
cohort

Basic Include cluster-level and subject-level random effects to separate 
between-individual ICC and within-individual ICC

Baio et al.65

Block Exchangeable* Include three random effects to distinguish between within-period 
ICC, between-period ICC, and within-individual ICC

Hooper et al.56 Girling and 
Hemming38

Proportional Decay* Allow the between-period ICC and within-individual ICC to decay 
over time at the same exponential rate

Li60

Random Intervention Include random cluster-specific intervention effects, and ICC 
depends on intervention status

Kasza et al.27

Note: The choice of terminology with the ‘*’ symbol is based on the following. The nested exchangeable correlation model was defined in 

Teerenstra et al.59 and Li et al.60 in the context of three-level CRTs and crossover CRTs. Li et al.34 introduced the block exchangeable correlation 
model for closed-cohort design and pointed out the nested exchangeable correlation model is a special case. The exponential decay correlation 

model is proposed in Kasza et al. and Kasza and Forbes.57,61 The proportional decay correlation model is introduced in Li60 and dates back to the 

earlier work of Liu et al.72 in the context of longitudinal parallel CRTs.
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Table 2.

Illustration of the non-decaying (exchangeable) and decaying within-cluster correlation structure implied by 

the random-effects model in cross-sectional, closed-cohort, and open-cohort designs.

Nested exchangeable structure Exponential decay structure

Cross-sectional (Section 3.4)

Block exchangeable structure Proportional decay structure

Closed-cohort (Section 3.5)

Blended exchangeable structure Blended correlation decay structure

Open-cohort (Section 3.6)

Note: In each correlation matrix, each block represents the correlation structure in a given cluster-period or between two cluster-periods, and the 
total number of periods is T = 3. The cluster-period sizes are assumed to be equal (Nij = 2). In the open-cohort design, we assume only one 

individual is followed through all periods, and a new individual will be supplemented in each period. Each correlation matrix is defined for the 
vector of observations collected across all periods in the same cluster.
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