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Abstract

Coronavirus Disease 2019 has emerged as a significant global concern, triggering harsh public 

health restrictions in a successful bid to curb its exponential growth. As discussion shifts towards 

relaxation of these restrictions, there is significant concern of second-wave resurgence. The key to 

managing these outbreaks is early detection and intervention, and yet there is a significant lag time 

associated with usage of laboratory confirmed cases for surveillance purposes. To address this, 

syndromic surveillance can be considered to provide a timelier alternative for first-line screening. 

Existing syndromic surveillance solutions are however typically focused around a known disease 

*To whom correspondence should be addressed: correspondence to: Fan.Jung-Wei@mayo.edu; Liu.Hongfang@mayo.edu.
Author Contributions
AW: Designed, implemented study, performed experiments. AW, LW, HH, SL, SF, MH, YW, FS: Determined symptom inclusion/
exclusion criteria for NLP algorithm and similar contributions to the divisional COVID-19 work group, preparation of NLP algorithm 
for public distribution, and other miscellaneous project tasks. HH, SL: Generation of graphs and figures as presented in manuscript. 
AW, SS, JAK, VCK: NLP engine work used for this study, interfacing with institutional data sources. JF, HL: Direction on study 
design and conceptualization, project leadership. All authors reviewed and contributed expertise to the final manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Competing Interests Statement
The authors declare no competing interests

Code Availability
The NLP engine and associated algorithm used to extract ILI symptoms as described in this study is available within the MedTagger 
project (https://www.github.com/OHNLP/MedTagger). Please consult the Wiki and README file accessible from the linked page for 
instructions on how to use for the COVID-19 use case.
The aberration detection/sentinel syndromic surveillance component has been decoupled from institutional data sources and is 
available at https://github.com/OHNLP/AEGIS. As this is an active project undergoing improvement and new features that may lead to 
changes in the underlying code inconsistent with what was described in this manuscript, we have tagged the codebase as described in 
this manuscript with the COVID19 tag.

Data Availability
Due to the results of the symptom extraction process being considered protected health information, data is not available as it would be 
difficult to distribute to anyone not engaged in an IRB-approved collaboration with the Mayo Clinic.

Conflict of Interest Declaration
The authors declare no competing financial interests

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
J Biomed Inform. 2021 January ; 113: 103660. doi:10.1016/j.jbi.2020.103660.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.github.com/OHNLP/MedTagger
https://github.com/OHNLP/AEGIS


and have limited capability to distinguish between outbreaks of individual diseases sharing similar 

syndromes. This poses a challenge for surveillance of COVID-19 as its active periods tend to 

overlap temporally with other influenza-like illnesses. In this study we explore performing sentinel 

syndromic surveillance for COVID-19 and other influenza-like illnesses using a deep learning-

based approach. Our methods are based on aberration detection utilizing autoencoders that 

leverages symptom prevalence distributions to distinguish outbreaks of two ongoing diseases that 

share similar syndromes, even if they occur concurrently. We first demonstrate that this approach 

works for detection of outbreaks of influenza, which has known temporal boundaries. We then 

demonstrate that the autoencoder can be trained to not alert on known and well-managed 

influenza-like illnesses such as the common cold and influenza. Finally, we applied our approach 

to 2019–2020 data in the context of a COVID-19 syndromic surveillance task to demonstrate how 

implementation of such a system could have provided early warning of an outbreak of a novel 

influenza-like illness that did not match the symptom prevalence profile of influenza and other 

known influenza-like illnesses.
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I. Introduction

The fast spread of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory 

syndrome coronavirus 2 (SARS CoV-2), has resulted in a worldwide pandemic with high 

morbidity and mortality rates1–3. To limit the spread of the disease, various public health 

restrictions have been deployed to great effect, but as of May 2020, international discussion 

has begun shifting towards relaxation of these restrictions. A key concern is, however, any 

subsequent resurgence of the disease4–6, particularly given that the disease has already 

become endemic within localized regions of the world7. This issue is further exacerbated by 

significant undertesting, where estimates have found that more than 65% of infections were 

undocumented8,9. Additionally, increasing levels of resistance and non-adherence to these 

restrictions has greatly increased resurgence risk.

A key motivation behind the initial implementation of public health restrictions was to 

sufficiently curb the case growth rate so as to prevent overwhelming hospital capacities10,11. 

While the situation has been substantially improved, a resurgent outbreak will present much 

the same threat11. Indeed, second-wave resurgence has already been observed in Hokkaido 

Japan after public health restrictions were relaxed, and these restrictions were re-imposed a 

mere month after being lifted12. Additionally, from a healthcare provider perspective, 
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significant nosocomial transmission rates for the disease have been found despite 

precautions13–15, a significant concern as many of the risk factors in terms of severity and 

mortality for COVID-192,16 can be commonly found within an in-hospital population. To 

avoid placing an even greater burden on already strained hospital resources, it is important 

that healthcare institutions respond promptly to any outbreaks and modify admission criteria 

for non-emergency cases appropriately. For both reasons, it is critical to detect outbreaks as 

early as possible so as to contain them prior to requiring reinstitution of these extensive 

public health restrictions. Early detection is, however, no mean feat. Reliance on laboratory 

confirmed COVID-19 cases to perform surveillance introduces significant lag time after the 

beginning of the potential shedding period as symptoms must first present themselves17,18 

and be sufficiently severe to warrant further investigation, before test results are received. 

This is further complicated by limited test reliability, with RT-PCR tests having an estimated 

sensitivity of 71%19, and serological tests, despite having high reported specificity, having 

significant false positive rates. Moreover, asymptomatic carriers, which in some studies have 

been found to reach as much as 50–75% of the actual case population20–22, present 

significant risk, particularly amongst the healthcare provider population.

It is therefore evident that any surveillance solution relying purely on laboratory-confirmed 

cases will suffer from a significant temporal delay as compared to when the transmission 

event actually occurs, suggesting that a syndromic surveillance solution may be necessary23. 

In this study, we aim to perform computational syndromic surveillance for novel influenza-

like illnesses such as COVID-19 amongst a hospital’s patient population (comprising both 

inpatient and outpatient settings) to detect outbreaks and prompt investigation in advance of 

actual confirmation of cases.

In the following sections, we will first briefly discuss the history of digital syndromic 

surveillance approaches and provide an introduction to our proposed approach in the 

background section, expand in further detail and provide dataset procurement and evaluation 

procedure in the methods section, show the results of our evaluation in the results section, 

and discuss interpretation of our results and potential pitfalls in the discussion section.

II. Background and Related Work

Digital syndromic surveillance systems came to the forefront of national scientific attention 

for bioterrorism preparedness purposes24, particularly in the wake of the anthrax attacks in 

the fall of 200125. Such systems, however, were quickly noted to also be of use in clinical 

and public health settings26. In this section, we will first present an introduction to existing 

disease surveillance approaches, and then discuss the theoretical justifications behind our 

proposed approach.

2.1 Syndromic Surveillance for COVID-19 and Other Novel Influenza-Like Illnesses

Approaches that have been explored for disease surveillance27 include usage of simple 

statistical thresholds on raw frequency or prevalence data, to statistical modeling and 

visualization approaches such as Cumulative Sums (CUSUM), Exponentially Weighted 

Moving Averages (EWMA), and autoregressive modeling28–33.
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For example, the United States Centers for Disease Control and Prevention (CDC) applies 

CUSUM modeling to monitor for Salmonella outbreaks34, while Stern et al. proposed a 

compound smoothing technique for the same task35. Akhtar et al.36 employed a dynamic 

neural network model based on the NARX neural network model37,38 for Zika surveillance. 

Anno et al. applied convolutional neural networks on spatiotemporal data for dengue fever 

hotspot detection39. For general disease surveillance, the US CDC operates the EARS 

system29,40 which utilizes an aggregation of historical limits (mean + 2 standard deviations), 

log-linear regression41, CUSUM, compound smoothing35, and autoregressive models 

(ARIMA)42 while the US Department of Defence operates the ESSENCE system43, which 

uses a variety of statistical modeling techniques including a modification of the Kulldorff 

scan statistic, CUSUM, EWMA, and autoregressive modeling. A similar work by Reis et al. 

utilizes much the same methods, implementing CUSUM, EWMA, and SatScan (from which 

ESSENCE derived its Kulldorff scan statistic) for its detection modules44. Lake et al utilized 

an ensemble of Bayesian classifiers45 for general disease surveillance.

More specifically to the syndromic surveillance of influenza-like illnesses (ILI), at a national 

level, the United States Centers for Disease Control and Prevention operates the ILInet, a 

national statistical syndromic surveillance solution deriving its data from reports of fever, 

cough, and/or sore throat without a known non-influenza cause within outpatient settings28. 

ILInet’s detection component implemented statistical cutoffs based on historical data, 

specifically the mean percentage of patient visits for ILI + 2 standard deviations during off-

season weeks over the previous three influenza seasons as a detection threshold28. Prior 

work by Sebastiani et al30 and Chan et al46 both explored using Bayesian modeling variants 

to perform the surveillance task. Cheng et al.47 explored using an aggregation of statistical 

modeling and machine learning techniques including ARIMA, random forests, support 

vector regression, and extreme gradient boosting to perform an influenza prediction task, 

that could then be used for early warning purposes.

While generally effective, many of these approaches are limited in granularity to a syndrome 

level: although they perform surveillance of the frequencies or prevalence of a particular 

syndrome or illness as a whole, but do not make a distinction amongst individual diseases 

that share similar syndromes. This is an issue for our task at hand as COVID-19’s syndrome 

very closely resembles that of many other seasonal diseases such as influenza, the common 

cold, or even allergic reactions. As such, while an outbreak of a novel influenza-like illness 

like COVID-19 may be registered in these surveillance systems, they may be difficult to 

discern if the outbreak temporally overlaps with known seasonal illnesses sharing the same 

syndrome (e.g. if they begin at the height of the influenza season), and the ongoing outbreak 

may be misattributed to the more benign seasonal disease. The underlying symptom 

prevalence amongst positive cases of influenza-like illnesses is, however, perceptibly 

different. For instance, while the symptom prevalence distribution for positive cases of 

influenza amongst the hospitalized, vaccinated, sub-50, population is 98%, 88%, 83%, 87%, 

and 96% for cough, fever, headache, myalgia, and fatigue respectively48, the distribution for 

the same symptoms is 59%, 99%, 7%, 35%, and 70% respectively for hospitalized 

COVID-19 positive cases13. As an outbreak of COVID-19 will likely affect the background 

symptom prevalence distribution in a different manner than an outbreak of influenza, we 

theorize that an approach incorporating symptom prevalence distributions as part of its input 
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data as opposed to the frequency/prevalence of the syndrome as a whole will be able to 

perform this differentiation and as such suppress outbreaks of known, relatively benign, 

seasonal diseases at the user’s discretion.

2.2 Leveraging Autoencoders to Perform Aberration Detection Detection

In this study, we adapted an approach to perform aberration detection that is commonly used 

within the general domain, autoencoders49–51, for our syndromic surveillance task. An 

autoencoder (also commonly termed a “Replicator Neural Network”) is a neural network 

trained in a self-supervised manner to first encode the input into a lower-dimensional form, 

and then decode this lower-dimension form to reconstruct the input52. In other words, a 

trained autoencoder learns two functions, an encoding function and a decoding function, 

such that given an input x, encode x = y, decode y ≅ x, x > y  and x ≠ y. A natural property 

of autoencoders is that their encoding and decoding functions only function properly for 

input data that is similar to the data for which it is trained: data that differs in its input 

features compared to the training data will fail to be successfully reconstructed such that 

y ≠ x.

There are many variations of autoencoder-based aberration detection methods: the simple 

model with hidden layers of reduced dimensionality to act as a bottleneck and force non-

linear transformation that we present here can be considered a base that can be further 

modified. Past work has involved replacing individual units with more complex networks to 

address particular characteristics of the input data. For instance, outside of the clinical 

domain, units in autoencoder networks have been replaced with recurrent neural networks, 

particularly long short-term memory blocks (LSTMs)53 to address time-series dependencies 

in the input data54–57. Convolutional neural networks have also been used in conjunction 

with autoencoders for the same purpose58,59.

Beyond the substitution of individual units within the autoencoder itself with more complex 

networks, alternative autoencoder architectures exist. For instance, the autoencoder 

architecture we presented earlier is an example of an undercomplete autoencoder, where the 

dimensionality of the hidden layer is smaller than that of the input and output layers to 

prevent the autoencoder from learning the identity function. One alternative that has also 

been applied to the anomaly detection task is the denoising autoencoder (DAE)60,61, 

whereby noise is added to the input data (e.g. by randomly zeroing certain input nodes). 

Instead of constraining the hidden representation, this approach aims to build a more robust 

representation by providing a hint during the network learning process to capture useful 

features that are able to accurately denoise the input data62. Sparse autoencoder architectures 

have also been proposed for the anomaly detection task63–65, where the dimensionality of 

the hidden layers is on-par with or larger than the input and output layers, but the number of 

active hidden layer units is restricted.

For the purposes of syndromic surveillance, we theorize that the autoencoder approach can 

be adapted: given a distribution of symptom prevalence within the clinic, we would expect 

that distribution to change significantly should an outbreak occur. This implies that during 

an actual outbreak, the reconstruction error would increase perceptibly as compared to 

during normal time periods and can thus be plotted against time to provide a readily 
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interpretable visualization of an outbreak of a novel influenza-like illness. As very limited 

work has been done to apply autoencoder-based anomaly detection to epidemiologic 

surveillance tasks, we have opted to use a basic undercomplete autoencoder architecture 

without any special substitutions in the individual neural unit types to verify the underlying 

theory in an epidemiologic surveillance context. It is important to note that these variations 

all intended to bolster representation learning and reconstruction performance, usage of 

these variations does not fundamentally alter the theory behind why we are applying the 

autoencoders themselves – that is to say that reconstruction error will increase as input 

symptom prevalence distributions become more dissimilar to that of the training data.

In other words, to accomplish the COVID-19 and other novel influenza-like illness 

syndromic surveillance task, we propose that:

1. By mining the raw mentions of symptoms within a syndrome of interest through 

an NLP-based approach, we can estimate the prevalence of individual symptoms 

amongst the overall patient population in a timely manner

2. By delineating certain time periods as “normal” (i.e. no outbreaks of surveilled 

target of interest) for autoencoder training purposes, the resulting model can be 

used to perform syndromic surveillance by measuring the error score of any 

given day’s input symptom prevalence distribution. Crucially to the COVID-19 

and novel ILI detection task itself, “normal” time periods can also contain 

outbreaks of seasonal influenza, which should lead the model to learn the 

appropriate symptom prevalence distributions so as to not have elevated errors 

during typical influenza seasons.

III. Materials and Methods

The true beginnings of the COVID-19 pandemic within the United States is still a subject of 

much contention, with the date being pushed earlier as investigation continues67. As such, it 

is difficult to directly validate any conclusions about the viability of autoencoder-based 

syndromic surveillance for COVID-19. We therefore validated our approach incrementally 

through a three-phase approach:

1. Validating the utility and accuracy of autoencoder-based anomaly detection for 

syndromic surveillance on a disease with known outbreak time periods

2. Validating that given appropriate training data, our autoencoder model can 

effectively learn the symptom distributions of outbreaks of COVID-19’s 

common seasonal differentials such as influenza, allergies and the common cold 

within its underlying model, i.e. that it is capable of suppressing outbreaks of 

these other, known, seasonal illnesses from its resulting signal

3. Applying an autoencoder based anomaly detection approach to syndromic 

surveillance of COVID-19 over the past year of data and evaluating the resulting 

error plot against currently known key dates for the COVID-19 pandemic

We present an overview of our experimental procedure in Figure 1, and outline each step in 

detail within the ensuing subsections.
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3.1 Sign/Symptom Extraction

Sign and symptom extraction via natural language processing was accomplished via the 

MedTagger NLP engine68,69. The signs and symptoms chosen were selected via a literature 

review conducted in early March 2020 for known COVID-19 and influenza symptoms13,70. 

Specifically, mentions of Abdominal Pain, Appetite Loss, Diarrhea, Dry/Nonproductive 

Cough, Dyspnea, Elevated LDH, Fatigue, Fever, Ground-Glass Opacity Pulmonary 

Infiltrates, Headaches, Lymphopenia, Myalgia, Nasal Congestion, Patchy Pulmonary 

Infiltrates, Prolonged Prothrombin Time, and Sore Throat were used for all three 

experiments. Additionally, explicit mentions of influenza were used for phase 2 (establishing 

baseline/incorporating influenza seasons as part of “normal” symptom prevalence 

distributions) and phase 3 (COVID-19 surveillance task) of our experiment. Only positive 

present NLP artifacts with the patient as the subject were retained.

3.2 Symptom Prevalence Distribution Dataset

Clinical documentation generated from January 1st 2011 through May 1st 2020 was utilized 

as part of this study, with the exclusions detailed within the Data Limitations subsection 

within our Discussion section (January 1st – July 1st 2016, May 1st – July 7th 2018). For 

each day within this range, a symptom prevalence feature vector was generated, where each 

item in the vector corresponds to the symptom prevalence of one of the symptoms of interest 

for that day. We define symptom prevalence on any given day as the number of unique 

patients that had a clinical document generated that day containing a NLP artifact 

corresponding to that symptom (that was positive, present, and had the patient as the subject) 

divided by the number of unique patients that had at least 1 clinical document generated on 

that day.

This dataset was then subdivided into different training and plotting (for simulated 

surveillance purposes) definitions for each of the tasks at hand. We have provided a 

summary of these divisions in Table 1.

3.3 Autoencoder Architecture and Implementation

Our neural network was implemented in Java via the DL4J deep learning framework71. For 

our purposes we used a 5-layer fully-connected stacked autoencoder consisting of 

[INPUT_DIM, 14, 12, 14, INPUT_DIM] nodes in each respective layer, where INPUT_DIM 

refers to the dimensionality of the input data. For influenza detection, this was 16 (excluding 

influenza prevalence), and for all other tasks, this was 17. The activation function used for 

all layers was the sigmoid activation function, except for the output layer, which used the 

identity function, with all inputs being rescaled to the [−1, 1] range. The optimization 

function, their associated learning rate, and the L2 regularization penalty used were selected 

via five-fold cross-validation, where optimization function was one of AdaDelta72, 

AdaGrad73, or traditional stochastic gradient descent74 and their respective learning rate was 

selected from 100 randomly sampled points from the range [0.0001, 0.01], with the 

exception of AdaDelta, as it is an adaptive learning rate algorithm, and we instead used the 

recommended default rho and epsilon of 0.95 and 0.000001 respectively. An L2 

regularization penalty75 was selected from 100 random samples in the range [0.00001, 

0.001]. The cost function used was mean squared error. For all model training tasks, 30% of 
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the training data from “normal” time periods was withheld for testing purposes, and the 

aforementioned five-fold cross-validation was then done on the remaining 70% for 

hyperparameter selection and model training was done using the entire train dataset as one 

batch, over 1000 epochs utilizing early stopping (5 iterations with score improvement < 

0.0001) and selecting the model resulting from the epoch that had the best performance 

against the withheld test dataset.

3.4 Evaluating Influenza Season Detection Capabilities

To validate the utility and accuracy of autoencoder-based anomaly detection for syndromic 

surveillance, we chose syndromic surveillance of influenza seasons as the target task. This 

task was chosen primarily due to two factors: 1) its relatively well-defined outbreak periods 

(available both at a national and state level via the CDC Morbidity and Mortality Weekly 

Reports76–83 and the CDC Influenza-Like-Illness (ILI) Activity Tracker84 respectively) and 

2) its similarity in potential input features (due to similar symptom presentations) to our end-

goal of performing COVID-19 syndromic surveillance.

For training purposes, we used seasonal date ranges as defined in the US CDC released 

morbidity and mortality weekly report (MMWR) and selected flu offseason for the odd-

numbered years between 2010 and 2018 as our training set76–83. Specifically, the date 

ranges used for training were [2011-05-22, 2011-10-02), [2013-05-19,2013-09-29), 

[2015-05-23, 2015-10-04), and [2017-05-20, 2017-10-01).

For these date ranges, all extracted symptom prevalence information was included for 

training with the exception of explicit mentions of influenza, as that might provide an 

unwarranted hint for the task to the underlying trained network.

To evaluate this approaches’ effectiveness for influenza season detection, we ran the trained 

autoencoder on all years from 2011 through May of 2018 (when the Epic EHR migration 

occurred), and plotted the error, as determined by the mean-squared error between the 

supplied input feature set and the network’s outputs, with a particular focus on detected 

influenza seasons starting on even years.

The best performing model from training was selected, and the anomaly threshold was 

determined as the mean + 2 standard deviations of the reported errors derived from the test 

partition resulting from cross-validation of the normal (training) time periods, with errors 

higher than this value being deemed anomalous.

The errors were plotted and compared against timespans with elevated influenza activity, 

both at a national level via the official MMWR defined influenza season and in terms of ILI 

activity for the state of Minnesota as reported by the CDC ILInet. The distinction is 

important as while the CDC MMWR reports a national level influenza season, the actual 

periods of elevated activity differ from state to state, and we would only truly be able to 

detect anomalies when influenza activity is actually elevated within Minnesota, as that is the 

source for our data.
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3.5 Evaluating Autoencoder Capability to Embed Influenza Season Data as “Normal”

COVID-19 syndromic surveillance is severely complicated by its similar presentation and 

overlapping timeframe with a variety of seasonal illnesses, such as the common cold, 

allergies, and influenza. To verify that an autoencoder-based COVID-19 syndromic 

surveillance solution will be functional, we must first verify that, if supplied as part of its 

training data, outbreaks of these seasonal illnesses will not be reflected in its resulting error 

plots. To that end, we again use influenza as the target for evaluation here, due to its 

relatively well-defined temporal boundaries.

In this phase, we use data from May 22nd 2011 (the end date of the 2010–2011 influenza 

season) through January 25th 2014 (the end date for observed moderate-or-greater ILI 

activity in the state of Minnesota for the 2013–2014 influenza season) as our training set.

Unlike in the previous phase, the prevalence of influenza mentions is included within the 

feature set for training to supply explicit knowledge about the occurrence of and the 

magnitude of ongoing influenza seasons. Additionally, to ensure a balance in examples, we 

sampled from the influenza off-seasons such that the number of off-season examples 

corresponded to the number of in-season examples.

Once training using this dataset was completed, we then ran this new autoencoder model on 

all data between January 25th 2014 and January 1st 2016 and plotted the mean squared error 

between the supplied input and the autoencoder’s resultant output, with a focus on even 

years.

The anomaly threshold was again set to the mean + 2 standard deviations of the test partition 

error during the training time period and the resultant anomalous spans were used to 

evaluate the autoencoder’s capability to embed influenza and other seasonal differential data.

3.6 Applying Autoencoder-Based Anomaly detection for COVID-19 Syndromic 
Surveillance

At this point in the experiment we will have validated that a) an autoencoder reconstruction 

error-based approach to anomaly detection is capable of reflecting both the occurrence and 

the magnitude of shifts in underlying symptom prevalence distributions, and b) if included 

as part of the “normal” training data, autoencoders will successfully reconstruct symptom 

prevalence distributions occurring during COVID-19’s seasonal differentials. We can thus 

proceed with the targeted task of this study: syndromic surveillance of the COVID-19 

outbreak within the United States, particularly within Olmsted County, Minnesota, the 

location of the Mayo Clinic Rochester campus.

In this phase, we use data from August of 2018 through June of 2019 (Exclusive) as our 

“normal” training data. Again, we ensure a 50/50 balance of influenza in-season and off-

season examples in our dataset prior to partitioning the data for cross-validation. As with our 

previous experiments, the anomaly threshold was set to the mean + 2 standard deviations of 

the test partition error during the training time period.
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The resulting model was run on data from June of 2019 through present, and the resulting 

errors were plotted for further analysis.

IV. Results

In this section, we will evaluate and interpret the resulting error plots from our three 

experiments in order by first verifying that autoencoder-based anomaly detection can be 

used for syndromic surveillance, then verifying that seasonal illnesses sharing similar 

syndromes can be suppressed, and then applying our approach to the COVID-19 

surveillance problem.

4.1 Autoencoder-Based Anomaly detection is Viable for Syndromic Surveillance

In Figure 2, we present the error plot relative to the anomaly threshold of a stacked 

autoencoder trained using influenza off-season data for the purposes of syndromic 

surveillance of influenza. We additionally highlight official CDC flu seasons (national level) 
76–83 in orange, and time periods with heightened (moderate or greater) ILI activity84 within 

the state of Minnesota (from where our data originates) in red.

Our error plots and the close congruence between periods of heightened autoencoder 

reconstruction error and influenza activity does suggest that our approach is fairly successful 

at performing the influenza syndromic surveillance task. Of particular note, the magnitude of 

the reconstruction error is also closely tied to the associated severity of the outbreak, as can 

be seen in the location of our error peaks relative to state-level ILI activity tracking.

As such, our results here suggest that an autoencoder-based anomaly detection approach to 

syndromic surveillance is capable of picking up and alerting on the underlying changes in 

the prevalence of influenza-related symptoms in the practice during influenza season as 

opposed to the off-season, both in terms of identifying that the underlying distribution of 

symptom prevalence changed and in reflecting the magnitude of the differences in 

underlying distribution of symptom prevalence compared to normal time periods within its 

reconstruction error.

These results are promising for our eventual experiment for COVID-19 syndromic 

surveillance as the underlying assumptions are similar: COVID-19 and influenza share very 

similar symptoms, but the underlying distribution of the prevalence of individual symptoms 

within their respective cases will likely differ. It is expected that an autoencoder will be able 

to pick up on these prevalence distribution differences in a similar manner to the influenza 

season vs. offseason variation.

4.2 Autoencoders can be Trained to Suppress Alerting on Outbreaks of Illnesses Sharing 
Similar Syndromes

In Figure 3, we present the mean squared error plot of a stacked autoencoder trained using 

data covering three influenza seasons and off-seasons, with the aim of verifying that typical 

influenza seasons can be suppressed from anomalous readings by incorporating their 

symptom prevalence distributions as part of training data.
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Our results demonstrate that our autoencoder has successfully incorporated symptom 

prevalence data for influenza and other seasonal diseases with similar differentials occurring 

within the target period, as can be seen by the relatively consistent reconstruction error 

throughout the year with peaks being dramatically suppressed in magnitude compared to the 

highly visible peaks in Figure 2.

4.3 Syndromic Surveillance Viable for Sentinel Detection of Novel Influenza-Like-
Illnesses

In Figure 4, we present the mean error plot of a stacked autoencoder trained using a year of 

both influenza season and off-season data applied to data from June 1st, 2019 through April 

30th, 2020. We additionally annotated the resulting plot with dates pertinent to the 

COVID-19 epidemic in Minnesota to provide additional context to the detected signals.

Our results suggest the following with respect to the time period prior to the first laboratory 

confirmed case in the state of Minnesota:

1. A spike occurring the week of September 15th, 2019. We do not believe this is 

COVID-19 related and will elaborate more on this in the discussion section.

2. A persistent, low level of elevated anomalous signals beginning late December 

through the first laboratory confirmed COVID-19 case within Olmsted County, 

Minnesota occurring March 11th, 2020. This period is marked by two dramatic 

spikes occurring January 23rd and March 11th 2020 that we will also discuss in 

the discussion section. This period of elevated anomalous signals does roughly 

match the period of heightened state-level ILI activity as reported by the CDC.

When interpreting these results, it is important to note that CDC’s ILI tracker is itself a form 

of syndromic surveillance and doesn’t explicitly indicate levels of influenza-specific activity, 

but rather all syndromes with similar symptomatic presentations: specifically, ILInet uses 

fever, cough, and/or sore throat without a known non-influenza cause as the data through 

which it performs its tracking28. It is therefore expected that our detected anomalous time 

periods will match, as COVID-19 itself shares many of these symptoms.

The fact that elevated anomalous results appeared in our error plot, however, suggests that 

the underlying symptom prevalence distributions seen within the clinical practice are 

atypical of those seen in other influenza seasons: per the second phase of our experiment, we 

established that “typical” influenza seasons can be suppressed from anomalous readings by 

incorporating their symptom prevalence distributions as part of training data. We would have 

thus expected the error rates to have remained largely under the anomaly threshold with no 

significant peaks, unlike what was observed here.

V. Discussion

While our results are promising, given that autoencoder-based anomaly detection is a 

relatively black-box method, there are several important points to consider when interpreting 

the resulting error plots. In this section, we will first discuss potential interpretation pitfalls, 

then discuss the opportunities our work presents for novel influenza-like illness surveillance 
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in the context of the COVID-19 outbreak, before finally closing with an outline of 

limitations of this study.

5.1 Interpreting Anomalous Signals and Potential Attribution Errors

It is important to note with all our results presented here that the anomaly detection 

component detects anomalies in the input data, i.e. anomalies in the incoming symptom 

prevalence distributions. Such anomalies can, however, be caused by a variety of external 

factors and are not necessarily indicative of an outbreak. As such, while such a system can 

serve as an early-warning system to alert that an anomaly exists as well as the magnitude of 

such an anomaly, further human investigation is needed to identify the underlying reasons as 

well as to confirm whether an outbreak is occurring. With reference to our results derived 

from Figure 4 suggesting a sustained elevated anomalous error rate starting the final week of 

December through the first laboratory confirmed COVID-19 case, it would therefore be 

premature to directly conclude that the anomalous time period is attributable to only 

COVID-19, such a conclusion would only be possible to achieve had laboratory tests been 

done during that time period. Instead, it serves only as an indicator of the need for additional 

investigation.

An example of the potential for attribution error can be shown where, in Figure 5, we note 

that while the periods of elevated error rates for the 2017–2018 influenza season do roughly 

correspond to the official CDC-determined flu season and periods of heightened ILI activity, 

starting May of 2018, the error rate rises outside the display range of the chart. This anomaly 

does, in fact, exist in reality, but is not tied to a renewed outbreak of influenza-like illness. 

Rather, the Mayo Clinic Rochester clinic migrated EHR systems from its historical GE 

Centricity-based EHR to the Epic EHR, and the go-live date for clinical operations was May 

1st. Due to the changes in clinical workflows and associated documentation practices, the 

underlying distribution of positive symptom prevalence mentions within clinical 

documentation also dramatically changed, and that anomalous change was appropriately 

detected.

A similar phenomenon is reflected in Figure 4. A brief spike in the plotted errors occurs 

mid-September 2019: further investigation leads us to hypothesize that rather than an 

outbreak of influenza-like illness during this timeframe, this spike was related to media 

coverage and associated greater patient concern to a local outbreak of E.coli during this 

same time period originating from a popularly attended state fair85. Similarly, two events 

that triggered greatly increased media coverage and associated public awareness are 

highlighted in red, the initial lockdown of the city of Wuhan and Hubei province on January 

23rd 2020, the event that originally brought the coronavirus outbreak to the public’s 

attention, and the first laboratory-confirmed COVID-19 case within Olmsted County, 

Minnesota on March 11th 2020. Instead of directly attributing the spike to only actual 

[undiagnosed] COVID-19 cases, the news coverage and increased patient concern likely 

caused a dramatic increase in patient healthcare engagement, and that increase is likely 

reflected here with the dramatic spikes. Nevertheless, these “public awareness and concern” 

spikes are typically obvious, as the spike is sudden, relatively large in magnitude, and are 

temporally co-located with publicly available news sources.
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With reference to our results derived from Figure 4 suggesting a sustained elevated 

anomalous error rate starting the final week of December through the first laboratory 

confirmed COVID-19 case, it would therefore be premature to directly conclude that the 

anomalous time period is attributable to only COVID-19, such a conclusion would only be 

possible to achieve had laboratory tests been done during that time period. Instead, it would 

only have had served as an indicator for the need for additional investigation.

5.2 Autoencoder-Based Syndromic Surveillance: Retrospective and Prospective 
Opportunities

Had a syndromic surveillance solution similar to what we established in phase 3 of our 

experiment existed at the time of the Hubei lockdown, anomalous readings would have 

appeared far in advance of the actual first laboratory-confirmed case even within the United 

States, and alert on a possible outbreak a novel influenza-like-illness that did not share 

similar symptom prevalence distributions as priorly encountered influenza seasons. This 

information could have been used as an actionable signal for further investigation suggesting 

a possible spread of COVID-19 within the served community and been a prompt for far 

more aggressive testing than what was done in practice. From a public health perspective, 

this could have allowed for earlier intervention and potentially dramatically reduced 

outbreak magnitude.

From a prospective perspective, such a syndromic surveillance approach can potentially be 

utilized to provide early warning of future outbreaks, particularly with respect to 

differentiation from outbreaks of other influenza-like illnesses. As public health restrictions 

are eased, such capabilities are increasingly critical for detection and early intervention in 

the case of second-wave outbreaks within the individual hospital’s served communities. It is 

important to note, however, that clinical workflows with respect to patients presenting with 

influenza-like illnesses, and by extension documentation practices will have substantially 

changed in the post COVID-19 era; these changes will be reflected in elevated error rates. 

Such a discrepancy may be addressed through the application of transfer learning: with a 

pretrained model similar to that which would be produced from phase 3 of our experiment, 

limited retraining of the existing model on a month of “normal” data after resumption of full 

clinical operations might be sufficient to adapt it to the post COVID-19 data distributions.

Beyond COVID-19 itself, the approach presented here can be adapted to monitor and surveil 

for any novel ILI that shares similar symptoms, greatly expanding the applicability of our 

approach beyond the currently ongoing COVID-19 pandemic. Additionally, should the input 

symptom feature set be expanded beyond symptoms associated with influenza-like illnesses, 

we theorize that this approach can be applied to syndromic surveillance of other diseases. 

We have left such explorations to future work.

5.3 Data and Study Limitations

Our study faced several challenges from a data perspective. Firstly, it must be noted that 

patient profiles significantly change between normal work-week operations and weekends/

holidays, which are far more likely to be acute or emergency care. As such, to prevent these 

from becoming a confounding factor and unduly influencing our anomaly detection error 
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plots, data points relating to weekends, US federal holidays, Christmas Eve and New Year’s 

Eve were excluded from our datasets. We do not believe that this has affected the validity of 

our results, further evidenced by the plot in Figure 5, showing that the period of elevated ILI 

activity that occurred from January through mid-March of 2018 was correctly reflected, 

while December of 2017 did not display anomalous results, indicating that our model is not 

simply picking up on proximity to holidays. We will, however, work on incorporating 

weekend and holiday data as part of our models as part of future work.

Additionally, several limitations within our data sources hampered our efforts to evaluate our 

methods: as previously noted, anomalies may also be caused by problems with the input data 

unrelated to the syndromic surveillance task. Specifically, in our case, we faced two major 

EHR/data platform shifts within our source data that led to irregular disruption of clinical 

documentation within our data warehouse, one occurring throughout the entirety of Q1 

2016, and the other occurring beginning May 1st 2018 and lasting through the first week of 

July 2018 resulting from Mayo Clinic Rochester’s migration to the Epic EHR. The training 

datasets and results presented thus excluded these time periods (except for illustrative 

purposes in Figure 5) as they are known to be anomalous with the reasons for the anomaly 

being irrelevant to our target tasks (e.g. reasons for anomaly include changes in 

documentation practices affecting NLP-based prevalence, metadata changes, etc.)

Finally, the fact that an EHR migration did occur significantly hampers the amount of pre-

COVID-19 data available for training purposes for phase 3 of our experiment. Due to 

documentation practice shifts we must use Epic data as part of our training data, and due to 

the data source disruption as a result of this migration, we were limited to data beginning 

August of 2018. As part of future work, we thus aim to further validate our model on other 

sites within the Mayo Clinic enterprise that switched EHR systems in 2016, so as to have a 

greater amount of training data.

From a methodological perspective, we were constrained in available methodological 

choices by the need for methods to be unsupervised and/or self-supervised (using “normal” 

data): given our task to detect novel influenza-like-illnesses of unknown symptom 

prevalence distributions, it is not feasible to procure labeled “anomalous” data for supervised 

learning approaches. It is nevertheless important to note that the autoencoder approach is 

only one of many existing approaches that have been utilized for anomaly detection within 

the general domain. Other approaches commonly used in this space include k-means 

clustering86–88, one-class SVMs88–90, Bayesian networks91, as well as more traditional 

statistical approaches such as the chi-square test92 and principal component analysis93. In 

many systems, such approaches are not taken in isolation, but are rather used in conjunction 

with others to perform specific sub-components of the anomaly detection task or to provide 

multiple features for downstream analysis87,89,94,95. Our study is not intended to perform a 

comprehensive benchmarking of available methods, and we have not included comparative 

metrics here given that we have achieved workable results with only an autoencoder 

approach as the focus of this work is on using aberrations in symptom prevalence 

distributions to perform syndromic surveillance rather than the model that is used to perform 

this task. Nevertheless, it is entirely possible that a different model than an autoencoder 

being used to do this aberration detection task may perform better and as such it may be 
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worth exploring usage and/or integration of many of these other models to improve 

discriminative power and denoise the signal, and we have left such exploration to future 

work.

VI. Conclusions

Early detection of infectious disease outbreaks is critical to their successful management, but 

reliance on laboratory confirmation, if even possible for a novel illness, introduces 

significant temporal delays. For this reason, syndromic surveillance has been utilized so as 

to provide signals of possible disease outbreaks in advance of signals derived from 

laboratory confirmed diagnoses. Existing solutions, however, largely focus on known 

diseases, as well as syndromes as a whole, and may fail to differentiate when syndromes 

between different illnesses are similar and outbreaks occur co-temporally, as was the case 

with the initial outbreak of Coronavirus Disease 2019 and seasonal influenza.

To address this, we noted that while syndromes as a whole may be similar, the prevalence of 

individual symptoms within the syndromes differ between different diseases. We therefore 

hypothesized that a syndromic surveillance approach incorporating distributions of 

symptoms as part of its monitoring mechanism as opposed to prevalence of syndromes as a 

whole may be able to distinguish amongst these diseases, allowing for such an approach to 

be useful even when outbreaks co-occur with seasonal illnesses sharing similar syndromes.

In this study, we have demonstrated such an approach using autoencoders trained on in-

hospital symptom prevalence distributions to perform syndromic surveillance for novel 

influenza-like-illnesses. We first demonstrated that this approach works on outbreaks with 

known time boundaries using seasonal influenza as a target use case. We then showed that 

this approach can be trained to suppress signals for seasonal outbreaks of influenza and 

similar known and well-managed influenza-like illnesses so as to primarily alert on novel 

influenza-like-illnesses. We then applied this approach as a use-case study on the initial 

outbreak of Coronavirus Disease 2019 within the state of Minnesota, and found that the 

model displayed signals suggesting a possible outbreak more than one month prior to the 

first laboratory confirmed case.
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Highlights

• Early Detection of COVID-19 Resurgence is Achievable using Syndromic 

Surveillance

• Outbreaks of Diseases Affect In-Hospital Symptom Prevalence Distributions

• Autoencoder-Based Aberration Detection Can Be Used to Detect Outbreaks 

Early

• Autoencoder Approach can Differentiate Between Diseases with Similar 

Syndromes

• Signals Present More than One Month Prior to First Laboratory Confirmed 

Case
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Figure 1 –. 
Experimental Procedure Overview
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Figure 2 - 
Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained for the 

Influenza Season Detection Task
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Figure 3 - 
Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained on both 

Influenza Season and Offseason Data
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Figure 4 - 
Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained on both 

Influenza Season and Offseason Data
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Figure 5 - 
Mean Squared Error Relative to Anomaly Threshold for an Autoencoder Trained for 

Influenza Season Detection Spanning an EHR Migration Occurring May 2018
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Table 1 -

Task-Specific Training and Plotted Data Divisions

Task Training Data (“Normal” Time Periods) Plotted Data (Surveillance Time Periods)

Influenza Surveillance [2011-05-22, 2011-10-02)
[2013-05-19,2013-09-29)
[2015-05-23, 2015-10-04)
[2017-05-20, 2017-10-01)

[2011-01-01, 2018-05-01*)

Seasonal Illness Suppression
[2011-05-22, 2014-01-25

†
)

[2014-01-25, 2016-01-01)

COVID-19 Syndromic Surveillance Task
[2018-08-01

§
, 2019-06-01)

[2019-06-01, 2020-05-01)

*
Mayo Clinic transitioned from its historical EHR to the Epic EHR on this date.

†
End of moderate or greater ILI activity within the State of Minnesota for 2013–14 influenza season.

§
Three months after EHR migration began, to allow for clinical workflow changes to be solidified and reduce data volatility.
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