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Abstract

Background—Increased arterial stiffness and vascular endothelial dysfunction are important 

nontraditional cardiovascular risk factors evident in patients with CKD. Vascular oxidative stress 

and inflammation may contribute to vascular dysfunction in CKD, but direct evidence is lacking.

Methods—We assessed carotid-femoral pulse-wave velocity (arterial stiffness) and brachial 

artery flow-mediated dilation (vascular endothelial function) in participants with moderate-to-

severe CKD (eGFR 15–59 ml/min per 1.73 m2) and in healthy controls. Change in brachial artery 

flow-mediated dilation after an acute infusion of ascorbic acid to inhibit vascular oxidative stress 

(versus saline) was also measured. Protein expression of vascular endothelial cells collected from a 

peripheral vein and ELISAs to assess circulating markers were also performed.

Results—A total of 64 participants with CKD (mean±SD, 65±8 years) and 17 healthy controls 

(60±5 years) were included. Carotid-femoral pulse-wave velocity was greater in participants with 

CKD compared with healthy controls (1071±336 versus 732±128 cm/s; P<0.001). Brachial artery 

flow-mediated dilation was lower in participants with CKD compared with healthy controls (3.5%

±2.8% versus 5.5%±3.2%; P=0.02). Circulating inflammation markers (C-reactive protein and 

IL-6) were elevated in the CKD group (P≤0.02). Endothelial cell protein expression of NADPH 

(intensity versus human umbilical vein endothelial cell control, 1.48±0.28 versus 1.25±0.31; 

P=0.05) was greater in participants with CKD. However, ascorbic acid significantly improved 

brachial artery flow-mediated dilation in control participants (saline, 5.5±3.2; ascorbic acid, 

6.8±3.6); as compared with participants with CKD (saline, 3.5±2.8; ascorbic acid, 3.6±3.2) 
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(group×condition interaction P=0.04), suggesting vascular oxidative stress could not be overcome 

with ascorbic acid in participants with CKD.

Conclusions—Vascular oxidative stress is present in CKD, which cannot be overcome with 

acute infusion of ascorbic acid.

Introduction

Patients with CKD are more likely to die of cardiovascular disease (CVD) than to progress 

to ESKD (1), and the risk of cardiovascular mortality or a cardiovascular event is 

significantly increased compared with the general population (2). However, although 

patients with CKD exhibit a high presence of traditional CVD risk factors, they only 

partially explain the increased incidence of CVD in this population (3,4).

Patients with CKD exhibit vascular endothelial dysfunction (impaired endothelium-

dependent dilation, commonly assessed as brachial artery flow-mediated dilation [FMDBA]) 

(5–7) and increased arterial stiffness (commonly assessed as carotid-femoral pulse-wave 

velocity [PWV]) (8–10), as well as chronic oxidative stress and inflammation (11,12). 

Oxidative stress and inflammation are important nontraditional risk factors for CVD (4) and 

may contribute to the development of vascular dysfunction; however, the mechanisms 

contributing to vascular dysfunction in CKD are incompletely understood.

Circulating markers of oxidative stress are associated with endothelial dysfunction in 

patients with CKD (13), and evidence suggests that oxidative stress may contribute to 

cutaneous microvascular dysfunction in patients with stage 3–4 CKD (14). However, the role 

of vascular oxidative stress in large conduit arteries is currently unclear (5,15,16). It is 

plausible but currently unknown if local vascular endothelial oxidative stress and 

inflammation are increased in CKD.

We sought to compare vascular function and measures of vascular oxidative stress and 

inflammation in a group of participants with moderate-to-severe CKD and a group of age-

matched healthy controls. We used novel methods to assess FMDBA during normal versus 

inhibited oxidative stress (via an acute supraphysiologic infusion of ascorbic acid) and by 

measuring expression of proteins involved in oxidative stress and inflammation in 

endothelial cells collected from participants. We hypothesized that participants with CKD 

would exhibit increased vascular oxidative stress and inflammation in conjunction with 

vascular dysfunction.

Materials and Methods

Study Design and Participants

This was a cross-sectional study assessing mechanisms of vascular dysfunction in adults 

with moderate-to-severe CKD as compared with age-matched healthy controls. Patients with 

CKD had participated in one of two randomized, placebo-controlled trials: administration of 

an IL-1 inhibitor (rilonacept; n=10; trial 1) (17) or lanthanum carbonate (NCT02209636; 

n=54; trial 2). Included data were collected at baseline. Trial 1 enrolled between September 

2012 and September 2014 and trial 2 enrolled between September 2014 and December 
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2018. Healthy controls were prospectively recruited through advertisements at the University 

and in the community, with enrollment between December 2015 and November 2018. The 

study was conducted at the University of Colorado Anschutz Medical Campus Division of 

Renal Diseases and Hypertension Clinical Vascular Physiology Laboratory. Analysts were 

blinded to status (CKD or healthy control) when assessing outcome measures (vascular 

function and circulating/cellular markers).

All participants with CKD in either clinical trial who had successful baseline mechanistic 

vascular measurements (i.e., change in FMDBA with acute infusion of ascorbic acid and/or 

endothelial cell protein expression [see details below]) were included in this analysis, to 

focus the analysis on these novel parameters. Inclusion criteria for trial 1 were as follows: 

18–80 years of age, eGFR (by the Modified Diet Renal Disease [MDRD] equation) of 15–59 

ml/min per 1.73 m2, and evidence of chronic inflammation (high-sensitivity C-reactive 

protein (CRP) >2.0 mg/L on at least two consecutive weekly determinations). All women 

from this trial included in the present analysis were postmenopausal for better matching to 

trial 2 and healthy controls. Inclusion criteria for trial 2 were as follows: 40–79 years of age 

(post-menopausal for women), MDRD eGFR of 15–45 ml/min per 1.73 m2, and baseline 

serum phosphorous of 2.8–5.5 mg/dl (stable in the past month and not taking phosphate 

binders). All participants with CKD were on optimal, stable, antihypertensive, diabetic, and 

lipid-lowering regimens as appropriate for at least 1 month before inclusion. To eliminate 

the influence of smoking, all participants included in this analysis were nonsmokers. 

Individuals who participated in both trials (n=2) were only included in the analysis using 

data from their most recent trial participation (CKD trial 2), because this time point was the 

most likely to have sufficient remaining samples (e.g., endothelial cells, blood).

Healthy control participants were 50–72 years of age (recruited to best match the age of 

participants with CKD after partial completion of CKD enrollment; women were 

postmenopausal). Inclusion criteria were as follows: healthy (i.e., free from kidney disease, 

CVD, diabetes, and other chronic disease [assessed via self-report, physical exam including 

a resting 12-lead electrocardiogram, and screening laboratory tests]), free from hypertension 

based on guidelines at the time (BP <140/90 mm Hg and no antihypertensive agents), an 

eGFR ≥60 ml/min per 1.73 m2 by the CKD Epidemiology Collaboration equation (18), and 

nonsmoking.

Procedures

Vascular Measurements.—The number of participants in each group with each outcome 

measurement are shown in Supplemental Table 1. All measurements were made under 

supine, overnight-fasted (water only) conditions, following standard recommendations 

including 24-hour abstention from physical activity, and in a climate-controlled room (19). 

Participants refrained from nonprescription medications for 48 hours before testing, but 

prescription medications were not withheld to maintain BP control. FMDBA was determined 

using duplex ultrasonography (Xario 200; Toshiba, Tustin, CA) with electrocardiogram-

gated end-diastolic ultrasound images analyzed by a single blinded analyst using a 

commercially available software package (Vascular Analysis Tools 5.8.1; Medical Imaging 

Applications, Coralville, IA), as described in detail previously (17,20,21). Doppler flow of 
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the brachial artery was also measured and peak shear rate was calculated as a potential 

covariate (17,20,21). Endothelium-independent dilation (brachial artery dilation to 0.4 mg of 

sublingual nitroglycerin) was assessed as a standard index of smooth muscle cell sensitivity 

to exogenous nitric oxide (NO) (17,20,21). A total of 14 control and 48 participants with 

CKD were administered nitroglycerin (missing data due to low heart rate and/or low systolic 

BP [n=2 control; n=12 CKD], contraindication [n=2 CKD], arrhythmia precluding analysis 

[n=1 CKD], failed intravenous [i.v.] insertion [n=1 control]).

The assessment of carotid-femoral PWV has been described in detail previously (17,20,21). 

Briefly, carotid-femoral PWV and carotid-radial PWV (an index of peripheral stiffness) 

were noninvasively measured by positioning a trans-cutaneous custom tonometer 

(Noninvasive Hemodynamics Workstation [NIHem]; Cardiovascular Engineering Inc., 

Norwood, MA) at the carotid, brachial, radial, and femoral arteries. Distances between sites 

were measured using a custom raised ruler (NIHem for suprasternal notch and femoral 

artery) or tape measure (all other distances). The distance from the suprasternal notch to the 

carotid was subtracted from the distance between the two recording sites, and carotid-

femoral PWV was calculated as the distance divided by time between the foot of waveforms 

recorded at each site, as described previously (22). A total of 61 participants with CKD and 

16 control participants had successful carotid-femoral PWV (n=62 and n=17, respectively, 

for carotid-radial PWV) that met quality assurance.

Ultrasound imaging of the carotid artery was obtained in conjunction with the tonometry to 

provide blinded assessment of carotid artery compliance and carotid artery β-stiffness index 

(secondary indices of arterial stiffness), as described previously (n=60 participants with 

CKD and n=17 control participants) (17,20). Carotid systolic BP and carotid intimal medial 

thickness were also assessed (n=62 CKD and n=17 control participants) (17,20).

An acute supraphysiologic dose of ascorbic acid or isovolumic saline was infused to 

determine the influence of oxidative stress on FMDBA. FMDBA was measured during the 

“drip infusion” when peak plasma concentrations occur, as described previously (17,20,23) 

The plasma concentrations with this dose have been shown to inhibit superoxide production 

in vitro (24). A priming bolus of 0.075 g of ascorbic acid/kg of fat-free mass was dissolved 

in 150 ml of saline and infused i.v. at 5 ml/min for 20 minutes (maximal dosage was set at 

5.0 g). This was immediately followed by a drip infusion of 0.5 ml/min and FMDBA was 

again measured. All 17 controls and 60 participants with CKD received infusions. Before 

and after the ascorbic acid infusion, plasma ascorbic acid levels were measured (quantitative 

high-performance liquid chromatography by ARUP Laboratories) to demonstrate effective 

elevation of circulating levels in a small subgroup of participants with CKD (n=4) and 

controls (n=5).

Cellular Markers of Oxidative Stress and Inflammation.—We have described the 

details and rigor of the technique to measure endothelial cell protein expression previously 

(17,21,25–27). Vascular endothelial cells from the intima of an antecubital vein were 

obtained immediately before vascular measurements (n=8–11 control participants and n=24–

38 participants with CKD per protein analyzed; not available for all participants and all 

proteins due to i.v. failure or low cell yield; additionally, only limited endothelial cells were 
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available from CKD trial 1, because most slides were previously analyzed using a different 

microscope). Cells were recovered and fixed. Slides were prepared and then frozen for 

subsequent staining. VE-cadherin primary antibody (1:500; Abcam, Cambridge, MA) was 

used to identify endothelial cells. Primary antibodies used for the assessment of markers 

included NAD(P)H oxidase (1:1000, P47phox; Millipore, Billerica, MA), IL-6 (1:50; Santa 

Cruz, Dallas, TX); NFκB (1:300; Santa Cruz), and phosphorylated endothelial NO synthase 

(PeNOS; 1:100; Cell Signaling, Danvers, MA). Expression of these proteins was determined 

by a blinded analyst using immunofluorescence (Nikon Eclipse Ti, Melville, NY), as 

described previously (17,20,21,25). These markers were selected as indicators of oxidative 

stress, inflammation, and vascular endothelial NO production.

Circulating Markers of Oxidative Stress and Inflammation.—ELISA (MSD, 

Rockville, MD) was used to measure serum CRP and IL-6 concentrations as markers of 

inflammation. Oxidized LDL was also measured by ELISA (Mercodia, Uppsala, Sweden) as 

an index of oxidative stress. Stored samples were not available from n=1 from CKD trial 1 

and n=5 from CKD trial 2, thus n=57–58 participants with CKD and n=17 (all) controls 

were included in the assessment of these circulating markers.

Statistical Analyses

The Shapiro–Wilk test was used to test for normality. Independent sample t tests, chi-

squared tests, or Fisher exact tests were used to evaluate differences between groups in 

baseline variables. An independent-samples t test was used to determine differences between 

groups in vascular parameters and circulating markers. A 2×2 ANOVA was used to assess 

group differences in change in FMDBA after ascorbic acid infusion. Analysis of covariance 

was used to evaluate the influences of mean arterial pressure on carotid-femoral PWV (28) 

and shear rate and baseline diameter on FMDBA. Log-transformation was performed on non-

normally distributed variables before analysis. All data are reported as means±SD or 

medians (interquartile range) unless otherwise noted, with figures presented as means±SEM. 

Analysis was completed only on individuals with complete data for the outcome of interest 

(missing data for any variables are described above). Analyses were performed using SPSS 

25 and statistical significance was set at P<0.05. Adjustment was not made for multiple 

comparisons because the study was mechanistic and hypothesis generating.

A sample size of 17 control subjects was calculated based on approximately 90% power at 

an α level of 0.05 (two sided) to detect a group difference of 1.9 for the outcome of change 

in FMDBA after ascorbic acid infusion. This calculation was based on previously published 

data assessing change in FMDBA after ascorbic acid infusion in healthy older adults 

compared with young healthy controls (mean±SD change in percent FMDBA: young healthy 

controls, 0.2±2.0; older adults, 2.1±0.9) (23); we assumed a similar effect size in CKD. 

Although only 17 participants with CKD were required to provide approximately 90% 

power, we included all participants from the two clinical trials in our CKD group. Based on 

previous publications in CKD, these sample sizes (n=17 controls and n=62 individuals with 

CKD) also provided 99% power to detect a group difference of 2.3±0.5 in percent FMDBA 

(7) and 99% power to detect a group difference of 390±275 cm/s in carotid-femoral PWV 

(8).
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Study Approval

All procedures were approved by the Colorado Multiple Institutional Review Board and 

adhere to the Declaration of Helsinki. The nature, benefits, and risks of the study were 

explained to volunteers and volunteers provided written informed consent before study 

participation.

Results

Demographic and Clinical Characteristics

A total of 64 individuals with CKD from two previous clinical trials were included in this 

analysis. A total of 22 control participants were assessed for eligibility for this study. Five 

were excluded from enrollment due to not meeting inclusion/exclusion criteria, leading to a 

total cohort of 17. Individuals in the CKD group were slightly older; more likely to be male 

(trial 2 was a mostly veteran population); more likely to be a former smoker; and had higher 

BP, higher cholesterol, higher body mass index, and lower eGFR than healthy controls 

(Table 1). The majority of participants with CKD had a history of hypertension and BP was 

controlled. Because of the inclusion criteria for enrollment, no control participants were 

hypertensive. Participants with CKD were more likely to use antihypertensive agents and 

statins. Use of other medications did not differ between groups, nor did race/ethnicity. 

Etiology of CKD was attributed to diabetes (45%), hypertension (27%), nephrolithiasis 

(3%), autosomal dominant polycystic kidney disease (3%), drugs or toxins (3%), AKI (3%), 

and/or other or unknown (34%).

Vascular Parameters

Participants with CKD had a 36% lower FMDBA, indicating impaired endothelium-

dependent dilation, and 46% higher carotid-femoral PWV, indicating greater aortic stiffness, 

compared with healthy controls (Table 2). The time to peak FMDBA was also longer in 

participants with CKD compared with healthy controls (P=0.03). Peak hyperemic (P=0.01) 

but not resting (P=0.39) shear rate differed between participants with CKD and healthy 

controls; the fold-increase in shear rate during reactive hyperemia was thus greater in 

healthy controls (6.9±1.3) than in the CKD group (5.0±1.5; P<0.001). The difference in 

FMDBA was no longer significant between groups after adjustment for peak shear rate 

(P=0.47). Endothelium-independent dilation to sublingual nitroglycerin was reduced in 

participants with CKD compared with healthy controls (P=0.01). Participants with CKD also 

had greater carotid systolic BP, carotid intimal medial thickness, and carotid β-stiffness 

index compared with controls, with no difference in carotid-radial PWV (an index of 

peripheral stiffness) or supine brachial artery mean arterial pressure. Consistent with the lack 

of difference in mean arterial pressure between groups, carotid-femoral PWV remained 

significantly different between groups after statistically adjusting for mean arterial pressure 

(P<0.001).

Acute Inhibition of Vascular Oxidative Stress

Following an acute infusion of ascorbic acid previously shown inhibit superoxide production 

in vitro, plasma ascorbic acid levels were significantly elevated in both the control 
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(preinfusion, 73±7 μmol/L; postinfusion, 1236±81 μmol/L; 17-fold increase; P<0.001) and 

CKD group (preinfusion, 36±7 μmol/L; postinfusion, 1664±429 μmol/L; 48-fold increase; 

P<0.01). However, the infusion (compared with isovolumetric saline) differentially improved 

FMDBA in healthy controls as compared with participants with CKD (absolute change in 

percent FMDBA: healthy controls, 1.3±0.6; participants with CKD, 0.12±0.2 [mean±SEM]; 

group×condition interaction P=0.04) (Figure 1).

Cellular and Circulating Markers of Oxidative Stress and Inflammation

Cellular Markers.—Figure 2 displays vascular endothelial cell protein expression of 

NADPH oxidase, IL-6, NFκB, and PeNOS. Expression of the oxidant enzyme NADPH 

oxidase was greater in the CKD compared with control group (intensity versus human 

umbilical vein endothelial cell control, 1.48±0.05 versus 1.25±0.11 [mean±SEM]; P=0.05). 

The proinflammatory transcription factor NFκB (0.78±0.02 versus 0.67±0.08; P=0.19), 

proinflammatory cytokine IL-6 (0.94±0.02 versus 0.98±0.05; P=0.43), and PeNOS 

(1.34±0.04 versus 1.23±0.10; P=0.34) did not differ in the CKD group compared with 

controls.

Circulating Markers.—Circulating proinflammatory markers CRP and IL-6 were elevated 

in the CKD compared with the control group, with no difference in the marker of oxidative 

damage, oxidized LDL (Table 3).

Discussion

In this translational study comparing adults with moderate-to-severe CKD and middle-aged 

and older healthy controls, we confirmed the presence of vascular dysfunction (impaired 

FMDBA and increased carotid-femoral PWV). Additionally, although the study is hypothesis 

generating in nature, we have provided the first direct evidence in humans with CKD 

suggesting vascular oxidative stress. Endothelial cell protein expression of the oxidant 

enzyme NADPH oxidase was increased with CKD, providing the first cellular evidence that 

vascular oxidative stress may be increased in adults with moderate-to-severe CKD.

Additionally, we administered an acute supraphysiologic infusion of ascorbic acid that 

produces plasma concentrations known to inhibit superoxide production in vitro (24). This 

infusion failed to improve FMDBA in the participants with CKD, despite improvements in 

the control group. We believe these unexpected findings indicate that the level of oxidative 

stress in the CKD group (as reflected by endothelial cell protein expression and circulating 

markers) was too great to be overcome by the ascorbic acid infusion, despite a substantial 

rise in plasma ascorbic acid levels. The improvement in the control group comprised of 

healthy middle-aged and older adults is consistent with previous literature demonstrating an 

improvement in age-associated impairment in FMDBA in healthy middle-aged and older 

adults (23,29). Acute infusion of ascorbic acid has also been shown to improve conduit 

artery or microvascular endothelium-dependent dilation in individuals with diabetes (30), 

hypertension (31), and those who smoke (32). Additionally, we recently demonstrated that 

our ascorbic acid infusion protocol improved FMDBA in adults with early-stage autosomal 

dominant polycystic kidney disease and preserved kidney function (20).
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An acute ascorbic acid infusion previously failed to improve radial artery FMD; however, in 

this study kidney disease was severe (eGFR<20 ml/min per 1.73 m2) and a different artery 

was assessed (15). Additionally, oral ascorbic acid has failed to improve FMDBA in adults 

with CKD (5), but oral administration does not raise plasma ascorbic acid levels (which 

were not assessed in this study) nearly as much as an acute supraphysiologic infusion (23). 

A recent small study including both patients with CKD and peritoneal dialysis showed no 

change in FMDBA after an ascorbic acid infusion (16). However, microvascular 

endothelium-dependent dilation in the cutaneous microvasculature is improved to the level 

of healthy controls in adults with moderate-to-severe CKD after local ascorbic acid 

administration, indicating potential differences across vascular beds (14). Overall, these data 

support that CKD may have extensive oxidative stress that is not overcome by ascorbic acid, 

and this should be taken into account when testing future antioxidant therapies in patients 

with kidney disease.

We observed a 35% lower FMDBA in the CKD group, reiterating the presence of impaired 

endothelium-dependent dilation in CKD (5–7). Of interest, the CKD group also 

demonstrated a longer duration to peak dilation than the control group after cuff release. 

Time to peak dilation has also been shown to be delayed in older sedentary versus young 

healthy adults (33), individuals with the metabolic syndrome (34) and type 2 diabetes 

mellitus (35) as compared with healthy controls, as well as adults with moderate versus low 

cardiovascular risk (36). This has not been reported previously in CKD and may be an 

additional reflection of vascular dysfunction. Suggested mechanisms that may contribute to 

impaired time to peak dilation include reduced arterial wall compliance, changes in enzyme 

rate production, and free radicals interacting with endothelium-derived vasodilators (33).

Shear rate is produced by the hyperemic blood flow response to the cuff deflation and is the 

mechanical stimulus that promotes vasodilation (37). Notably, peak shear rate has been 

shown to differ according to Framingham risk factors (38), as well as the presence of 

metabolic syndrome (39), diabetes (40), and advanced age (40). Peak shear rate has typically 

not been quantified in previous CKD studies, although hyperemic blood flow or peak 

velocity have been reported to be similar to controls (5,6,41). In the Framingham Heart 

Study, inclusion of shear rate attenuated the association between cardiovascular risk factors 

and FMDBA, suggesting that impaired FMDBA in the presence of cardiovascular risk factors 

may represent an attenuated hyperemic stimulus rather than brachial endothelium 

dysfunction (38). However, it has also been proposed that shear rate should be presented 

rather than corrected for when comparing FMDBA between groups (42). We observed a 

difference in shear rate between the CKD and control group, and the difference in FMDBA 

was no longer significant after adjustment for shear rate, suggesting at the minimum an 

importance of the hyperemic stimulus when evaluating FMDBA in participants with CKD.

In addition to reduced FMDBA, we observed impaired brachial artery dilation to the NO 

donor nitroglycerin, suggesting there is also smooth muscle cell impairment (i.e., impaired 

endothelium-independent dilation) in nondialysisdependent CKD. Previous literature has 

demonstrated mixed results regarding the presence of impaired brachial artery dilation to 

nitroglycerin (5–7).
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Carotid-femoral PWV was 46% greater in participants with moderate-to-severe CKD 

compared with healthy controls. The results are consistent with previous literature 

demonstrating greater large elastic artery stiffness in nondialysis CKD (8–10). The group 

difference remained highly significant after adjustment for mean arterial pressure, 

suggesting structural changes contributing to increased arterial stiffness. Additionally, 

individuals with CKD in this study had elevated carotid systolic BP compared with controls, 

consistent with higher brachial systolic BP (although still controlled according to guidelines 

at the time). Evidence on local arterial compliance, such as the carotid artery, has been much 

less reported, but our result of increased β-stiffness index is also consistent with limited 

available evidence (9).

Circulating markers of increased oxidative stress or reduced antioxidant defenses (7,15), as 

well as increased inflammation (43,44), were previously shown to be altered in moderate-to-

severe CKD. We have provided the first direct evidence that oxidative stress is increased at 

the level of the vascular endothelium in humans with CKD. This was observed despite a lack 

of difference in oxidized LDL, a circulating marker of oxidative damage. Notably, consistent 

with previous evidence, circulating markers of inflammation were elevated in the CKD 

group.

Increased oxidative stress and inflammation are both likely promoters of a decline in NO 

bioavailability. Reduced NO is a contributing mechanism common to both large elastic 

artery stiffness and endothelial dysfunction. However, no difference in endothelial cell 

PeNOS protein expression was observed in participants with CKD compared with healthy 

controls.

The major strength of this study is that we used novel methodology to evaluate physiologic 

mechanisms contributing to vascular dysfunction in CKD—the most comprehensive 

assessment to date. We have extended existing literature indicating circulating markers of 

oxidative stress in CKD by collecting vascular endothelial cells to provide direct evidence of 

vascular oxidative stress. We also assessed FMDBA after acute inhibition of oxidative stress. 

Given the comprehensive nature of these assessments, these measurements were performed 

in a relatively large number of participants with CKD.

This study also has several notable limitations. Given that the participants with CKD also 

had other comorbidities, it is difficult to separate the contributions of these factors from 

other contributing mechanisms. Differences between the two groups besides the presence of 

CKD may have contributed to the observed results, beyond the primary disease process 

alone. For example, ages were not precisely matched and there were more males in the CKD 

group because trial 2 was a Veterans Affairs–funded trial. Importantly, our findings are still 

clinically meaningful, despite any residual group differences. The results are cross-sectional 

and cannot provide insight into changes in vascular function and associated mechanisms 

over time. Additionally, we recognize that the sample size was smaller than the overall 

cohort for endothelial cell protein expression, due limitations in the technique (e.g., i.v. 

failure, inadequate cell recovery) and lack of remaining slides from CKD trial 1, which may 

have introduced selection bias or increased the likelihood of a type-1 error in the comparison 

of NAD(P)H oxidase protein expression between groups.
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In conclusion, we have provided initial evidence that oxidative stress may be a physiologic 

mechanism contributing to vascular dysfunction in moderate-to-severe CKD. Our results 

also reiterate that vascular dysfunction is present in CKD, before the initiation of dialysis. 

Future research should follow changes in vascular function and associated mechanisms 

longitudinally. Additionally, physiologic mechanisms contributing to vascular oxidative 

stress and inflammation should continue to be delineated, including how targeting these 

processes influence vascular function. Interventions to reduce oxidative stress in individuals 

with moderate-to-severe CKD could potentially reduce the risk of cardiovascular events and 

mortality in patients with CKD.
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Figure 1. |. Acute infusion of ascorbic acid differentially improved brachial artery flow-mediated 
dilation in healthy controls as compared to participants with CKD.
Brachial artery flow-mediated dilation (FMD) after an acute infusion of saline (black bars) 

and ascorbic acid (gray bars) in participants with CKD and healthy controls. Infusions were 

performed in all control participants (n=17) and n=60 participants with CKD. Ascorbic acid 

significantly improved brachial artery FMD in control participants (saline, 5.5%±0.8%; 

ascorbic acid, 6.8%±0.9%) as compared with participants with CKD (saline, 3.5%±0.4%; 

ascorbic acid, 3.6%±0.4%) (group×condition interaction P=0.04). Values are mean±SEM.
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Figure 2. |. Greater vascular endothelial cell oxidative stress in participants with CKD as 
compared to controls.
Protein expression of NAD(P)H oxidase (CKD, 1.48±0.05; control, 1.25±0.11; P=0.05), 

IL-6 (CKD, 0.94±0.02; control, 0.98±0.05; P=0.43), NFκB (CKD, 0.78±0.02; control, 

0.67±0.08; P=0.19), and phosphorylated endothelial cell nitric oxide synthase (PeNOS; 

CKD, 1.34±0.04; control, 1.23±0.10; P=0.34) in vascular endothelial cells collected from a 

peripheral vein of participants with CKD (black bars) compared with healthy controls (white 

bars). Expression is relative to human umbilical vein endothelial cell control, with 

representative images shown below (quantitative immunofluorescence). Values are mean

±SEM. *P≤0.05.
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