Skip to main content
. Author manuscript; available in PMC: 2021 Mar 5.
Published in final edited form as: Radiat Environ Biophys. 2021 Jan 21;60(1):23–39. doi: 10.1007/s00411-020-00890-7

Table 4.

Parameter estimates of the excess relative rate (ERR) and excess absolute rate (EAR) models for solid cancer and 5-year lagged colon dose in subsets of the life span study and INWORKS

Life Span Study
INWORKS
Dose coefficient at 1 Gy 90% Cl Deviance df P1df Dose coefficient at 1 Gy 90% Cl Deviance df P1df

ERR modela
 ERR(d) = β1d 12,404.9 29,058 5541.4 11,006
  β1: linear 0.28 0.18; 0.38 0.29 0.07; 0.53
 ERR(d) = β1d + β2d2 12,404.6 29,057 0.548c 5541.3 11,005 0.909c
  β1: linear 0.23 0.10; 0.40 0.27 −0.14; 0.68
  β2: quadratic 0.03 −0.05; 0.10 0.06 −0.78; 1.04
 ERR(d,a) = β1d exp(υa) 12,401.1 29,056 0.147d 5,539.0 11,004 0.307d
 ERR/Gy at attained age < 60 years 0.35 0.19; 0.57 0.35 −0.26; 1.04
 ERR/Gy at attained age 60– < 80 years 0.31 0.20; 0.43 0.19 −0.05; 0.46
 ERR/Gy at attained age 80+ years 0.16 0.06; 0.29 0.86 0.20; 1.61
EAR modelb
 EAR(d) = β1d 12,831.6 29,395 6329.2 11,848
  β1: linear 8.03 3.74; 13.07 1.68 < 0; 7.55
 EAR(d,a) = β1d exp(υa) 12,812.4 29,393 < 0.001d 6322.1 11,846 0.029d
 EAR/Gy at attained age < 60 years 5.84 3.07; 9.50 0.42 < 0; 6.10
 EAR/Gy at attained age 60– < 80 years 20.79 11.56; 31.55 13.86 −4.34; 33.16
 EAR/Gy at attained age 80+ years 33.27 13.85; 60.23 190.40 58.67; 334.9

CI likelihood-based confidence interval

a

Defined as λ0(c,s,b,a)[1 + ERR(d,a)], where d is colon dose (cumulative in INWORKS), c is city for the LSS and country for INWORKS, s is sex, b is birth year, a is attained age in three categories (< 60, 60–80, 80+ years)

b

Defined as λ0(c,s,b,a) + EAR(d,a), the dose coefficients in the EAR model describe the excess cases per 10,000 person-years per 1 Gy

The LSS ERR and EAR estimates are weighted averages over sex with a weight of 0.88 for males and 0.12 for females

P1df: p value of a likelihood ratio test vs. cβ2 = 0 or dυ = 0

< 0: lower CI bound not estimated (on the boundary of the parameter space)