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Abstract

At the forefront of cancer research is the rapidly evolving understanding of metabolic 

reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells 

to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation 

complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme 

of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast 

cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in 

normal biological processes, leading to the role of PHGDH in the progression of cancer. With an 

understanding of the molecular mechanisms by which PHGDH expression advances cancer 

growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by 

PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of 

PHGDH to allow for the development of effective metabolic therapies.
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INTRODUCTION

Recent advances in anti-cancer treatments have been based on the increased identification of 

biomarkers that allow for tumour-specific therapy. Biomarker-driven therapies allow for the 

differentiation between cancer and host cells, with the potential to decrease the side-effects 

often associated with chemotherapy in normal tissue. The hallmarks of cancer, such as rapid 

growth, sustained proliferation, and increased invasion and metastasis, can be traced to the 

activation or suppression of oncogenes, which can then be used as biomarkers for targeting 

therapeutics[1].

The progression of cancer is dependent on the cellular metabolism of the tumour[2]. As such, 

developing therapeutic methods that target tumour metabolism has been a growing field. 

One-carbon metabolism is of importance in cancer metabolism, as this pathway is necessary 

for the de novo generation of biomass and other nutrient precursors. One-carbon metabolism 

consists of serine biosynthesis, betaine biosynthesis, the folate cycle, and the methionine 

cycle. The products of one-carbon metabolism contribute to nucleotide, lipid, and 

methylation metabolism, as well as nicotinamide adenine dinucleotide phosphate (NADPH), 

reactive oxygen species (ROS), and glutathione synthesis[3,4]. Of these, the serine 

biosynthetic pathway is of interest because the rate limiting enzyme, 3-phosphoglycerate 

dehydrogenase (PHGDH), is highly expressed in a variety of cancers and contributes to drug 

resistance. Both of these facets of PHGDH metabolism are discussed in detail below.

Importantly, tumour metabolism is highly adaptable, and the metabolic systems of cancer 

cells can reprogram in response to nutrient and anabolic precursor availability. As a result, 

there is a risk of innate or acquired drug resistance to metabolic inhibitors. In this review, the 

requirement of serine synthesis for cancer metabolism and tumour progression is explored. 

Through the biology of PHGDH, mechanisms of resistance to current cancer treatments, as 

well as proposed novel treatments, are identified. Understanding the mechanisms of 

resistance to metabolic treatments allows for the design of conditionally lethal combination 

therapies based on the inherent properties of tumour metabolism that can combat acquired 

resistance.

THE BIOLOGICAL ROLE OF PHGDH IN CANCER

PHGDH in the untransformed cell

PHGDH is the rate-limiting enzyme of de novo serine biosynthesis. PHGDH catalyses the 

conversion of the glycolytic intermediate 3-phosphoglycerate (3PG) to 3-

phosphohydroxypyruvate (3PHP). The PHGDH enzymatic reaction utilizes nicotinamide 

adenine dinucleotide (oxidized form, NAD+; reduced form, NADH) as a cofactor, generating 

NADH as 3PHP is biosynthesized. Phosphoserine aminotransferase (PSAT1) subsequently 

uses glutamate to confer a nitrogen unit onto 3PHP, producing alpha-ketoglutarate (αKG) in 

addition to the serine precursor, 3-phosphoserine (3PS)[5]. Finally, phosphoserine 

phosphatase converts 3PS to serine [Figure 1][6].

Serine is required for a variety of biosynthetic and signalling processes [Figure 2]. Serine 

itself can be used for protein and lipid biosynthesis[7]. The removal of a methylene unit from 
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serine by serine hydroxymethyltransferase (cytosolic, SHMT1; mitochondrial, SHMT2) 

results in the synthesis of other amino acids, including glycine and, through intermediates of 

the methionine cycle, cysteine[8,9]. The methylene unit from serine also serves as a one-

carbon donor for the folate cycle. The products of the folate cycle and the methionine cycle 

contribute to purine and pyrimidine synthesis, homocysteine recycling for DNA methylation 

processes, and the generation of NADH, NADPH, and adenosine triphosphate (ATP)[10,11]. 

Additionally, de novo serine biosynthesis utilizes glutamate and produces αKG, which can 

be converted to D-2-hydroxyglutarate (D-2HG), an oncometabolite[5]. As a result, the 

increased expression of PHGDH, as well as the other enzymes in the serine biosynthetic 

pathway, indicates that cells are utilizing these processes for proliferation and production of 

biomass.

Serine also plays a role in downstream signalling in the cell. When activated, pyruvate 

kinase (PK) catalyses the conversion of phosphoenolpyruvate to pyruvate, and is a key 

checkpoint for glycolysis[12]. As such, PK serves an important role in the occurrence of the 

Warburg effect, that describes tumour cells as more highly glycolytic than oxidative[13]. In 

its inactive form, PK shunts glucose carbons back through glycolytic intermediates, 

supporting the utilization of glucose for biomass synthesis rather than mitochondrial energy 

production[14]. PK exists in the body in two isoforms (isoform M1, PKM1; isoform M2, 

PKM2). PKM1 is mainly found in skeletal muscle and brain cells. PKM2 is expressed at a 

significantly higher ratio in proliferating cells and is the more dominant isoform in cancer; 

however, PKM1 has been shown to be expressed in certain cancers and cancer-associated 

fibroblasts as well[13,15]. Importantly, PKM2 is enzymatically activated by the direct binding 

of serine to an allosteric site[16]. Inactive PKM2 can therefore respond to changes in serine 

availability and direct glycolytic intermediates through 3PG into the biosynthesis of serine, 

activating PKM2. PKM2 expression is also mediated by a series of pathways, including 

phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)[14,17].

Incidences of decreased PHGDH

Serine deficiency can be extremely detrimental to cells, resulting in limited cellular 

proliferation and cell cycle arrest[18]. The first report of PHGDH deficiency was described in 

1996, where two brothers with decreased plasma concentrations of serine and glycine 

presented with a severe neurological syndrome[19]. This decrease in serine and glycine was 

associated with decreased PHGDH expression and activity in the brains of the patients. 

Importantly, subsequent studies found that, although alternate pathways of obtaining serine 

exist, PHGDH deficiency resulted in significantly lower plasma serine levels[20]. Later 

studies found that phenotypes of PHGDH deficiency can exist on a spectrum and identified 

Neu-Laxova syndrome as a more severe example of PHGDH deficiency. Neu-Laxova 

syndrome is an autosomal recessive disorder caused by mutations to PHGDH and 

subsequent loss of serine, and is characterized by neurological impairment, impaired fetal 

development, and skeletal anomalies[20,21].

At the cellular level, PHGDH deficiency can result in loss of DNA methylation. As the 

methylene unit provided to the folate cycle by the conversion of serine to glycine can 

transfer into the methionine cycle, serine indirectly supports the recycling of homocysteine 
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to methionine, as well as the generation of precursors for S-adenosylmethionine (SAM)
[22,23]. SAM is a common methyl-group donor required for DNA methylation[24]. In acute 

serine-starvation conditions, SAM is no longer used to methylate DNA and RNA[25]. 

Importantly, metabolic remodelling in cells during acute serine starvation allow for the 

upregulation of serine biosynthesis and serine uptake, to compensate for this loss[26].

De novo serine biosynthesis also provides the precursors for the generation of 

phosphatidylserine and sphingolipids; PHGDH deficiency can alter sphingolipid 

homeostasis by prompting the generation of deoxysphingolipids[27,28]. Sphingolipids are 

produced by the enzyme serine palmitoyltransferase (SPT) that incorporates serine into 

palmitoyl-coA to produce a precursor to sphingosine. With decreased environmental serine, 

SPT instead utilizes alanine as a cofactor, resulting in the generation of 

deoxysphingolipids[27,29]. Deoxysphingolipids cannot be incorporated into cellular 

membranes, and increased levels of deoxysphingolipids can result in mitochondrial 

dysfunction[30].

The results of decreased serine and loss of PHGDH activity are generally not beneficial to 

cells, unless extracellular serine concentrations are sufficiently high to support cellular 

utilization of the amino acid. The mechanism of negative regulation of PHGDH, therefore, is 

critical to explore. In melanoma, PHGDH expression is transcriptionally downregulated by 

wildtype p53[31]. It was found that PHGDH was a transcriptional target of the tumour 

suppressor p53, and that suppression of PHGDH resulted in promotion of apoptosis in p53-

wildtype melanoma. These findings indicate the importance of PHGDH in the baseline 

functioning of the cell, but also highlight the utility of increased PHGDH as an oncogene in 

cancer.

THE TUMORIGENIC CONSEQUENCES OF ELEVATED PHGDH

The increased expression of serine synthetic enzymes can signal that a cell is proliferating 

and generating biomass at a rapid rate, a hallmark of cancer[32]. PHGDH has been 

demonstrated to be upregulated in a wide variety of biologically distinct cancers, including 

colorectal cancer[33], gastric cancer[34], breast cancer[35,36], melanoma[37], Ewing’s 

sarcoma[38], cervical cancer[39], pancreatic cancer[40], thyroid cancer[41], colon cancer[42], 

lung adenocarcinoma[43], and non-small cell lung cancer[44]. Furthermore, increased 

PHGDH expression has been linked to brain metastasis[45].

Mutations to TP53

As previously stated, wildtype p53 can transcriptionally decrease gene expression of 

PHGDH[31]. Most of the cancers that present an overexpression of PHGDH harbour TP53 
mutations, including colorectal cancer (55%−60% TP53 mutation), intestinal gastric cancer 

(66% TP53 mutation), melanoma (85% TP53 mutation), and non-small cell lung cancer 

(50% TP53 mutation)[46–49]. This suggests that cancers with non-wildtype TP53 may have 

increased PHGDH expression, though this has not yet been explored. Additionally, mutant 

p53 can regulate PKM2 through an mTOR-mediated phosphorylation at Tyr105[50,51]. The 

effects that mutant p53 can have on serine synthetic enzymes and downstream metabolic 

enzymes can contribute to mutant p53-driven tumorigenesis.
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Cell growth and proliferation

Increased PHGDH activity results in increased de novo serine biosynthesis. As previously 

described, serine supports a variety of cellular processes, including amino acid, nucleotide, 

and lipid synthesis, increased DNA methylation, and indirect αKG generation. De novo 
serine biosynthesis can in turn drive the synthesis of glycine, as well as the synthesis of 

cysteine from homocysteine within the methionine cycle, supporting protein synthesis[8,52]. 

Glycine is also directly incorporated into purine nucleotides. Furthermore, serine can be 

incorporated into lipids to produce phosphoserine and is a precursor to sphingosine, from 

which all sphingolipids are derived[53]. These processes support the generation of biomass 

and nucleic acid replication for the rapid proliferation of cancer cells.

Redox homeostasis

The increased production of glycine and cysteine from serine can also contribute to 

maintenance of redox balance in cells, as these are the precursors for glutathione[54]. 

Glutathione, which exists in a reduced form (GSH) and an oxidized form (GSSG is the 

primary ROS scavenger of the cell[55]. Generation of αKG, an essential component of the 

citric acid (TCA) cycle, also contributes to maintaining redox balance, as αKG has 

antioxidative functions in the cell[56]. Furthermore, PHGDH can directly catalyse the 

conversion of αKG to D-2HG, an oncometabolite[5]. This reverse enzymatic activity 

requires the oxidation of NADH to NAD+, an important co-factor in metabolism and redox 

homeostasis[5,57].

The NAD+ salvage pathway

PHGDH utilizes NAD+ as a co-factor for enzymatic activity, producing NADH during the 

synthesis of 3PHP from 3PG[58]. In order to be utilized, NAD+ must be continually 

synthesized from tryptophan or regenerated from NADH. The NAD+ salvage pathway 

occurs through the recycling of nicotinamide to nicotinamide mononucleotide, and is 

therefore required for functional serine biosynthesis[59]. Conversely, mitochondrial serine 

catabolism has been demonstrated to supplement NADH levels through the folate cycle, 

suggesting that PHGDH and serine metabolism are directly regulated by NAD+/NADH 

availability[60].

Metastasis

Increased PHGDH expression has been demonstrated to not only promote cancer growth and 

proliferation, but also drive secondary tumour formation and metastasis[61]. In a study on 

lung metastasis, increased PHGDH increased hypoxia-inducible factor (HIF)-target gene 

expression. As increased PHGDH results in elevated production of glutathione, the resultant 

hypoxic conditions could be maintained by glutathione, subsequently executing metastatic 

programs[61]. Furthermore, in a study in brain metastases, increased PHGDH expression was 

correlated with increased metastatic potential to the brain. Interestingly, in this study, 

inhibiting PHGDH attenuated metastasis without affecting extra-cranial tumour growth, 

suggesting that the consequences of increased PHGDH expression were directly related to 

upregulated metastasis[45]. Finally, this study highlighted the limited environmental 
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availability of serine in the brain, demonstrating the subsequent reliance on de novo serine 

biosynthesis[45].

Taken together, baseline PHGDH expression contributes to de novo serine biosynthesis in 

the cell and supports a multitude of cellular pathways. Overexpression of PHGDH drives 

numerous pathways that are particularly useful for the initiation and progression of cancer.

THE ROLE OF INCREASED PHGDH IN CANCER DRUG RESISTANCE

Given that increased PHGDH contributes to tumorigenesis, the role of PHGDH in cancer 

resistance is multi-faceted. Elevated PHGDH expression drives a reliance on certain 

metabolic pathways that cancer therapeutics directly target, thus resulting in a series of 

inhibitors to which cancers with increased PHGDH can develop resistance [Figure 1].

Tyrosine kinases

Tyrosine kinases catalyse the phosphorylation of tyrosine residues, and have been shown to 

be constitutively active in oncogenic programs[62]. Sorafenib targets multiple tyrosine 

kinases, primarily the rapidly accelerated fibrosarcoma kinase (RAF) pathway, but also the 

vascular endothelial growth factor receptor and platelet-derived growth factor receptor 

pathways[63,64]. The inhibition of RAF-1 by sorafenib leads to inhibition of cellular 

proliferation and tumour growth. RAF-1 inhibition elevates ROS levels through stimulation 

of the Raf/MEK/Erk pathway, causing apoptosis[65]. Sorafenib has been approved for use in 

hepatocellular carcinoma (HCC), renal cell cancer, and thyroid cancer[66]. A study exploring 

the mechanisms driving sorafenib resistance found that increased PHGDH expression was a 

critical for this process in HCC[64]. As PHGDH and the serine synthesis pathway generate 

antioxidants (including glutathione and αKG), elevated PHGDH can combat the increased 

ROS levels induced by sorafenib treatment, thereby repressing apoptosis. Additionally, A-

RAF, a RAF paralog, increases activation of PKM2 in the presence of serine, offering an 

additional target for sorafenib and another resistance mechanism in PHGDH-overexpressed 

cancers[14,67].

Epidermal growth factor receptor

Erlotinib is an inhibitor of epidermal growth factor receptor (EGFR), another tyrosine kinase 

associated with a number of signalling cascade pathways, including the Ras/Raf/MEF/ERK, 

PI3K/Akt, and STAT pathways[68]. The MEF/ERK pathway in particular links EGFR 

signalling to increased glycolysis, and Akt pathway signalling links EGFR to increased 

PKM2 activity[69,70]. EGFR has been demonstrated to be a driver of lung adenocarcinoma, 

and erlotinib treatment has been approved for treatment of non-small cell lung cancer in 

patients with and without EGFR mutations[71,72].

Erlotinib binds to EGFR and inhibits downstream signalling cascades. Disruption of these 

signalling cascades results in decreased cell cycle progression, oxidative stress, and 

apoptosis. PHGDH is upregulated in erlotinib-resistant lung adenocarcinomas, likely due to 

the upregulation of glutathione and αKG synthesis as a cellular response to oxidative 

stress[73]. Furthermore, increased PHGDH expression and serine biosynthesis drives 
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increased PKM2 activity and glycolysis, increasing the utilization of EGFR-related 

pathways.

HIFs

HIFs contain two subunits that have transcription factor activity in hypoxic cells. The α-

subunit HIF2α mediates redox homeostasis and can therefore modulate the effects of drugs 

such as sorafenib by decreasing resultant ROS levels and improving oxygen supply[74]. 

HIF2α is regulated by c-Myc activation and promotes hypoxic cell proliferation[75]. 

Therapies targeting HIF2α have therefore been explored as replacements for some tyrosine 

kinase inhibitors, such as sunitinib, in clear-cell renal cell carcinoma[76]. PHGDH is 

significantly overexpressed in HIF2α knockout tumours, as well as tumours that have shown 

sunitinib resistance[76]. The redox homeostasis maintenance conferred by PHGDH 

overexpression may be implicated here.

Interestingly, HIF1α, but not HIF2α, can also regulate the expression of SHMT, the enzyme 

that converts serine to glycine[77]. Increased SHMT1/2 expression can drive serine 

catabolism, increasing mitochondrial NADH production and fuelling the NAD+ salvage 

pathway required for PHGDH activity and serine biosynthesis[59,77].

The proteasome

Based on the potential role of c-Myc in resistance to HIF2α inhibitors, the role of NMYC in 

systems associated with PHGDH has been explored. NMYC activates ATF4, subsequently 

increasing PHGDH expression and activating a dependence on the serine biosynthetic 

pathway[78–80]. Proteasome inhibitors downregulate c-Myc, and have therefore been utilized 

to combat c-Myc-driven cancers[81]. Bortezomib is a proteasome inhibitor that has been 

highly effective for the treatment of multiple myeloma, a cancer in which c-Myc is highly 

active[82]. Proteasome inhibition by bortezomib results in the accumulation of unfolded 

proteins in the endoplasmic reticulum, resulting in cell death from the overproduction of 

reactive oxygen species (ROS)[83]. PHGDH is upregulated in bortezomib-resistant multiple 

myeloma; interestingly, this mechanism has also been identified as being through increased 

glutathione synthesis[84–86] and subsequent ROS scavenging.

Mitogen-activated protein kinase kinase

Mitogen-activated protein kinases (MAPK) and extracellular signal-regulated kinases (ERK) 

make up a series of proteins that transduce signals from the extracellular environment to 

inform cellular processes. This pathway can be overactive in some cancers, and activates 

transcription factors that are responsible for the progression of cancers such as 

melanoma[87,88]. In melanoma, tumour growth is enhanced through activation of the MAPK 

pathway, which is primarily driven by activating mutations in two oncogenes: BRAF and 

NRAS[89]. Mitogen-activated protein kinase kinase (MEK) enzymes are a part of the 

MAPK/ERK pathway, and activate the final kinases in this signalling pathway[88]. MEK 

inhibitors target this pathway and inhibit cell proliferation, ultimately causing apoptosis[90]. 

Importantly, BRAF mutations can increase susceptibility to MEK inhibitors; however, 

NRAS mutations that can over-activate MEK/ERK signalling can lead to resistance to MEK 

inhibitors[87,91].
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In an NRAS mutation model of melanoma, PHGDH was found to be upregulated. PHGDH 

is upregulated in melanoma at baseline, and is also upregulated in MEK inhibitor-resistant 

melanomas[91,92]. Overactive MEK/ERK signalling in BRAF- and NRAS-mutated cancers 

can overexpress PHGDH through ATF4 activation, driving utilization of the serine synthesis 

pathway to generate glutathione as a resistance mechanism. In addition, increased levels of 

folic acid, which can occur through increased flux of carbons from serine synthesis through 

the folate cycle, is a possible mechanism of resistance to MEK inhibitors in BRAF inhibitor-

resistant melanomas[91,92].

Cisplatin

PHGDH is elevated in cervical adenocarcinoma, and is associated with poorer prognosis[93]. 

The first-line therapy for cervical adenocarcinoma is platinum-based chemotherapy. 

Cisplatin induces the DNA damage response in cells and causes mitochondrial apoptosis 

through Bcl2[93]. Given that PHGDH drives the indirect synthesis of nucleotides, 

upregulation of PHGDH could improve the DNA damage response in cells treated with 

cisplatin. PHGDH knockdown in cervical adenocarcinoma resulted in a decrease in Bcl2 

expression, suggesting that baseline high PHGDH could also result in increased Bcl2, 

thereby mitigating the mitochondrial apoptotic response[93]. Interestingly, in ovarian 

carcinoma, increased PHGDH is a marker of cisplatin sensitivity, rather than resistance[94]. 

Further exploration of this and other pathways involved in cisplatin resistance is therefore 

needed.

Other therapies

Elevated PHGDH also has the potential to play a role in resistance to therapies that have not 

yet been mechanistically explored. A critical therapy to therefore mention is the use of folate 

cycle inhibitors such as methotrexate and raltitrexed[95]. Methotrexate targets dihydrofolate 

reductase (DHFR), while raltitrexed targets thymidylate synthase (TYMS). These drugs 

require functioning folate cycles in order to be effective, and increased expression of folate-

related enzymes is highlighted as a current mechanism of resistance[96,97]. As increased 

serine synthetic pathway activity can contribute more methyl units to the folate cycle, 

elevated PHGDH could be directly related to resistance to methotrexate treatment.

THE INHIBITION OF PHGDH TO COMBAT CHEMO-RESISTANCE

Single-agent inhibition of PHGDH

Given the increased expression of PHGDH in a variety of cancers, the single-agent 

inhibition of PHGDH seems to be a promising prospect for cancer therapy. A series of small 

molecule inhibitors against PHGDH have been developed, primarily targeting the enzymatic 

activity of PHGDH. These inhibitors include NCT-503, CBR-5884, PKUMDL-WQ-2101, 

BI-4924, and others under preclinical and clinical development[35,98–102]. It is important for 

the field to validate any finding with small-molecule inhibitors with knockdown and rescue 

or structural analysis to ensure that the effects of the drug are as a result of PHGDH biology 

and not an off-target effect of small-molecule inhibitors as a class of inhibitors. Iterations of 

these compounds have shown increasingly less off-target effects, with structure-based 

approaches used to synthesize PKUMDL-WQ-2101 in order to confirm specific binding to 
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PHGDH[101]. PKUMDL-WQ-2101 and NCT-503 have been widely used in in vitro and in 
vivo research to interrogate the role of PHGDH and serine metabolism in normal and cancer 

cells[101,103].

When cancer cells with elevated PHGDH expression are treated with high doses of 

NCT-503, cellular proliferation is attenuated and, in some cases, cell death is 

observed[38,85,103]. This phenotype can also be observed in vivo, as numerous studies have 

demonstrated that NCT-503 treatment results in decreased tumour growth for tumours and 

cell line-derived xenografts of PHGDH-high cancers. Knockout studies of PHGDH have 

also suggested mild suppressive effects on proliferation[64]. Furthermore, metabolites 

downstream of the serine biosynthetic pathway, such as one carbon units, folate 

intermediates, and pyrimidine intermediates, were also dysregulated by PHGDH 

inhibition[102,103].

As of yet, direct PHGDH inhibition has not been tested in human clinical studies. However, 

as cells with increased PHGDH expression can develop resistance to apoptotic cell death by 

various drug treatments, cells treated with PHGDH inhibitors can rapidly alter their 

metabolism to take advantage of other mechanisms of fuel oxidation and redox 

maintenance[104]. As a result, PHGDH inhibition must be approached in a different way to 

optimize it for clinical development.

DUAL-AGENT INHIBITION OF PHGDH AND ASSOCIATED PATHWAYS

Given the highly adaptable nature of cancer metabolism, synergistic drug combinations are 

the future of metabolism-based drug resistance. Identifying increased PHGDH expression as 

a resistance mechanism for a variety of cancer therapeutics offers the opportunity to 

combine PHGDH inhibition with small molecule therapeutics. For example, increased 

PHGDH expression has been associated with both erlotinib and cisplatin resistance. 

Treatment with NCT-503 in these systems conferred sensitivity to the targeted therapy 

erlotinib and the chemotherapy cisplatin, respectively[73,93]. Furthermore, increased PHGDH 

expression was associated with resistance to sorafenib[64]. Treatment with NCT-503 mildly 

suppressed proliferation in hepatocellular carcinoma cells, but combining NCT-503 with 

sorafenib caused complete attenuation of proliferation and induced significant apoptosis[64].

Beyond the known therapies that PHGDH confers resistance to, the combination of 

NCT-503 with the targeting of other cellular pathways can mitigate resistance. An 

understanding of the downstream mechanistic actions of PHGDH activity can unveil new 

therapies that could have action in PHGDH-overexpressed cancers. Given that PHGDH 

activity requires the NAD+ salvage pathway, a study that explored the use of NCT-503 with 

a nicotinamide phosphoribosyltransferase (NAMPT) inhibitor. This combination with a 

NAMPT that blocks the NAD+ salvage pathway resulted in synergistic cell death[38]. Recent 

studies have also explored the metabolic implications and pro-survival adaptations that occur 

as a result of PHGDH inhibition, implicating decreased TCA cycle activity, mTOR-

independent and -dependent autophagy, and enhanced lipid metabolism and formation of 

lipid bodies[28,103,105,106]. The combination of PHGDH inhibition with inhibitors of these 
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pro-survival metabolic adaptations should therefore yield synergistic and dramatic results in 

PHGDH-high cancers.

CONCLUDING REMARKS

3-phosphoglycerate dehydrogenase (PHGDH) expression in cancer has been linked to 

shorter progression-free survival, increased rates of metastasis, and poorer overall survival. 

An in-depth analysis of the biological consequences of enhanced PHGDH expression shows 

the links between de novo serine biosynthesis and a series of metabolic pathways that are 

targeted by current chemotherapies. In particular, cancers are capable of developing 

resistance to chemotherapies that induce apoptosis through increased ROS by increasing 

PHGDH, as PHGDH generates the necessary metabolic precursors for antioxidant and ROS 

scavenging activity. Therefore, increased levels of PHGDH, while contributing to 

tumorigenicity, can contribute to the innate or acquired resistance of cancers to current 

chemotherapies.

The direct inhibition of PHGDH by small-molecule inhibitors results in a decrease in 

cellular proliferation in vitro, with marginal inhibition of tumour growth in vivo. Inhibition 

of PHGDH also results in a series of metabolic adaptations that can acutely sensitize tumour 

cells to various chemotherapies. Current and future research on the adaptive mechanisms of 

resistance to PHGDH is needed to harness the upregulation of PHGDH in cancer. A multi-

agent metabolic therapy can then be developed utilizing PHGDH as a biomarker for 

treatment efficacy and potential resistance.
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Figure 1. 
PHGDH expression drives resistance to a variety of chemotherapeutics (shown in red) 

through modulation of metabolic pathways. 3PG: 3-phosphoglycerate; 2PG: 2-

phosphoglycerate; PEP: phosphoenolpyruvate; PKM2: pyruvate kinase M2; TCA cycle: 

citric acid cycle; αKG: α-ketoglutarate; D-2HG: D-2-hydroxyglutarate; PHGDH: 3-

phosphoglycerate dehydrogenase; 3-PHP: 3-phosphohydroxypyruvate; PSAT: phosphoserine 

aminotransferase; 3PS: 3-phosphoserine; PSPH: phosphoserine phosphatase; NAD+: 

nicotinamide adenine dinucleotide, oxidized; NADH: nicotinamide adenine dinucleotide, 

reduced; Glu: glutamate; SHMT: serine hydroxymethyltransferase; DHFR: dihydrofolate 

reductase
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Figure 2. 
Role of serine in biological processes in the cell. 3PG: 3-phosphoglycerate; PEP: 

phosphoenolpyruvate; PKM1/2: pyruvate kinase isoforms M1/M2; PHGDH: 3-

phosphoglycerate dehydrogenase; 3-PHP: 3-phosphohydroxypyruvate; PSAT: phosphoserine 

aminotransferase; 3PS: 3-phosphoserine; PSPH: phosphoserine phosphatase; NAD+: 

nicotinamide adenine dinucleotide, oxidized; NADH: nicotinamide adenine dinucleotide, 

reduced; Glu: glutamate; αKG: α-ketoglutarate; SPT: serine palmitoyltransferase; SHMT1: 

serine hydroxymethyltransferase 1; 5,10-meTHF: 5,10-methylene tetrahydrofolate; mTHF: 

5-methyl tetrahydrofolate; THF: tetrahydrofolate; GSH: reduced glutathione; HCY: 

homocysteine; SAH: S-adenosyl homocysteine; SAM: S-adenosyl methionine
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