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Summary

The majority of polygenic risk scores (PRSs) have been developed and optimized in individuals of 

European ancestry and may have limited generalizability across other ancestral populations. 

Understanding aspects of PRSs that contribute to this issue and determining solutions is 

complicated by disease-specific genetic architecture and limited knowledge of sharing of causal 

variants and effect sizes across populations. Motivated by these challenges, we undertook a 

simulation study to assess the relationship between ancestry and the potential bias in PRSs 

developed in European ancestry populations. Our simulations show that the magnitude of this bias 

increases with increasing divergence from European ancestry, and this is attributed to population 

differences in linkage disequilibrium and allele frequencies of European-discovered variants, 

likely as a result of genetic drift. Importantly, we find that including into the PRS variants 

discovered in African ancestry individuals has the potential to achieve unbiased estimates of 

genetic risk across global populations and admixed individuals. We confirm our simulation 

findings in an analysis of hemoglobin A1c (HbA1c), asthma, and prostate cancer in the UK 

Biobank. Given the demonstrated improvement in PRS prediction accuracy, recruiting larger 
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diverse cohorts will be crucial—and potentially even necessary—for enabling accurate and 

equitable genetic risk prediction across populations.

Introduction

Increasing research into polygenic risk scores (PRSs) for disease prediction highlights their 

clinical potential for informing screening, therapeutics, and lifestyle.1 While their use 

enables risk prediction in individuals of European ancestry, PRSs can have widely varying 

and much lower accuracy when applied to non-European populations.2–4 Although the 

nature of this bias is not well understood, it can be attributed to the vast overrepresentation 

of European ancestry individuals in genome-wide association studies (GWASs), which is 

4.5-fold higher than their percentage of the world population; conversely, there is 

underrepresentation of diverse populations such as individuals of African ancestry in 

GWASs, which is one-fifth their percentage.3 Potential explanations for the limited 

portability of European-derived PRSs across populations includes differences in population 

allele frequencies and linkage disequilibrium (LD), the presence of population-specific 

causal variants or effects, or potential differences in gene-gene or gene-environment 

interactions.4 However, in traits such as BMI and type 2 diabetes, 70%–80% of European-

based PRS accuracy loss in African ancestry has been attributed to differences in allele 

frequency and LD; therefore, most causal variants discovered in Europeans are likely to be 

shared.5 Recent methods developed to improve PRS accuracy in non-Europeans have 

prioritized the use of European-discovered variants and population-specific weighting.6–8 

However, only small gains in accuracy are possible with limited sample sizes of non-

European cohorts.4

PRSs have been applied and characterized within global populations, but there is limited 

understanding of PRS accuracy in recently admixed individuals and whether this varies with 

ancestry. Studies applying PRSs in diverse populations3–5,9 or exploring potential statistical 

approaches to improve accuracy in such populations6,10 typically present performance 

metrics averaged across all admixed individuals. Only one study to date has suggested that 

PRS accuracy may be a function of genetic admixture (i.e., for height in the UK Biobank8). 

However, it is unknown if the relationship between accuracy and ancestry exists when 

variants are discovered in non-European populations or what the best approach for applying 

PRSs to admixed individuals will be when there are adequately powered GWASs in non-

European populations.

To help answer these questions, here we systematically and empirically explore the 

relationship between PRS performance and ancestry within African, European, and admixed 

ancestry populations through simulations. We highlight PRS-building approaches that will 

achieve unbiased estimates across global populations and admixed individuals with future 

recruitment and representation of non-European ancestry individuals in GWASs. We also 

investigate reasons for loss of PRS accuracy and attribute this to population differences in 

LD tagging of causal variants by lead GWAS variants, as well as allele frequency biases 

potentially due to genetic drift undergone by European ancestry populations. Finally, we 

confirm our simulation findings by application to data on hemoglobin A1c (HbA1c) levels, 
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asthma, and prostate cancer in individuals of European and individuals of African ancestry 

from the UK Biobank.

Material and methods

Simulation of population genotypes

We used the coalescent model (msprime v.7.311) to simulate European (CEU) and African 

(YRI) genotypes, based on whole-genome sequencing of HapMap populations, for 

chromosome 20 as described previously by Martin et al.2 Genotypes were modeled after the 

demographic history of human expansion out of Africa,12 assuming a mutation rate of 2 × 

10−8. We simulated 200,000 Europeans and 200,000 Africans for each simulation trial, for a 

total of 50 independent simulations (20 million total individuals). We generated founders 

from an additional 1,000 Europeans and 1,000 Africans (10,000 total across the 50 

simulations) to simulate 5,000 admixed individuals (250,000 total across the 50 simulations) 

with RFMIX v.2,13 assuming two-way admixture between Europeans and Africans with 

random mating and 8 generations of admixture.

True and GWAS estimated polygenic risk scores

We generated true genetic liability for all European, African, and admixed individuals within 

each simulation trial.2 Briefly, m variants evenly spaced throughout the simulated genotypes 

were selected to be causal, and the effect sizes (β) were drawn from a normal distribution β 
~ N(0,(h2 /m)), where h2 is the heritability.2 Constant heritability and complete sharing of 

effect sizes in African ancestry and European ancestry individuals was assumed. The true 

genetic liability was computed as the summation of all variant effects multiplied by their 

genotype for each individual X = ∑i = 1
m βmgm  standardized to ensure total variance of h2 

G =
X − μX

σX
* ℎ2 . Finally, the non-genetic effect ε = N 0, 1 − ℎ2  standardized to explain 

the remainder of the phenotypic variation E = ε − με/σε * 1 − ℎ2  was added to the genetic 

risk, defining the total trait liability (G+E).2 Cases were selected from the extreme tail of the 

liability distribution, assuming a 5% disease prevalence. An equal number of controls and 

5,000 testing samples were randomly selected from the remainder of the distribution; all 

5,000 admixed individuals were also used for testing. Across simulation replicates we varied 

causal variants (m = [200, 500, 1,000]) and trait heritability (h2 = [0.33, 0.50, 0.67]); 

however, for simplicity, main text results assume m = 1,000 and h2 = 0.50.

The estimated PRSs were constructed from GWASs of the simulated genotypes (modeled 

after chromosome 20) in European and African ancestry populations, each with 10,000 cases 

and 10,000 controls. Odds ratios (ORs) were estimated for all variants with minor allele 

frequency (MAF) > 1%, and statistical significance of association was assessed with a chi-

square test. While causal variants may be included in the estimated PRS, they are drawn 

from the total allele frequency spectrum; thus, they are primarily rare (93% and 87% of 

causal variants have MAF < 1% in European and African ancestry populations when m = 

1,000) and restricted from our analysis. For each population, variants were selected for 

inclusion into the estimated PRS by p value thresholding (p = 0.01 [main text], 1 × 10−4, and 
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1 × 10−6 [Supplemental information]) and clumping (r2 < 0.2) in a 1 Mb window within the 

GWAS population, where r2 is the squared Pearson correlation between pairs of variants. A 

fixed-effects meta-analysis was also performed to calculate the inverse-variance weighted 

average of the ORs in African and European ancestry populations, and LD r2 values for 

clumping used both datasets as the reference.

For each individual, an estimated PRS was calculated as the sum of the log(OR) (i.e., the 

PRS ‘‘weights’’) multiplied by their genotype for all independent and significant variants at 

a given threshold. The PRSs were constructed for testing samples with variants and weights 

each selected from European or African ancestry GWASs or a fixed-effects meta-analysis of 

both combined. Additional multi-ancestry PRS approaches7,10 were also explored for 

admixed individuals. Accuracy was measured by Pearson’s correlation (r) between the true 

genetic liability and estimated PRS within each population. Across simulation trials, 

averages and 95% confidence intervals (CIs) for r were calculated following a Fisher z-

transformation for approximate normality.14 The statistical significance of differences in 

accuracy between PRS approaches was assessed within ancestry groups, defined by global 

genome-wide European ancestry proportions, with a Z test (also following Fisher 

transformation). Specifically, within each simulation trial the z-statistic, measuring the 

difference between two PRS approaches, was computed, and a two-sided p value was 

obtained; results were summarized across trials by taking the median p value. While using r 
as a measure of accuracy has the added benefit of being independent from heritability, in 

admixed individuals we also calculate the proportion of variance (R2) for total trait liability 

(genetic and environmental component) explained by the estimated PRS.

Multi-ancestry PRS

Local ancestry weighting PRS—In addition to genotypes of simulated admixed 

individuals, RFMIX13 also outputs the local ancestry at each locus for every individual. 

Thus, we used this information to create a local ancestry weighted PRS that is not impacted 

by ancestry inference errors. For admixed African and European ancestry individuals, an 

ancestry-specific PRS was constructed for each population (k) by limiting each PRS to 

variants found in that ancestry-specific subset of the genome (i ∈ k), as defined by local 

ancestry, and weighting using variant effects discovered in that population.7 Each ancestry-

specific PRS was then combined, weighted by the genome-wide global ancestry proportion 

(ρk)for that individual as follows:7

PRS = ρEUR ∑
i ∈ EUR

βi, EURgi + 1 − ρEUR ∑
i ∈ AFR

βi, AFRgi

In this way, each individual has a PRS constructed from the same independent variants with 

personalized weights that are unique to the individual’s local ancestry.

Linear mixture of multiple ancestry-specific PRSs—Using a linear mixture 

approach developed by Márquez-Luna et al.,10 we combined two PRSs estimated in each of 

our global training populations
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PRS = α1PRSEUR + α2PRSAFR

where individual PRSs were constructed using significant and independent variants (p < 0.01 

and r2 < 0.2 in a 1Mb window) and effect sizes from a GWAS in that training population. 

For simulations, mixing weights (α1 and α2) were estimated in an independent African 

ancestry testing population, and as validation, accuracy was assessed in our simulated 

admixed ancestry individuals.f

Application to real data

We obtained genome-wide summary statistics for HbA1c,15 asthma,16,17 and prostate 

cancer18,19 calculated in European and African ancestry individuals (Table S1). Summary 

statistic variants that were not present in both the UK Biobank European and African 

ancestry testing populations were removed. PRSs for each phenotype were constructed from 

associated and independent GWAS variants within each training population by p value 

thresholding (p = [5 × 10−8, 1 × 10−7, 5 × 10−7, 1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 

10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 0.01, 0.05, 0.1, 0.5, 1]) and clumping (LD r2 < 0.2) of 

variants within 1 Mb with PLINK20. Additionally, a fixed-effects meta-analysis of the two 

populations was performed using METASOFT v2.0.1.21 The selected PRS variants exhibited 

limited heterogeneity between the European and African ancestry training set summary 

statistics. In particular, of all possible European (African) ancestry selected PRS variants, 

only 5.4% (9.4%), 6.9% (5.7%), and 7.0% (4.8%) were heterogeneous between the two 

groups for HbA1c, asthma, and prostate cancer, respectively (i.e., I2 > 25% and Q p value < 

0.05).

PRS performance was evaluated in an independent cohort using genotype and phenotype 

data for individuals of European ancestry and individuals of African ancestry (Table S1) 

from the UK Biobank, with imputation and quality control previously described.22 We 

undertook extensive post-imputation quality control of the UK Biobank, including the 

exclusion of relatives and ancestral outliers from within each group. Specifically, analyses 

were limited to self-reported European and African ancestry individuals, with additional 

samples excluded if genetic ancestry principal components (PCs) did not fall within 5 SDs 

of the self-reported population mean. For each individual, their PRS was computed as the 

weighted sum of the genotype estimates of effect on each phenotype from the discovery 

studies (Table S1), multiplied by the genotype at each variant. For each population-specific 

variant set, weights from either the European or African summary statistics or the fixed-

effects meta-analysis were used. A total of 96 polygenic risk scores were evaluated in each 

phenotype exploring the impact of ancestral population (two scenarios), p value threshold 

(16 scenarios), and variant weighting (three scenarios). The proportion of variation 

explained by each PRS (partial-R2) approach was assessed for UKB European ancestry and 

African ancestry individuals separately. The partial-R2 was calculated from the difference in 

R2 values following linear regression of HbA1c levels on age, sex, BMI, and first 10 PCs 

with and without the PRS also included. Similarly, for asthma and prostate cancer, we 

determined the Nagelkerke’s pseudo partial-R2 following logistic regression of case status 

on age, sex (asthma only), BMI (prostate cancer only), and first 10 PCs with and without the 
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PRS. Additionally, in African ancestry individuals we created a combined PRS (α1PRSEUR 

+ α2PRSAFR), where PRSEUR and PRSAFR was the most optimal PRS using variants from 

the designated population and the weight and p value that resulted in the highest accuracy; 

albeit in-sample, optimization was done within a single PRS to ensure limited overfitting of 

the combined model.10 We used 5-fold cross-validation to assess model performance in 

which 80% of the cohort was used to estimate the mixing coefficients (α1 and α2) and the 

combined PRS partial-R2 was calculated in the remaining 20% of the data. Reported partial-

R2 was averaged across folds.10 For our binary phenotypes with unbalanced affected and 

unaffected individuals, we used stratified 5-fold cross-validation.

Results

Generalizability of European-derived risk scores to an admixed population

We constructed PRSs from our simulated European datasets and applied them to 

independent simulated European, African, and admixed testing populations, assuming 1,000 

true causal variants (m) and trait heritability (h2) of 0.5. On average, 1,552 (range = [1,134–

1,920]) variants were selected for inclusion into the PRS at p value < 0.01 and LD r2 < 0.2 

(Table 1). The average accuracy across replicates (50 simulations), measured by the 

correlation (r) between the true and inferred genetic risk, was much higher when applying 

the PRS to Europeans (r = 0.77; 95% CI = [0.76, 0.77]) than to Africans (r = 0.45; 95% CI = 

[0.44, 0.47]; Figure 1). This is in agreement with decreased performance seen in real data 

when applying a European-derived genetic risk score to an African population.2–5

To understand the relationship between ancestry and PRS accuracy, admixed individuals 

were stratified by their proportion of genome-wide European (CEU) ancestry: high (100% > 

CEU > 80%), intermediate (80% > CEU > 20%), and low (20% > CEU > 0%). PRS 

performance decreased with decreasing European ancestry (Figure 1). Average accuracy 

(Pearson’s correlation) for the high, intermediate, and low European ancestry groups was 

0.73 (95% CI = [0.72, 0.74]), 0.61 (95% CI = [0.60, 0.62]), and 0.53 (95% CI = [0.51, 

0.54]), respectively (Figure 1). In comparison to Europeans, the performance of the 

European-derived PRS was significantly lower in individuals with intermediate (20% 

decrease; p = 1.27 × 10−47), and low (32% decrease; p = 6.48 × 10−16) European ancestry, 

and with African-only ancestry (41% decrease, p = 8.00 × 10−155). There was no significant 

difference for individuals with high (5.3% decrease; p = 0.09) European ancestry. These 

trends remained consistent when varying the genetic architecture (Figure S1), specifically 

decreasing the number of causal variants (m) and varying the trait heritability (h2). 

Additionally, the relationship between ancestry and accuracy persisted with the inclusion of 

variants at lower p value thresholds (Figure S2).

By further binning admixed individuals into deciles of global European ancestry and 

determining the variance explained of the total liability (genetics and environment) by the 

PRS, we estimated a 1.34% increase in accuracy for each 10% increase in global European 

ancestry, replicating a previous analysis of height in the UK Biobank.8 The slope of this 

linear relationship increased with increasing heritability but was not found to vary with the 

number of true causal variants (Figure S3).
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Population-specific weighting of European selected variants

Using a well-powered GWAS from our simulated African cohort (10,000 cases and 10,000 

controls), we aimed to explore the potential accuracy gains achieved from a PRS with 

European selected variants, but with population-specific weighting of these variants. We 

applied three different weighting approaches to incorporate non-European effect sizes: (1) 

effect sizes from an African ancestry GWAS for all variants; (2) effect sizes from a fixed-

effects meta-analysis of European and African ancestry GWAS for all variants, both having 

10,000 cases and 10,000 controls; and (3) population-specific weights based on the local 

ancestry for an individual at each variant in the PRS (Figure 2).

The most accurate PRS approach varied by the proportion of European ancestry. Populations 

with greater than 20% African ancestry benefitted significantly from the inclusion of 

population-specific weights (Figure 2). Intermediate European ancestry individuals 

benefitted most from using fixed-effects meta-analysis weighting instead of European 

weights (r = 0.64 versus 0.61, p = 0.02). In contrast, variant weighting from an African 

ancestry GWAS instead of from European had higher accuracy in low European ancestry (r 
= 0.65 versus 0.53; p = 0.009) and African-only (r = 0.64 versus 0.45; p = 2.02 × 10−44) 

populations. Individuals with high European ancestry had similar accuracy with weights 

from a fixed-effects meta-analysis as from European (r = 0.73 in both; p = 0.79) but 

decreased performance with the inclusion of weights from an African ancestry GWAS (r = 

0.62 versus 0.73; p = 0.01).

No clear benefits, and in some cases significant decreases, were observed for local ancestry-

informed weights compared to weights from a European or African ancestry GWAS or 

fixed-effects meta-analysis. Individuals with high, intermediate, and low European ancestry 

had lower accuracy using local ancestry-informed weights compared to the best weighting in 

each ancestry group: r = 0.71 versus 0.73 (from fixed-effect or European weights; p = 0.58); 

r = 0.61 versus 0.64 (from fixed-effect weights; p = 0.004); and r = 0.63 versus 0.65 (from 

African weights; p = 0.60), respectively (Figure 2).

Performance of non-European PRS variant selection and weighting approaches

In our simulations, population-specific weighting of PRS SNPs discovered in European 

ancestry populations improved PRS accuracy; however, the disparity between performance 

in European ancestry individuals versus African and admixed ancestry individuals remained 

large. We aimed to explore the potential improvements in PRS that could be gained by 

including variants discovered in large, adequately powered African ancestry cohorts. 

Following clumping and thresholding of significant variants using LD and summary 

statistics from the simulated African populations, an average of 5,269 (range = [4,462–

6,071]) variants were included in the PRS (Table 1), reflective of the greater genetic 

diversity and decreased LD compared to Europeans.23 In contrast, when constructing a PRS 

using the same LD and p value criteria applied to a fixed-effects meta-analysis of European 

and African ancestry, an average of only 92 (range = [38–197]) variants were included in the 

PRS. This substantially smaller number was a result of few variants being statistically 

significant in both populations. Of the total number of variants included from the European 

GWAS, African ancestry GWAS, and fixed-effects meta-analysis, only 1.15%, 0.54%, and 
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15.0% on average were the exact causal variant from the simulation; an additional 3.72%, 

5.34%, and 33.3% tagged at least one causal variant with r2 > 0.2 (and were within ± 1,000 

kb of that causal variant) in European ancestry populations and 3.45%, 2.42%, and 28.1% in 

African ancestry populations (Table 1). The limited overlap between true causal and GWAS 

selected variants is a result of causal variants in our simulation arising from the total 

spectrum of allele frequencies, and therefore more likely to be rare, while GWAS is better 

powered to detect common variants in the study population from which they were identified.
2 These common variants may not adequately tag rare variants due to low correlation.24

Overall, we constructed twelve PRSs with variants selected from GWASs in European or 

African ancestry populations or a fixed-effects meta-analysis of both (three scenarios) and 

weights from the same approaches plus an additional local ancestry-specific weighting 

method (four scenarios) (Figure 2). For Europeans, the highest PRS accuracy was achieved 

with European selected variants and weights (r = 0.77; 95% CI = [0.76, 0.77]); however, a 

similar accuracy was observed for weights from a fixed-effects meta-analysis (r = 0.76; p = 

0.53). For Africans, the highest PRS accuracy was with African selected variants and 

weights from a fixed-effects meta-analysis (r = 0.75; 95% CI = [0.74, 0.75]); similar 

performance was observed with African variants and weights (r = 0.74; p = 0.28). For 

admixed individuals, the highest-performing PRS depended on the population ancestry 

percentage. In individuals with high European ancestry (>80%), the best PRS was with 

European selected variants and fixed-effects meta-analysis or European weights (r = 0.73; 

95% CI = [0.72, 0.74]). For individuals with intermediate (20%–80%) or low (<20%) 

European ancestry, the most accurate PRS was from using African selected variants and 

weights from a fixed-effects meta-analysis (r = 0.68; 95% CI = [0.67, 0.68] and 0.71; 95% 

CI = [0.70, 0.72], respectively). Again, no benefit was observed with the inclusion of local 

ancestry-specific weights for any set of PRS variants. Using a more stringent p value 

threshold and including fewer variants into the PRS did not result in a change of the best 

PRS variants and weights (Figure S2).

Inclusion of variants from diverse populations

We found that including in the PRS variants discovered in African ancestry GWASs with 

population-specific weights results in less disparity in PRS accuracy across ancestries 

compared to European selected variants, confirming that GWASs in non-bottlenecked 

populations may yield a more unbiased set of disease variants.25 For example, applying to 

individuals of African ancestry a PRS derived from GWAS variants and weights discovered 

in training data from the target population results in a 15.7% higher accuracy compared to 

using a PRS comprised of variants discovered in a European GWAS (also with African 

weights). In contrast, the gains in accuracy achieved by sourcing variants from ancestry-

matched studies were much lower in European ancestry individuals. Compared to a PRS 

with variants from an African ancestry GWAS (with European weights), a PRS derived from 

a European GWAS (also with European weights) only gave a 3.9% higher accuracy. We also 

observed better generalization of PRSs based on African selected variants across all admixed 

groups (Figure 2).
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Unlike in Europeans, a PRS with variants discovered in African ancestry populations 

generalized across ancestral groups with population-specific weighting. However, similar to 

the European PRS, the African ancestry-derived PRS (with African variants and weights) 

was estimated to have a 1.62% increase in the variance explained of the total trait liability by 

the PRS for each 10% increase in African ancestry (Figure S4). Through a linear 

combination of the European and African ancestry-derived PRS (Material and methods),10 

the relationship between ancestry and accuracy diminished to less than a 0.4% increase per 

10% increase of African ancestry (Figure S4).

While the best single PRS for admixed individuals with at least 20% African ancestry 

selected variants based on a GWAS in an African ancestry population with weights from a 

fixed-effects meta-analysis, a linear combination of the European and African ancestry-

derived PRSs had higher accuracy; this was particularly true at decreased African ancestry 

cohort sizes. We saw considerable improvements with the combined PRS over using a 

European-derived (European selected variants and weights) PRS, especially for low 

European ancestry (CEU < 20%), where even with 10-fold fewer African samples there was 

a 27.4% increase in PRS accuracy compared to the European-derived risk score and a 12.3% 

increase compared to a PRS with African ancestry selected variants and weights from a 

fixed-effects meta-analysis (Figure 3).

Allele frequency and LD of GWAS variants

We sought to understand what factors impacted PRS generalizability across the different 

variant selection approaches. GWASs performed in European and African ancestry 

populations (for SNPs with MAF ≥ 0.01) were both more likely to identify significant 

variants that were more common in their own population than in the other. Approximately 

60% of variants identified in European ancestry populations had MAFs less than 1% in 

African ancestry populations and vice versa; however, given the underlying assumption of 

homogeneity, the smaller number of variants selected by a meta-analysis of the two 

populations tended to have more similar MAFs (Figure 4A). Although European and 

African ancestry GWASs were both better powered to detect variants at intermediate 

frequencies within the same study population, GWASs in European ancestry populations 

may be unable to capture derived risk variants that have remained in Africa, which could be 

the result of genetic drift, whereas GWASs in African ancestry populations are not subject to 

this bias.25

We also examined LD tagging of causal variants by GWAS selected variants within our 

simulated European and African populations. Each causal variant’s LD score was calculated 

by summing up the LD r2 between that causal variant and every GWAS tag variant within ± 

1,000 kb. The LD scores calculated in European and African ancestry populations were 

highly correlated (Pearson’s r > 0.7) for the GWAS and fixed-effects meta-analysis selected 

variants. Variants selected from a fixed-effects meta-analysis had the highest LD score 

correlation between populations, as expected given that the variants reached significance in 

both populations and therefore were more common with similar LD patterns (Figure 4B). 

Since LD score correlation did not vary largely between simulations, we examined the raw 
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LD scores for a single simulation in order to illustrate differences in LD score magnitude not 

captured by the Pearson’s correlation.

We found that European selected variants had higher LD scores in European compared to in 

African ancestry populations; however, variants selected from an African ancestry GWAS 

tagged causal variants in both populations more strongly (Figure 4C). This is unlikely to be 

due to the larger number of African selected variants, as the results were unchanged 

following normalization of LD scores by dividing the total LD score for each causal variant 

by PRS size (Figure S5). Fixed-effects meta-analysis variants had similar LD score 

magnitudes. However, while a greater proportion of the fixed-effects meta-analysis selected 

variants were causal, fewer were strong tags for causal variants not directly identified, 

highlighting the potential need for a model that does not assume homogeneity of effects for 

tag variants.26 Additionally, causal variants with identical effect sizes may have differing 

allele frequencies across populations, which would result in heterogeneous allele 

substitution effects; this helps indicate why a fixed-effects meta-analysis may not be the 

optimal approach.

Application to real data

To corroborate our simulation findings, we undertook an analysis of 96 PRSs developed for 

the prediction of multiple complex traits in European and African ancestry individuals from 

the UK Biobank, including HbA1c levels, asthma status, and prostate cancer (Table S1). We 

tested variant selection strategies based on p value thresholding and LD clumping of 

genome-wide summary statistics15 computed in independent European or African ancestry 

cohorts and variant weights from the same approaches with an additional weighting from a 

fixed-effects meta-analysis across populations. Multiple p value thresholds and weighting 

strategies were tested to assess the PRS accuracy in African ancestry individuals relative to 

European ancestry individuals across parameters.

In UK Biobank Europeans, a GWAS significant European-derived PRS (with European 

variants and weights) had a partial-R2 of 1.6%, 1.2%, and 1.5%, respectively, for HbA1c 

levels, asthma, and prostate cancer; the same PRS applied to African ancestry individuals 

with approximately 13.1% European ancestry8 only explained 0.07%, 0.38%, and 0.19% 

(Figure S6). Although the proportion of variation explained by the PRS (partial-R2) was 

consistently lower in UK Biobank African ancestry individuals compared to Europeans, 

prediction was improved through the inclusion of variants or weights discovered in an 

independent African ancestry cohort across all traits (Figure S6). Interestingly, we found that 

a linear combination of the best-performing PRS with European-discovered variants and 

African ancestry-discovered variants improved accuracy substantially (Table S2), supporting 

our simulation finding that a combined PRS that includes variants from the target 

population, even at smaller sample sizes, is the optimal approach for constructing PRS in 

admixed and non-European individuals.

Discussion

Our work shows that incorporating variants selected from European GWASs into a PRS can 

result in less-accurate prediction in non-European and admixed populations in comparison to 
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variants selected from a well-powered African ancestry GWAS. Through simulations and 

application to real data analysis of multiple complex traits, we provide empirical evidence 

that supports the use of a linear mixture of multiple population-derived PRSs to remove bias 

with ancestry and achieve higher accuracy in admixed individuals with currently available 

non-European sample sizes. We also demonstrate the anticipated improvements in PRS 

prediction accuracy that may be achieved with the inclusion of diverse individuals in GWAS, 

highlighting the need to actively recruit non-European populations.

Our simulation finding that prediction accuracy of a European-derived PRS linearly 

decreases with increasing proportion of African ancestry in admixed African and European 

populations is consistent with a recent study of height, where there was a 1.3% decrease for 

each 10% increase in African ancestry.8 This decrease in prediction accuracy has been 

attributed to LD and allele frequency differences, as well as differences in effect sizes across 

populations contributing to height.8 Our work adds further insights into this reduction in 

PRS accuracy, showing that (1) it exists in the absence of trans-ancestry effect size 

differences consistent with previous theoretical models that did look at admixture,2,5 and (2) 

variants selected from an African population may not have these same biases. Recent work 

found that known GWAS loci discovered in Europeans have allele frequencies that are 

upwardly biased by 1.15% in African ancestry populations, which results in a misestimated 

PRS, a phenomenon that likely arises due to population bottlenecks and ascertainment bias 

from GWAS arrays.25 In our simulation study, which was not impacted by ascertainment 

bias, we show that GWASs in African ancestry populations also identify variants with 

population allele frequency differences; however, these variants have more consistent LD 

tagging of causal variants across populations. Our observations support the hypothesis that 

well-powered African ancestry GWASs will be able to more accurately capture disease-

associated loci that are more broadly applicable across populations, due to having undergone 

less genetic drift.25

A major advantage of our study is having large simulated European and African ancestry 

cohorts to provide guidelines for developing the best possible PRSs in admixed individuals 

with current and future GWASs. Through our exploration of 12 PRSs, with various variant 

selection and weighting approaches, we recapitulate recent results applying similar PRS 

strategies to an admixed Hispanic/Latino population.9 For individuals with intermediate 

proportions of European ancestry (20%–80%), we also see improvements using European 

selected variants and population-specific or fixed-effects meta-analysis weights; however, as 

non-European cohorts get increasingly large, it will be imperative to perform variant 

discovery in these populations, as gains in accuracy with weight adjustment of European 

selected variants will be limited, especially in individuals with higher proportions of non-

European ancestry.

Current methods for improving PRS accuracy in diverse populations have prioritized the 

inclusion of variants from European GWASs, as these have higher statistical power to 

identify trait-associated loci. For example, one such approach uses a two-component linear 

mixed model to allow for the incorporation of ethnic-specific weights.6 Another method 

creates ancestry-specific partial PRSs for each individual based on the local ancestry of 

variants selected from a European GWAS.7 This approach was found to improve trait 
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predictability, compared to a traditional PRS with population-specific or European weights, 

in East Asians for BMI but not height.7 In contrast, implementing this local-ancestry 

method7 in our simulation, we found that PRS accuracy was higher with African or fixed-

effects meta-analysis weighting than with local ancestry in admixed African ancestry 

populations. Our results suggest that true equality in performance will be difficult to obtain 

solely based on European-identified variants even with local ancestry-adjusted weights. 

Although local ancestry weighting may have greater benefits when complete sharing across 

populations is not assumed, we show that in the absence of population-specific factors, the 

optimal PRS approach involves using variants identified in a large African population and 

population-specific weighting.

To create a multi-ancestry PRS without incorporating local ancestry, Márquez-Luna et al.10 

use a mixture of PRSs, taking advantage of existing well-powered GWAS studies and 

supplementing with additional information that can be gained from a smaller study in the 

population of interest. We investigate this approach in the context of varying admixture 

proportions and find that it achieved high accuracy across all admixed individuals, was not 

biased by ancestry, and significantly improved performance over a European-only PRS with 

10-fold fewer African ancestry cases. Thus, a combination of multiple single-population 

PRSs may be the best currently available approach for admixed individuals, and this 

approach will likely continue to improve as the individual PRSs are further developed.

An important finding of our work that the inclusion of variants from an African ancestry 

population results in less disparity in PRS accuracy across other populations illustrates the 

need to recruit diverse populations in GWASs and make these data readily available. Large 

consortia such as H3Africa, PAGE, the Million Veterans Program, and All of Us are 

undertaking efforts to support this initiative. Based on our analysis of HbA1c, asthma, and 

prostate cancer in the UK Biobank, we find that improvement in PRS prediction accuracy is 

currently possible by incorporating findings from GWASs in African ancestry populations, 

albeit with lower power. In addition to smaller sample sizes, this potential improvement may 

be limited by ascertainment bias in what SNPs are included on genotyping arrays and poorer 

imputation in non-Europeans. GWAS arrays and their imputation have substantially higher 

coverage among Europeans, and this may result in decreased PRS portability of findings 

across traits; in such situations, whole-genome sequencing in diverse populations may be 

needed in order to improve accuracy.27,28 Our study and others support the immense genetic 

diversity that can be unlocked by studying underrepresented populations to both eliminate 

the disparity in genetics for precision medicine and provide insights into disease biology for 

all populations.25,27,29

Although our simulation study provides important insight into the future of PRS use, it has 

important limitations. First, while coalescent simulations allow for decreased computational 

burden, model assumptions may result in inaccurate long-range LD, especially for whole-

genome simulations.30 However, given we only simulated chromosome 20, biases are 

expected to be modest.30 We also use a case-control framework for our simulation; 

therefore, power and potential differences in population PRS accuracy may be even higher if 

a quantitative trait was used. In addition, our simulations assume random mating among 

admixed individuals and therefore do not reflect the more complex assortative mating that 
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may be observed, which may impact the distribution of local ancestry tract lengths in our 

simulation and therefore hinder the improvement of PRS accuracy by local ancestry 

weighting.31 Also, although we provide evidence to suggest the contribution of population 

differences in allele frequency and LD tagging of causal variants to loss of PRS accuracy 

with varying ancestry, we do not delineate how each of these factors decreases accuracy 

independently; this is a direction for future work. Finally, we have only simulated 

individuals from Yoruba, a West African population, which is not representative of the 

greater diversity in Sub-Saharan Africa.32 Future studies must be done to ensure our findings 

can be extended to individuals from other regions of Africa.

Overall, our findings support the concern that while studies have demonstrated the potential 

clinical utility of PRSs, adopting the current versions of these scores could contribute to 

inequality in healthcare.4 Going forward, future studies should prioritize the inclusion of 

diverse participants, and care must be taken with the interpretation of currently available risk 

scores. While statistical approaches may offer improvements in accuracy compared to 

current European-derived risk scores, in order to truly diminish the disparity and achieve 

PRS accuracies similar to in European ancestry populations we must actively recruit and 

study diverse populations.
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Figure 1. Accuracy of European-derived PRSs by proportion of total ancestry
Accuracy of PRSs, with variants and weights from a European GWAS, decreases linearly 

with increasing proportion of African ancestry. Variants and weights were extracted from a 

GWAS of 10,000 European cases and 10,000 European controls. PRS accuracy was 

computed as the Pearson’s correlation between the true genetic risk and GWAS estimated 

risk score across 50 simulations in independent test populations of 5,000 Europeans, 5,000 

Africans, and 5,000 admixed individuals. Admixed individuals were grouped based on their 

proportion of genome-wide European ancestry. Simulations assume 1,000 causal variants 

and a heritability of 0.5 to compute the true genetic risk. A p value of 0.01 and LD r2 cutoff 

of 0.2 was used to select variants for the estimated risk score.
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Figure 2. PRS construction approaches and performance in admixed individuals
Using significant variants from an African ancestry GWAS with population-specific weights 

results in less disparity in PRS accuracy across populations. PRSs were constructed using 

variants and weights selected from either a European or African population (10,000 cases, 

10,000 controls each) or a fixed-effects meta-analysis of both. An additional local ancestry-

specific method was used for PRS weighting. Performance, measured as the Pearson’s 

correlation between the true and GWAS estimated risk score, is shown across 50 

simulations. Simulations assume 1,000 causal variants and a heritability of 0.5 to compute 

the true genetic risk. A p value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for 

the estimated risk scores.
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Figure 3. Impact of African sample size on PRS accuracy and generalization
PRS accuracy in diverse populations can be improved by including data from an African 

ancestry GWAS with smaller sample sizes than in a European GWAS. The number of 

African samples used in the GWAS and subsequent PRS construction was decreased to 

reflect availability of diverse samples in real data. Analysis was conducted assuming 1%, 

5%, 10%, 50%, and 100% (matched size of European dataset) of the total African ancestry 

cases. Average accuracy and the 95% CI were reported across the 50 simulations for 

different variant selection and weighting approaches. Simulations assume 1,000 causal 

variants and a heritability of 0.5 to compute the true genetic risk. A p value of 0.01 and LD 

r2 cutoff of 0.2 was used to select variants for the estimated risk score. A linear mixture of 

single-population PRSs (α1EUR + α2AFR), with variants and weights selected from that 

population, was also tested in the admixed population. The mixture coefficients (α1 and α2) 

were estimated in an independent African ancestry testing population.
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Figure 4. Allele frequency distribution of GWAS selected variants and LD tagging of causal 
variants
GWAS significant variants are more common in the study population from which they were 

discovered; however, African Ancestry GWAS variants may result in better LD tagging 

across populations. Variants were selected from a European or African ancestry GWAS or a 

fixed-effects meta-analysis of both populations.

(A) GWAS variants were binned by their MAF estimated from the European, African, and 

admixed populations. The error bar represents the 95% CI across simulations.

(B) LD scores were calculated for every causal variant by adding up the LD r2 for each 

GWAS tag variant within ±1,000 kb of the causal variant. LD scores calculated in a 

Europeans and Africans were compared by Pearson’s correlation. The results were 

summarized across simulations as the average and 95% CI.

(C) Raw LD scores for each causal variant (m 1,000) calculated in a European or African 

population for one simulation. Each panel shows the approach used for variant selection. 

Causal variants directly discovered through the GWAS are colored in gray.
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