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Abstract

Purpose: The purpose of this work was twofold: (a) To provide a robust and accurate method for 

image segmentation of dedicated breast CT (bCT) volume data sets, and (b) to improve Hounsfield 

unit (HU) accuracy in bCT by means of a postprocessing method that uses the segmented images 

to correct for the low-frequency shading artifacts in reconstructed images.

Methods: A sequential and iterative application of image segmentation and low-order 

polynomial fitting to bCT volume data sets was used in the interleaved correction (IC) method. 

Image segmentation was performed through a deep convolutional neural network (CNN) with a 

modified U-Net architecture. A total of 45 621 coronal bCT images from 111 patient volume 

data sets were segmented (using a previously published segmentation algorithm) and used for 

neural network training, validation, and testing. All patient data sets were selected from scans 

performed on four different prototype breast CT systems. The adipose voxels for each patient 

volume data set, segmented using the proposed CNN, were then fit to a three-dimensional low-

order polynomial. The polynomial fit was subsequently used to correct for the shading artifacts 

introduced by scatter and beam hardening in a method termed “flat fielding.” An interleaved 

utilization of image segmentation and flat fielding was repeated until a convergence criterion was 

satisfied. Mathematical and physical phantom studies were conducted to evaluate the dependence 

of the proposed algorithm on breast size and the distribution of fibroglandular tissue. In addition, 
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a subset of patient scans (not used in the CNN training, testing or validation) were used to 

investigate the accuracy of the IC method across different scanner designs and beam qualities.

Results: The IC method resulted in an accurate classification of different tissue types with 

an average Dice similarity coefficient > 95%, precision > 97%, recall > 95%, and F1-score > 

96% across all tissue types. The flat fielding correction of bCT images resulted in a significant 

reduction in either cupping or capping artifacts in both mathematical and physical phantom studies 

as measured by the integral nonuniformity metric with an average reduction of 71% for cupping 

and 30% for capping across different phantom sizes, and the Uniformity Index with an average 

reduction of 53% for cupping and 34% for capping.

Conclusion: The validation studies demonstrated that the IC method improves Hounsfield Units 

(HU) accuracy and effectively corrects for shading artifacts caused by scatter contamination and 

beam hardening. The postprocessing approach described herein is relevant to the broad scope of 

bCT devices and does not require any modification in hardware or existing scan protocols. The 

trained CNN parameters and network architecture are available for interested users.
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1. INTRODUCTION

Dedicated computed tomography of the breast (bCT) is an imaging modality devised 

to improve the diagnostic accuracy of breast cancer screening and diagnosis by 

rendering a high-resolution volumetric image of breast anatomy. The technology of bCT 

has undergone multiple engineering iterations, incorporating ever advancing constituent 

hardware components and resolving engineering challenges in different ways. Accordingly, 

several generations and designs of bCT devices exist.1–4 Reducing and resolving artifacts 

known to arise in bCT is critical for improving imaging for breast cancer detection.

Artifacts related to Hounsfield unit (HU) biasing and shading, such as cupping and capping, 

are common and have previously been well described.5,6 It is the case for bCT, as it is for 

computed tomography in general, that scatter and beam hardening of the x-ray beam as it 

interacts with the breast tissue can result in a nonuniform bias of HU values. HU biasing 

of the breast anatomy results in a “cupping” artifact in the reconstructed coronal images. 

Specifically, the HU values in voxels near the center of the breast decrease relative to 

voxels at the periphery. Different bCT system designs may employ different device-specific 

rationale and approaches for cupping corrections in patient images. A simplification of 

breast shape or anatomical composition used in existing correction methods can result in 

residual cupping or overcorrection of cupping which in turn introduces what is essentially 

reverse cupping — or “capping” — to the bCT image.7–9 An additional artifact of concern 

specific to cone beam geometry CT systems is the decrease in HU voxel values that occurs 

in coronal planes parallel to the central coronal slice for increasing cone angles. This artifact, 

commonly referred to as HU drop,10 originates from incomplete sampling of the Radon 

space data induced by the cone beam geometry. Beyond causing image distortions, these 

artifacts can impact patient diagnosis and consequently treatment. Uncalibrated or poorly 
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calibrated HU values can reduce the diagnostic value of the images.11 The presence of 

artifacts can also affect CT density-based conversion tables,12 which in turn may result in 

inaccurate dose calculations and technique factors used for treatment planning in radiation 

therapy.13

For a fixed scanner geometry and imaging protocol, scatter distribution on projection images 

is dependent on the size, shape, and glandular distribution of the breast positioned in 

the field of view (FOV). Previous studies showed that the scatter-to-primary ratio (SPR) 

in cone beam bCT varies between 0.1 and 1.6.14–17 Strategies in scatter management in 

cone beam CT in general — and bCT in particular — include hardware modifications, 

software-based prospective or retrospective algorithms, or knowledgeable combinations 

of these methods. These approaches include changing scanner geometry,1,18,19 utilization 

of anti-scatter grids,20–24 utilization of beam stopping arrays or strips (BSA),18,25–29 or 

beam passing arrays (BPA)30,31 followed by sinogram-domain image processing, Monte 

Carlo (MC) simulation approaches,8,15,16,18,32,33 or purely postprocessing image domain 

techniques.34–38 A brief discussion of these methodologies is presented in the following 

three paragraphs.

One can reduce photon scatter contamination by simply increasing the gap between the 

x-ray detector and the breast; however, this approach may decrease breast coverage and 

increase focal spot blur. Using anti-scatter grids is another option in reducing the SPR; 

however, the dose penalty in using a grid system for a low dose x-ray imaging modality 

such as bCT in addition to the technical difficulties in correcting for the septal shadow 

in the projections makes this a prohibitive option. These methods are commonly referred 

to as scatter rejection techniques where both high- and low-frequency contributions of 

the scattered photons are decreased. The goal of the other proposed methods, commonly 

referred to as scatter corrections techniques, is to correct the effects of scatter contamination 

in either the projection or reconstruction domain.

MC simulation is a powerful tool in exploring and understanding the characteristics and 

contributions of x-ray scatter. However, the strategies in evaluating MC-based correction 

techniques often involve assumptions made to increase computational efficiency and 

versatility of the developed techniques. For example, the assumption of a simple breast 

model which is cylindrical in shape3,14,39–41 or homogenous in composition.16 The result 

of these simplifications is a suboptimal correction of the cupping artifact leading to residual 

cupping or capping. In comparison with MC-based solutions, BSA or BPA approaches 

provide object-specific scatter information via direct measurement of the scattered signal 

in the shadows of the beam stop or collimator and result in improved scattered correction 

outcome. However, incorporating BSA or BPA approaches into a scanner requires additional 

dose to the breast, hardware modifications, and results in an increased overall scan time.

Several retrospective methods have been reported to effectively reduce the predominant 

low-frequency effects of x-ray scatter and beam hardening in the reconstructed images 

(image domain). Studies performed on the voxel intensity values of bCT images42,43 and 

the postmortem anatomical analysis of breast tissues44,45 have shown that the adipose voxel 

CT numbers can be treated as a narrowly spread normal distribution around a peak value. 
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This unique property of breast tissue can be leveraged to correct for shading artifacts in 

the image domain. Such methods require segmentation to classify only the adipose voxels, 

an algorithm for parameterizing the distribution of the cupping in the segmented adipose 

voxels, and an algorithm for flattening the shading artifact (i.e., flat fielding) so that the 

average CT number of the adipose voxels match a predefined value. Altunbas et al.34 

introduced the concept of fitting two-dimensional polynomials to features extracted from the 

spatial location of the adipose voxels in bCT coronal slices. This was followed by stacking 

the two-dimensional models to generate a three-dimensional fit, and a smoothing operation 

was performed to correct for the discrepancies between the neighboring individual models. 

The extracted background volume was then used to flatten the adipose field; however, 

assumptions made regarding the shape and positioning of the breast voxels in a bCT image 

limit the utility and practice of this method. These simplifications include assuming the 

breast is circularly symmetric in the coronal plane, assuming the adipose tissue values are 

radially symmetric, and assuming that the center of the circular coronal slice coincides with 

the gantry’s isocenter.

In this work, we propose a generalized low-order polynomial correction for shading artifacts 

in bCT reconstructions that is independent of the breast shape, size, composition, and 

position in the scanner geometry. The interleaved correction (IC) method consists of two 

parts. First, all reconstructed images are segmented into air, adipose, fibroglandular, and 

skin types using a deep convolutional neural network (CNN) which was designed and 

trained using a large cohort of bCT data sets. The large size of the training data set allows 

for a realistic feature extraction in different layers of the CNN. The network architecture 

and the optimization parameters were carefully selected according to the size of the 

reconstructed images, voxel types, and their prevalence in the bCT images. The advantage 

of the proposed semantic segmentation technique in comparison with regional intensity or 

overall histogram-based unsupervised learning methods is its dependency on both the voxel 

intensities and morphological variations and gradients within the reconstructed image. We 

introduce a regularization mechanism to compensate for the large gap between the number 

of overrepresented voxels such as air and adipose and underrepresented voxels such as 

fibroglandular. The second step in the IC method following the segmentation is to use 

the geometrical position of the adipose voxels for defining a convex feature space. The 

feature space and adipose voxel values are used through a nine-step process to find a three-

dimensional, low-order polynomial fit analytically. This polynomial model is independent of 

the convexity of the shading artifacts in the reconstructed images, and therefore, the same 

methodology can be used for cupping, capping, or axial HU drop correction.

The utility of the IC method was evaluated through mathematical and physical phantoms. In 

addition, the quantitative and qualitative gains in adopting this method were investigated in 

eight patient scans acquired using four different bCT scanner systems.

2. MATERIALS AND METHODS

The bCT systems referred to herein were designed and developed in our laboratory at 

UC Davis. The systems are code-named Albion, Bodega, Cambria, and Doheny, where 

the alphabetical order of the names indicates their chronological development.1 Scanner 
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parameters, as they relate to this study, are listed in Table I. Clinical patient images 

referenced in the validation sections were acquired during two separate clinical trials.11,46,47 

The Albion and Bodega scanners are similar in design, differing only in the amount of 

filtration and the use of dynamic gain for the flat panel detector installed on Bodega. 

Cambria and Doheny differ more substantially across scanner characteristics.

The capping artifact cases discussed in this study stem from a MC-based HU calibration 

method previously published8 that tends to over correct the cupping artifact for some patient 

cases. This previous method computes the dimensions of the largest water cylinder that 

can fully encompass the breast volume and then implements a MC simulation program48 

to generate a scatter signal distribution for each corresponding projection of the modeled 

cylinder. The final HU calibration is carried out by a logarithmic subtraction between 

the projection image of the breast and the simulated water phantom. As discussed in the 

introduction, this oversimplification of the breast shape and size results in residual shading 

artifacts. In a realistic patient acquisition where the breast diameter generally decreases 

anteriorly, the modeled water cylinder (and hence MC simulated scatter distribution) is much 

greater than the true breast diameter and this results in the observed capping artifact. These 

capping artifact cases are introduced in the present study only to demonstrate the feasibility 

and flexibility of the proposed IC method for sufficiently correcting existing images that 

suffer from residual shading artifacts (i.e., capping).

2.A. CT image segmentation

A semantic segmentation architecture can be broadly thought of as an encoder network 

(learning a discriminative feature space) followed by a decoder network (learning a transfer 

operation mapping the feature space elements onto voxel space). The details of the 

architecture, however, are highly application specific. The input to the proposed CNN is 

a two-dimensional coronal image from a three-dimensional bCT volume data set. The input 

image undergoes multiple levels of convolutional and nonlinear operations during which the 

image domain information becomes encoded into a set of features. The encoding process 

must be followed by a decoding mechanism to project the discriminative features learned 

during the encoding process onto voxel space. The depth and width of the encoder–decoder 

chain and the definition of the loss function are dependent on the type and complexity of 

the features embedded in the image. The following section describes the rationale behind the 

choices made in designing a CNN for bCT image segmentation.

2.A.1. Network architecture—The overall network architecture is shown in Fig. 1. A 

modified U-Net49 architecture was designed consisting of two “wings”: the encoder and 

decoder wings. We reduced the convolution/nonlinearity operations during the decoder wing 

of the standard U-Net to amplify the magnitude of the backpropagated error tensors. The 

size of the arrays in the coarsest level of the encoder is 128 × 128. Given the average 

fibroglandular breast density of 19.3%,50,51 adding more layers to the encoder wing results 

in disappearing features representing fibroglandular tissue composition, especially in fatty 

breasts where fibroglandular tissue is more sparse. Furthermore, adding convolutional layers 

in the decoding wing reduces the impact of low-density or sparse fibroglandular tissue 

on the forward propagating tensors resulting in an overestimation of dense fibroglandular 
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tissues. Therefore, additional convolution layers and activation gates were avoided in the 

decoding wing. Linear rectified activation functions were used to induce nonlinearity and 

to speed up the learning process.52 A residual learning paradigm53 was introduced to the 

encoder wing to boost the error backpropagation of underrepresented voxel types.

The input to the network is a coronal image section of a reconstructed breast CT image. The 

corresponding segmented image is one-hot-encoded54 into five image arrays, collectively 

called the input label matrix. One-hot encoding is the process of converting categorical data 

(such as the segmented images) into binary data where each binary value is representative 

of one and only one category. As such, image arrays contained in the label matrix have 

the same size and spacing as the input image, each representing air, adipose, sparse 

fibroglandular (low-density fibroglandular, we refer to this voxel type as sparse due to the 

existing high sparsity in the corresponding classified matrix), dense fibroglandular, or skin.

During a training attempt, the resulting output label matrix contains values between zero 

and one, which is interpreted as the predicted label image probability density function. This 

enables the use of the cross-entropy metric55 as the loss function in the classification task at 

hand:

H = − 1
N ∑

i = 1

N
yilog yi′(x, θ) (1)

where y is the ground truth label matrix, x is the input image section, θ denotes the 

network’s trainable parameters, index i spans all elements (N) of the label image arrays, 

and y′ is the predicted posterior probability (output label) matrix. The loss function defined 

in Eq. (1) penalizes different classification errors equally. In a typical bCT image, there is 

a significantly lower number of fibroglandular and skin voxels compared to air or adipose 

voxels. Hence, this loss function generates backpropagation gradients that force the network 

to misclassify fibroglandular and skin voxels in favor of the air or adipose voxels. We 

utilized the following weighted loss metric within which the individual classification errors 

were penalized differently. The weighted loss was defined as follows:

H = − 1
N ∑

j = 0

4
λj ∑

i = 1

N
Ijyilog yi′(x, θ) + μ

2 θ
2

(2)

where Ij is a binary indication function indicating whether this voxel belongs to category 

j and λj is the penalization weight associated with the category j. Hyper-parameter μ is 

used to find a trade-off between the error term and the ℓ2-norm regularization term to avoid 

overfitting.56 The five voxel categories are air (j = 0), adipose (j = 1), sparse fibroglandular 

(j = 2), dense fibroglandular (j = 3), and skin (j = 4). Since the fibroglandular and skin voxel 

types are underrepresented in a breast CT image, Eq. (2) penalizes the misclassification of 

these voxels more than the other voxel types. Fibroglandular density in an average breast 

was reported to be between 9 and 24%,50,51 implying that the majority (78% chosen in this 

study) of an average breast volume is composed of adipose tissue and the rest (22%) is 
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composed of fibroglandular tissue and skin. In an empirical test of 111 ground truth bCT 

data sets used to train the network, on average 63% of the CT image voxels are classified 

as air and the rest (37%) are breast tissue voxels. Based on these numbers, λ1 was set to 
1

0.63 , λ2 to 1
0.37 × 0.78  and λ3, λ4 and λ5 to 1

0.37 × 0.22 . The hyper-parameter l was found via 

cross-validation and was set to 0.0005 by monitoring the cross-entropy value to avoid under 

or overfitting.

During the convolution steps, the input image arrays were zero-padded and shifted to enable 

one-to-one correspondence between the input image matrix and the output label matrix. The 

output number of the matrices in each operation of the encoder wing was set to a power of 

two to accommodate more efficient memory management on the Graphics Processing Unit 

(GPU). An Adaptive Moment Estimation (Adam) stochastic optimization algorithm57 was 

implemented because of its computational and memory management efficiency. The batch 

size was set to 16, epoch number to 20, learning rate to 0.0001, and constant momentum 

to 0.95. The network parameters were initialized to a random-draw from a Gaussian 

distribution with mean 0 and standard deviation which was inversely proportional to the 

square root of the inputs of layer operations.58 Training was implemented using Microsoft’s 

Cognitive Toolkit Application Programming Interface59 running on a system with an Intel 

Core™ i7–6850K @3.60 GHz processor, 64 GB RAM, and an NVI-DIA Quadro P5000 

GPU.

2.A.2. Image preprocessing—Several preprocessing steps were applied before the 

start of the network training. All bCT images at UC Davis were reconstructed into matrix 

sizes of 512 × 512 (for scanners Albion, Bodega or Cambria) and 1024 × 1024 for scanner 

Doheny. This difference in reconstruction matrix size is due to the inherent limiting spatial 

resolution of each scanner (0.9 lp/mm in Albion and Bodega, 1.7 lp/mm in Cambria and 3.6 

lp/mm in Doheny). To maintain consistency for the input image size, all coronal bCT images 

used in this study were isotropically reconstructed into a 512 × 512 matrix using a variation 

of the Feldkamp filtered back-projection algorithm and a Shepp-Logan filter. The input 

image to the network during training or deployment was scaled to zero and one by finding 

1% and 99% grayscale values of the overall CT image histogram and using those values 

as minimum and maximum levels, respectively. In each bCT data set, the most posterior 

coronal image used for network training was manually determined as the image that does 

not contain partial volume artifacts. In addition, slices that contain metal artifacts (usually 

caused by markers in a breast) were also excluded from this study.

2.A.3. Training and validation—A total of 45 621 coronal bCT images were used for 

training. These images were reconstructed from 11, 83, 7, and 10 patient scans performed 

using scanners Albion, Bodega, Cambria, and Doheny, respectively (111 data sets in total). 

The images were divided into three subsets used for training (70% of images), test (20% 

of images), and validation (10% of images). The training and test subsets were disjunctive, 

as they contained images from different patients, to ensure generalization capability of 

the found solution. The ground truth segmented images were generated automatically 

using a previously developed and tested expectation-maximization based segmentation 
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methodology42,60 followed by manual review from an experienced breast CT research 

scientist.

The overall memory required to train the network at once exceeds the capacity of the 

hardware used in this study. Therefore, a tenfold memory management paradigm was used 

to cover the entire cohort of images in the training set. First, the slices from each patient 

scan were divided randomly into ten sets. Second, one set from each patient scan was 

randomly selected and aggregated with the other sets selected from other scans to generate a 

batch of 4562 slices. This batch was used to train the network. Following this paradigm, all 

patient data sets were included in each training attempt. At the end of training each image 

batch, the network parameters were saved and used to initialize the network for the training 

of the next batch of images. Hence, all the slices available for training were used to train the 

network without a bias for a patient scan or scanner type.

The error in the classification task was measured using the Sorensen–Dice similarity 

coefficient (DSC) defined as follows:

DSC = 2J
J + 1 (3)

where J is the Jaccard similarity coefficient61 defined as the intersection of ground truth and 

resulting label matrices divided by their union. The intersection of two label images was 

defined as an element-wise multiplication of the two label matrices followed by summation 

of all elements of the resulting product matrix. Union of two matrix matrices was calculated 

by first finding the summation of all elements of each matrix and then adding up the results. 

In addition, two confusion matrix-based metrics — precision and recall defined based on 

true positive (TP), false-positive (FP), and false-negative (FN) quantities — were considered 

for evaluating the classification task,

 Precision  = TP
TP + FP (4)

and

 Recall  = TP
TP + FN (5)

Using Eqs. (4) and (5), we calculated the F1 score, a measure of accuracy, as follows:

F1 = 2
1

  Precision + 1
  Recall

(6)

2.A.4. Postprocessing and deployment—The output labeled image of the trained 

network is a 512 × 512 × 5 matrix where the third dimension comes from the five 

probabilities for each class assigned to each voxel. The class with the highest probability is 
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selected and assigned a value 0, 1, 2, 3, or 5, depending on whether the pixel is classified as 

air, adipose, sparse fibroglandular, dense fibroglandular, or skin, respectively. The output of 

the segmentation routine is a 512 × 512 grayscale image corresponding to the input slice to 

the network.

2.B. CT image shading correction

Following the bCT reconstruction, all voxels in the images are converted to HU. The 

effective energy of the beam in each bCT system was found by utilizing the measured 

first HVL (Table I) and the TASMICS62 x-ray spectral model. The expected HU values for 

100% adipose tissue in different scanners were found using the calculated effective energy.63 

Adipose HU values are canonically treated as uniform, and this assumption was leveraged in 

the following description of the methodologies used for flat fielding of the bCT images.

Let q(L) be the HU value of the voxel located at the Cartesian location L = [x, y, z] in 

the reconstructed image where x, y, and z are the indices of a voxel along row, column, 

and slice, respectively. Let a subset of q(L) containing only the adipose voxel values be 

qA(L). The objective of the regression model is to find the parameters (β) of a deterministic 

function y(ψ(L), β) such that the values of all voxels classified as adipose are modeled within 

an error ε,

qA(L) = y(ψ(L), β) + ε (7)

where ψ(L) is a set of features with k + 1 members and β = β0, ⋯, βk  is a set of unknown 

parameters associated with the regression model y. The error term ε was assumed to be 

a zero mean Gaussian random variable with standard deviation σ, since the adipose voxel 

values are generally assumed to have a unimodal distribution.50,64–66 Therefore, qA(L) is 

defined as a probabilistic function dependent on y with standard deviation of ε,

p qA(L) ∣ ψ, β, σ = N qA(L) ∣ y(ψ, β), σ2 (8)

where p(… ∣ …) denotes conditional probability and N(… ∣ …) is the normal distribution.

Following the linear regression paradigm,67 y(ψ, β) was defined as the inner product of the 

features (ψ) and unknown parameters (β). The classification of one voxel in an image as 

adipose has no bearing on the classification of another voxel. Individual adipose voxel HU 

values are therefore assumed to be uncorrelated. This property of the CT image enables us to 

derive a solution for β by maximizing the likelihood function. A likelihood function (p) is a 

function of unknown parameters β and σ in the following form:

p QA = ∏
n = 1

nA
N qA Ln ∣ βTψn, σ2 (9)
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where nA is the total number of adipose voxels in the reconstructed breast CT image 

volume, qA Ln  is the CT number of the nth adipose voxel located at Ln = xn, yn, zn  and 

QA = qA1, ⋯, qAn . Maximizing the likelihood function defined in Eq. (9) with respect 

to β results in deriving βML (the parameters corresponding to the Maximum Likelihood 

solution).56 The analytical solution is the result of the inner product of QA and the Moore-

Penrose pseudo-inverse () of the adipose features matrix ψ = ψ1, ⋯, ψnA
T , that is,

βML = . QA (10)

Ψ is defined as:

Ψ = ψTψ −1ψT (11)

The analytical solution found in Eq. (10) fully describes the fit within the feature space. 

The DC component of the parameter set, β0, plays an important role in determining the 

convergence of the cupping/capping correction algorithm. Setting the derivative of the 

likelihood function [Eq. (9)] with respect to β0 to zero leads to β0 being equal to the average 

value of adipose voxels CT numbers. If β0 is within 1 HU to the theoretical value of the 

100% adipose tissue stated in Table I, a convergence for IC has been reached. Otherwise, 

the fit is not optimal, and another iteration of the fit must be performed until reaching the 

convergence criterion.

The number of features ψ(L), defined by the order of the polynomial, is an important 

parameter that is dependent on the nature of x-ray scatter and beam hardening and its 

propagation in the reconstruction pipeline. These physical phenomena result in artifacts 

manifested as low-frequency degradation of CT numbers at the center of mass of the 

reconstructed image. With this in mind, the proposed method (IC) implemented a quadratic 

(second order) fit. For the mathematical derivation, refer to the supplemental material 

included in the Appendix S1.

The following steps outline the IC methodology of fitting a three-dimensional second-order 

polynomial model to the adipose system matrix and using the derived model to flat field a 

bCT image:

1. Segment the bCT image using the CNN described in Section 2.A.

2. Define an adipose features matrix ψA of size (10 × nA) as follows:

ψA = 1xAyAzAxAyAyAzAzAxAxA
2 yA

2 zA
2 (12)

where xA, yA, and zA are the elements of the position of the considered adipose 

voxel in the Cartesian coordinate system. Use the segmented image volume to 

form ψA.

3. Form QA using the original and segmented image volumes.
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4. Derive the Moore-Penrose pseudo-inverse of the adipose system matrix using 

Eqs. (10) and (11) as follows:

βML = ψA
TψA

−1ψA
TQA (13)

where βML is a column vector with 10 elements. Note that the first element 

of this vector (β0) is a bias term independent of the spatial location of the 

voxels. As the algorithm converges, this parameter approaches the theoretical 

adipose value listed in Table I. Later in step 7, we use this term to determine the 

convergence of the HU calibration algorithm.

5. ψA is a subset of a feature matrix spanning all voxels of the reconstructed CT 

image volume. Form this matrix as

ψ = 1xyzxyyzzxx2y2z2 (14)

6. Use Eqs. (13) and (14) to calculate the background matrix QB,

QB = ψ ⋅ βML (15)

where QB is a vector containing the same number of elements as the CT 

image volume. Due to the second-order feature space and fitting algorithm, the 

background fit is convex with a single global minimum and it describes the CT 

volume as if it entirely consisted of adipose voxels.

7. Use the modeled background matrix [Eq. (15)], to calculate the background-

corrected matrix using the following equation:

QBC = Q − QB (16)

where Q is a vector consisting of all CT image numbers.

8. Let HUTA be the theoretical HU of 100% adipose tissue at a given effective 

energy. The HU-calibrated CT matrix (Qc) can then be formed as,

QC = QBC + HUTA (17)

9. Following the above steps, one can derive a corrected version of the original 

reconstructed CT image. The resulting HU-calibrated image, Qc, is in turn used 

to generate a segmented image using the CNN described in Section 2.A. The 

new segmented image and Qc are used to generate a new flat-fielded CT image. 

This iterative process continues until a convergence is reached. Because of the 

convexity of the model used for fitting, it is expected that β0 converges to the 

theoretical adipose HU value as listed in Table I. Convergence is defined to be 

achieved when β0 is within 1 HU from the expected adipose value.
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2.C. Validation using mathematical breast phantoms

The percentage and distribution of fibroglandular tissue affect the performance of the 

proposed IC method. To remove this variability and validate the segmentation and flat 

fielding parts of the IC method with respect to a known distribution of fibroglandular tissue, 

we used a series of previously reported numerical homogenous phantoms68,69 and scans of 

the corresponding physical phantoms to construct mathematical phantoms. Details regarding 

the design and fabrication of the breast phantoms have been previously published, and 

therefore, only details pertinent to this work are discussed herein.

The size and shape of the numerical and physical breast phantoms were derived from a large 

cohort of 215 breast CT volume data sets. This cohort of data sets was grouped by total 

breast volume (excluding skin) into one of five volume-specific breast phantom sizes defined 

as V1 (small) through V6 (extra-large). The average radius profile was then determined 

for each size group resulting in a total of six numerical and physical breast phantoms. A 

subsequent study utilized the size-specific breast phantoms and cohort of bCT volume data 

sets to quantify the statistical distribution of fibroglandular tissue on a size-specific basis.70 

For the present study, the V1 (small), V3 (median), and V5 (large) physical and numerical 

breast phantoms were used for validation of the IC method. Figure 2(a) is a representation 

of the V3 (mediansized) numerical breast phantom with a heterogenous fibroglandular 

distribution.

In order to replicate a realistic bCT case, the V1, V3, and V5 physical breast phantoms were 

positioned in scanner Doheny’s FOV, aligned with the isocenter axis and scanned twice with 

the technique factors used for routine patient scans. An example scan of the V3 phantom is 

shown in Fig. 2(b). In each case, the two reconstructed image data sets were subtracted and 

voxel-wise normalized by √2, resulting in a realistic quantum noise distribution observed in 

bCT images as shown in Fig. 2(c). The noise images were then added to the mathematical 

heterogenous phantom [Fig. 2(b)] to generate a noisy mathematical phantom model [Fig. 

2(e)]. In the next step, one of the data sets for each physical V-phantom was randomly 

selected and corrected for the cupping artifact following the nine-step IC method described 

above. The resulting background image [Fig. 2(d)] serves as a known ground truth and 

was added to the corresponding numerical noisy phantom to generate a mathematical breast 

phantom that realistically resembles a bCT data set. This process was identically repeated 

for all three V-phantoms. The IC method was used to correct for the shading artifacts in 

the three mathematical phantoms, resulting in segmentation and background modeling of the 

data sets that are compared to the ground truth segmentation and background images for 

validation.

2.D. Validation using physical breast phantom

The phantom setup outlined in this section characterizes the proposed IC method’s ability 

to remove cupping artifact with respect to radial distance from the center of mass of each 

coronal slice and to correct for axial HU drop. Three uniform cylindrical polyethylene 

phantoms with diameters of 10.2, 12.7, and 15.2 cm were positioned in the FOV of scanner 

Doheny and scanned with the x-ray techniques listed in Table I. Under these conditions, the 

theoretical value for polyethylene HU is −198.71 CT image volumes were reconstructed and 

Ghazi et al. Page 12

Med Phys. Author manuscript; available in PMC 2022 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HU-calibrated using the nine-step IC method described earlier in this section to generate 

cupping-corrected data sets. Multiple bands were used at different radial distances from 

the center of mass in coronal slices, each having an equal radial thickness of 1 cm (refer 

to Fig 3). Band averaging was applied before and after application of the IC method to 

minimize noise. Band averaging implies averaging through all the voxels within a predefined 

distance from the center of mass of an image section. The width of the bands (in the 

anterior-posterior direction) was set to 1 cm, and in doing so a single value is calculated for 

each band in a coronal image section. This process was repeated for all coronal sections of 

a bCT volume data set. An aggregate of these values for a specific band provides intuition 

into how HU values change as the cone angle increases. Since air voxels are present near 

the cylindrical phantom periphery, they may be included in the outer band. To mitigate this, 

band averaging was not calculated in regions within 1cm of the edge of the phantom.

Two metrics of uniformity7 were used to assess the shading artifact, the integral 

nonuniformity (INU) metric defined as:

INU = CTmax − CTmin
CTmax + CTmin

(18)

and the Uniformity Index (UI) defined as:

UI = 100 × CTperipℎery − CTcenter
CTcenter

(19)

where CTmax and CTmin are the maximum and minimum of the radial bands. The band 

containing the center of mass (called center band) has an average CT number of CTcenter and 

the most peripheral band has an average CT number of CTperiphyry.

2.E. Patient scan validation

Volume data sets from eight patient scans — two for each scanner listed in Table I — were 

used to evaluate the performance of IC on real patient images. These data sets were not 

used for CNN training. Patients for whom images were utilized exhibited variations in breast 

size and density, spanning patient self-reported cup-size of A to D, and average glandular 

fractions of 12% to 29%. The aggregate adipose values of each data set, before and after 

cupping/capping correction, were collected and compared to study the standard deviation of 

adipose voxels values.

3. RESULTS

Figure 4 displays the progression of the network training during multiple epochs (top 

row), and a sequence of an example input image, ground truth, and the output segmented 

image (middle row). The input test image is from a patient data set acquired using scanner 

Bodega. The breast diameter is 14.5 cm, and the breast glandular fraction is 21%. The 

five images captured during the training at epochs 1, 4, 8, 12, and 16 display that the 

network gradually learns features from the volume data sets, starting from the easy to 
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classify regions (i.e., air and adipose), and building up with each iteration to the more 

complex features. One important observation from the CNN segmentation is that the 

small fibroglandular fibers in the reconstructed image [Fig. 2(b)–2(c); middle column] 

are segmented as predominantly sparse fibroglandular [Figs. 2(b)–2(c); right column]; 

whereas in the ground truth segmentation [Figs. 2(b)–2(c); left column], these small fibers 

are segmented predominantly as adipose tissue — highlighting one of the advantages of 

implementing a CNN algorithm for segmentation.

Figure 5 shows the average error quantified in terms of cross-entropy (H) between the 

network output and the ground truth that was generated during the training. The average 

DSC value of the test data set along different epochs is also shown in Fig. 5. Error bars 

display the maximum and minimum of the entropy and DSC values in each epoch.

Three metrics were used in evaluation of the trained neural network’s ability to segment 

different tissue types — precision, recall, and F1 score. Referring to Fig. 6, the drop 

observed in precision, recall, and consequently F1 score from 1 (the ideal value) is mainly 

due to misclassification of the sparse fibroglandular tissue voxels. Air voxels are almost 

unanimously predicted correctly as indicated by the near unity value for all three metrics. 

The adipose voxels show a small decrease (precision = 0.98, recall = 0.96 and F1 = 0.97), 

while the large drops are observed in the case of sparse fibroglandular (precision decrease 

= 8.3% relative to unity, recall decrease = 3.9%, F1 decrease = 2.8%), dense fibroglandular 

(precision decrease = 3.4% relative to unity, recall decrease = 1.5%, F1 decrease = 2.4%), 

and skin (precision decrease = 3.5% relative to unity, recall decrease = 4.7%, F1 decrease = 

4.2%).

Figure 7 displays the segmentation results for three different sized mathematical phantoms. 

The CNN segmentation consistently outperforms the k-means clustering segmentation 

method across all phantoms. The largest difference between the known phantom voxel 

types, and either CNN or 2-means clustering results is observed in the case of glandular 

and adipose voxels. There are consistently more adipose voxels than glandular voxels across 

all phantoms as indicated by the volumetric glandular fractions of 19.9%, 9.5%, and 3.8% 

for V1, V3, and V5 phantoms, respectively. Therefore, the difference between the ground 

truth (mathematical phantoms) and the other segmentation methods is greater for adipose 

than for either skin or fibroglandular tissue types. The error in estimating the ground truth 

background, defined as the absolute difference between the voxels of the ground truth and 

the estimated background, was 11.19 ± 4.91 (mean ± standard deviation) HU.

The segmentation method outlined in Section 2.A is utilized during the CT image flat 

fielding described in Section 2.B. Figure 8 presents six different box-whisker plots showing 

the results of separately applying IC to CT images of three uniform cylindrical polyethylene 

phantoms. The boxes highlight the median and the high (75th %) and low two quartiles 

(25th %) of the coronal band averages (see Fig. 3) throughout the image sections. The 

reconstructed images were first segmented and then flat-fielded using the segmentation 

results. In the case of phantom experiments, segmentation does not change after completion 

of the flat fielding due to the phantom’s simple shape and composition. The IC therefore 

converges in a single iteration. In each case, cupping and capping artifacts were substantially 
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reduced. Band average values converged to the expected polyethylene HU, an indication 

that the voxel HU values were properly calibrated. The relative consistency of the HU 

values along the axial direction after implementation of the IC is indicated in Fig. 8 by a 

significant decrease in the HU variance for each box — implying satisfactory correction 

for the axial HU drop. In summary, Fig. 8 demonstrates that implementation of the IC 

method results in mitigation of axial HU drop and the cupping artifact inherent in cone beam 

breast CT reconstructions. In addition, these results demonstrate that the residual artifact 

(i.e., capping), which is the result of over correcting for the cupping artifact, can also be 

mitigated.

Uniformity metrics of the phantom scan experiments are reported in Tables II and III. The 

UI metric, an index of the extent of curvature in cupping or capping artifacts, was reduced in 

all but one case (15.2 cm phantom — capping). The INU metric results imply that the HU 

drop in the axial direction was reduced with implementation of the proposed IC.

Figure 9 shows the example of CT images from one of the patient scan cases. The displayed 

image data set was acquired using scanner Bodega. Image sections from anatomical regions 

and circumstances containing visible levels of shading artifacts are displayed in this figure. 

Both artifacts, cupping and capping, are treated with the same IC methodology. The line 

profiles of through the image sections display a visual comparison between the quality of the 

images before and after shading correction.

The change in the overall values of the adipose tissue in each patient scan case is shown 

in Fig. 10. In each data set, the adipose tissue variation is reduced as is appreciated by 

comparing the size of boxes before and after applying IC.

4. DISCUSSION

Clinical studies are heavily dependent on quantitative analysis of HU values, and their 

accuracy impacts the quality of a diagnostic study. The focus of this work was on developing 

a postprocessing shading artifact correction method for bCT. The proposed IC method 

consists of two parts: image segmentation and CT image flat fielding. These two tasks are 

highly interdependent. Accurate flat fielding of the CT image depends on correct image 

segmentation. The accuracy of the segmentation task is in turn highly dependent on shading 

artifacts and HU calibration. This interdependency is escalated in the case of large and dense 

breasts, because of the increased amount of x-ray scatter and beam hardening. For instance, 

the fibroglandular tissue voxels may be wrongly classified as adipose in cases that suffer 

from cupping artifact, especially in region near the center of mass in the coronal plane. 

Similarly, a severe capping results in classification of adipose voxels as fibroglandular. 

These misclassifications lead to an erroneous definition of the feature space used for 

polynomial flat fielding and consequently a reduced convexity in the cupping modeled fit or 

an enhanced concavity in the capping modeled fit. Therefore, the modeled fits are not truly 

representative of the background of the bCT images. To address this, sequential utilization 

of the two parts (segmentation and flat fielding) is repeated until the HU of adipose tissue 

matches an expected HU. This value is calculated with knowledge of the x-ray beam quality 

used for each scan.
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The parameters of the neural network architecture used for segmentation were carefully 

selected to accommodate the requirements of the bCT image classification. The cost 

function was modified from the classical cross-entropy form to penalize the misclassification 

of underrepresented voxels types more than the overrepresented voxels. The graphs shown in 

Fig. 5 demonstrate a training saturation after approximately epoch 15. It is important to note 

that training of the network beyond epoch 20 does not yield worthwhile improvement as the 

cost function defined in Eq. (2) is restrained to avoid overfitting. Therefore, the number of 

epochs was set to 20.

Increasing the number of voxels classified as sparse fibroglandular in the segmented image 

implies a reduction in the number of dense fibroglandular or adipose voxel types. This is 

what leads to the difference in the magnitude of error bars in Fig. 6. The variations in the 

metric values are highest in the case of fibroglandular tissue types highlighting the fact 

that a portion of the voxels previously classified as adipose in the ground truth is now 

classified as sparse fibroglandular, the effect that is visible in images shown in Fig. 6. 

The same conclusion is made by comparing the percentage of fibroglandular voxels that 

were correctly classified in the mathematical phantom study. Voxel classification using the 

proposed CNN is much closer to the true category for each voxel than the results gained 

from the histogram-based 2-means clustering method. This is likely due to the fact that the 

blurring used in 2-means clustering results in the sparse fibroglandular tissue voxel values 

being in the adipose tissue territory and being classified as such which gave rise to the 

adipose classified voxels in 2-means clustering as shown in Fig. 7.

The nine steps outlined in Section 2.B provide a systematic methodology for removing 

cupping or capping from the bCT image. The objective is to find an analytical solution 

to the background fitting problem in all three dimensions which is provided by Eq. (13). 

The flat fielding step of the IC was evaluated using mathematical and physical phantoms of 

various sizes and corresponding size-specific fibroglandular distributions. In each of the four 

experimental physical phantom cases, both cupping and capping were successfully reduced. 

Application of the IC method in each of the eight independent patient scan experiments 

resulted in improvement as depicted in Fig. 10.

Among all cases of phantom and patient scan experiments, no bias was observed for 

the algorithm’s performance in resolving cupping or capping as the algorithm tries to fit 

a second order polynomial to the adipose feature space. The algorithm does not favor 

concavity or convexity of the feature space. The cupping/capping is not fully resolved, 

as shown in Fig. 7. This is most likely due to the variations in the adipose CT values 

throughout the CT volume as it affects the fitting model. One can apply a low-pass filter 

to the adipose voxel CT number vectors to reduce this variation. Another potential solution 

would be to statistically track the HU values of adipose voxels, pick outliers, and remove 

them from the feature space to avoid a potential skewing of the fitting process.

The drop in HU along the axial direction was reduced significantly after implementation of 

the IC method which was an unintended, yet advantageous consequence of the developed 

flat fielding method that was developed for correction of the cupping artifact. The low-

frequency HU drop is a well-studied artifact of circular cone beam CT systems. In 
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circular trajectory breast CT systems — such as the ones used in this study — the Radon 

space data of a breast cannot be completely measured as the image acquisition does not 

meet the requirements of Tuy’s data sufficiency condition.72 The average intensity of the 

reconstructed adipose voxels in coronal planes consistently drops moving away from the 

central coronal plane. Results shown in Fig. 8 demonstrate that applying the IC method 

on CT images reduces the variation in adipose voxel values throughout the CT image — 

indicative of a correction for axial HU drop.

Patient scans from four different scanners were used to test the robustness of the flat 

fielding. In all cases, the cupping/capping artifacts were resolved, and the HU values 

were properly calibrated. The relative HU values of the adipose and fibroglandular tissues 

were not affected by applying the IC method. This is consistent with other previously 

reported image domain correction methods.34,37 The importance of this characteristic for 

the proposed IC method is in contrast-enhanced breast CT applications. The iodine contrast 

uptake in tumors — quantified as enhanced HU values — has been shown to correlate with 

conspicuity of malignant breast masses,11 and therefore, preserving the contrast between the 

iodinated tumor and the adipose background is crucial.

5. CONCLUSION

Introduced herein are two novel methods for image segmentation and background fitting, 

which coupled, result in correction for shading artifacts in dedicated breast CT. First, we 

present the design and utilization of a convolutional neural network specific to breast CT. 

Following segmentation is the application of an analytical approach to three-dimensional 

image background fitting. These two methods, implemented as an iterative two-step process, 

correct for shading artifacts that are ubiquitous in breast CT. The accuracy of the presented 

method was demonstrated through mathematical and physical phantom experiments and a 

pilot study of eight patient scans acquired using four differently designed breast CT scanner 

systems.
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FIG. 1. 
Architecture of the convolutional neural network used for semantic image segmentation of 

the breast computed tomography images.
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FIG. 2. 
Generation of the V3 (median-sized) phantom used for IC validation. In each case, the 

coronal view is shown in left and sagittal view in right. A heterogenous phantom with 

volume glandular fraction corresponding to 50% of pollution used in modeling is shown in 

(a). The corresponding physical V3 phantom (b) is scanned twice. The reconstructed images 

are subtracted and normalized to form realistic quantum noise distribution (c). The physical 

phantom is also cupping corrected to simulate a “ground truth” background model (d). The 
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background and noise images are added to the original heterogenous image to generate the 

V3 mathematical phantom (e).
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FIG. 3. 
Band averaging used in physical phantom experiment. A coronal slice of a 15.2-cm 

cylindrical phantom image is shown. Six bands are shown, each 1 cm thick in the radial 

direction and positioned radially symmetric from the center of mass (COM) of the image. 

The voxel values within each band were averaged to generate six values.
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FIG. 4. 
Examples of the progression of the network training. Top row shows the output of the 

network during training. The input coronal image, input segmented image, and the output of 

the trained network are shown in the middle row. The bottom row displays the zoomed-in 

views of the regions of interest.
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FIG. 5. 
The progression of average error during network training. The cross-entropy (H) between 

the output of the network and the input image is shown. The Dice similarity coefficient 

(DSC) between output and the reference segmentation masks in the test set is shown in the 

bottom graph. Error bars display the minimum and maximum values in each epoch.
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FIG. 6. 
Results of the precision, recall, and F1 score metrics used to evaluate the trained 

network’s ability to correctly classify the test image voxels according to the corresponding 

ground truth. The voxel types are denoted as air (background-BG), adipose (A), sparse 

fibroglandular (SF), dense fibroglandular (DF), and skin (SK).
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FIG. 7. 
Mathematical phantom segmentation results using the proposed convolutional neural 

network (CNN) or 2-means clustering segmentation processes. The type of voxel is already 

known in the ground truth image (generated mathematical phantom). Different types of 

voxels are extracted after segmentation via each method and compared to the ground truth. 

The V1 (a), V3 (b), and V5 (c) mathematical phantom results are shown in top, middle, and 

bottom rows, respectively.
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FIG. 8. 
Box-whisker plots presenting phantom experiment results in evaluation of IC for the 

correction of cupping, capping, and cone beam HU drop artifacts in addition to HU 

miscalibration for a 15.2 cm (top row), 12.7 cm (middle row), and 10.2 cm (bottom row), 

12.7 cm (middle row), and 10.2 cm (bottom row) diameter polyethylene phantom. In each of 

the 6 plots, the leftmost “Box” edge represents the first quantile boundary, the vertical line 

inside of the box represents the median, and the rightmost edge represents the third quantile 

boundary. The left and right columns show the results of using IC in cupping and capping 

cases, respectively, across phantom sizes. The change in the average HU band values along 

the axial axis is demonstrated through the size of each box. In each case, the quantile 

variance is reduced (the box width shrinks) after flat fielding, indicating a correction of HU 

change in axial direction.
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FIG. 9. 
Evaluation of the IC for an example patient scan on the Bodega scanner. Shown in red 

in each coronal or sagittal view are the line profiles along the longest axes containing the 

breast tissue. Blue and green lines show the line profiles along the modeled background and 

corrected images, respectively. The theoretical adipose HU value (−110 HU as mentioned in 

Table I) is shown in dotted black.
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FIG. 10. 
Change in adipose tissue voxels before and after correction. Eight total cases from four 

scanner are selected. The median, first, and third quantile of adipose voxels in each data sets 

are displayed. The 1% and 99% of the histogram are shown using error bars.
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TABLE I.

Dedicated breast computed tomography systems used in this study along with the corresponding x-ray beam 

characteristics.

Scanner kV Filtration 1st HVL (mm AL) Effective energy (keV) Theoretical 100% adipose tissue HU

Albion 80 0.30 mm Cu 5.7 45 −89

Bodega 80 0.20 mm Cu 5.0 42 −110

Cambria 65 0.25 mm Cu 4.0 39 −128

Doheny 60 0.20 mm Gd 3.6 36 −151
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TABLE II.

Uniformity Index metric of phantom scans before and after IC application. Positive UI values indicate 

cupping, negative UI valued indicate capping.

UI%

Cupping Capping

Phantom size Before After Before After

15.2 cm −19.92 −6.00 −1.53 −1.92

12.7 cm −11.86 −2.77 6.32 3.02

10.2 cm −4.69 −1.54 8.39 2.87
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