
Resident Macrophages in Cystic Kidney Disease

Zhang Li1, Kurt A. Zimmerman2, Bradley K. Yoder1

1Department of Cell, Developmental, and Integrative Biology, University of Alabama at 
Birmingham, Birmingham, Alabama

2Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health 
Sciences Center, Oklahoma City, Oklahoma

Abstract

Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are 

the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has 

been reported in different animal models and patients with cystic kidney disease. Originally, it was 

believed that renal macrophages were maintained from a constant supply of bone marrow–derived 

circulating monocytes, and could be recruited to the kidney in response to local inflammation. 

However, this idea has been challenged using fate-mapping methods, by showing that at least two 

distinct developmental origins of macrophages are present in the adult mouse kidney. The first 

type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop 

macrophage properties on entering the kidney. The second, resident macrophages, predominantly 

originate from embryonic precursors, colonize the kidney during its development, and proliferate 

in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages 

work together to maintain homeostasis and properly respond to pathologic conditions, such as 

AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of 

resident macrophages in cystic kidney disease.

Macrophages in Kidney

Renal macrophages, the largest population of immune cells in kidney, play a critical role in 

homeostasis, surveillance, immune response, tissue injury, and repair (1–3). Macrophages 

are a major constituent of the renal mononuclear phagocyte system and were believed to 

arise from bone marrow–derived monocytes that could be polarized into different phenotypic 

subsets in response to environmental stimuli (4–6). However, they were often confused with 

dendritic cells due to their shared cell-surface expression of CD11c and MHCII (7,8). With 

the advent of new lineage tracing and single-cell RNA sequencing approaches, it is now 

possible to clearly delineate macrophages and dendritic cells in the kidney across 
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mammalian species (9–11). In these studies, the authors demonstrated that renal 

macrophages were highly heterogenous and specialized populations and were derived from 

two different developmental origins (12–14) (Figure 1). One type, infiltrating macrophages, 

is derived from monocyte precursors in the bone marrow and recruited to the kidney in 

response to local inflammation (15,16). The other type, resident macrophages, maintain 

long-term residency in kidney with less mobility and arise primarily during organogenesis 

(17). They are derived in a Myb-independent manner from erythromyeloid progenitors that 

are first generated in the fetal yolk sac, colonize the fetal liver, and migrate into the kidney 

during early development (12,13,17).

The idea that resident macrophages are a homogenous population in the kidney and are 

exclusively derived from embryonic precursors has recently been challenged. Utilizing a 

newly generated cre-induced-hCD59 transgenic line, Liu et al. (18) traced the fate of 

resident macrophages in the kidney from birth to full maturity, and found that a portion of 

resident macrophages are actually derived from peripheral monocytes. The idea that some 

kidney-resident macrophages are derived from monocytes was supported by data from 

Ms4a3Cre-RosaTdT fate-mapping mice, which faithfully label all adult hematopoietic stem 

cell–derived monocytes (19). In these studies, the authors showed that a significant portion 

of kidney-resident macrophages were originated from adult hematopoietic stem cell–derived 

monocytes. Liu et al. (18) also demonstrated that both lineages of resident macrophages 

shared the feature of long-lived residency in the kidney, but had functional differences in 

aspects including immune response and metabolic profile in disease conditions. These data 

suggest kidney-resident macrophages can be derived from multiple precursor populations 

and their ontological origin may influence their function (6,17,18).

In mice, infiltrating and resident macrophages can be distinguished on the basis of the 

expression of surface markers F4/80 and CD11b, with resident macrophages being 

F4/80high, CD11blow and infiltrating macrophages being F4/80low, CD11bhigh (12,13,20). 

The exact function of resident macrophages in the kidney is not well known, although 

emerging evidence suggests they play an important role in kidney development, 

vascularization, and renal repair in response to AKI (17,21–24). Although there are limited 

data on the function of resident macrophages in the kidney, in part due to the nonspecific 

approaches used to study these cells in the past, we may be able to gain insight into their 

proposed functions due to similarities between M2-like macrophages and resident 

macrophages. M2 macrophages have an anti-inflammatory and profibrotic function (3,4,25); 

most resident macrophages also exhibit an M2-like phenotype, with intrinsic anti-

inflammatory properties (3). In addition, renal resident macrophages share expression of 

CD206 and Arg1 with M2 macrophages (20,26), suggesting that M2 macrophages and 

resident macrophages are similar populations of cells. It has also been reported that CD206+ 

M2 macrophages can promote tubular regeneration by expressing growth factors during the 

reparative phase after AKI, which is similar to the function of resident macrophages in AKI 

(27–29). Although these cells share significant functional properties, direct evidence that M2 

macrophages and resident macrophages are the same cell type is still lacking.

Overall, it is evident the renal macrophage niche in the kidney is more diverse than 

originally appreciated. To better understand the role of macrophages in kidney under normal 
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and pathologic conditions, further studies are needed to characterize the respective functions 

of these macrophage subsets and the underlying molecular mechanisms involved.

Macrophages in Cystic Kidney Disease

Seminal studies in the field of cystic kidney disease highlighted an association between the 

number of renal macrophages and the severity of cystic disease (30–33). However, it was 

debated whether macrophages had a causative role in cyst formation or were a secondary 

consequence of cyst progression and expansion. Karihaloo et al. (34) provided the first 

evidence that macrophages could promote cyst progression in animal models utilizing a 

phagocytic poison, liposomal clodronate (LC), to deplete all macrophages in the kidney. The 

authors showed that treatment of cystic mice with LC not only significantly decreased the 

number of renal macrophages (95% reduction), but more importantly, reduced the cystic 

index and improved renal function when compared with vehicle-treated controls (Table 1). 

The conclusion that macrophages could promote cystic kidney disease was further supported 

by subsequent studies from Swenson-Fields et al. (35). In these studies, the authors showed 

that treatment with LC also reduced cystic disease in a recessive model of cystic kidney 

disease. These data suggested macrophages may be involved in promoting cyst progression 

in multiple forms of cystic kidney disease. However, because these studies removed all 

phagocytic cells in the kidney, which includes infiltrating macrophages, resident 

macrophages, and dendritic cells, the contribution of each subset to cyst progression was still 

unknown.

There was a long-held belief that renal macrophages are derived from, and continually 

replenished by, circulating monocytes. This has led to the idea that targeting the recruitment 

of monocytes to the kidney may be therapeutically beneficial in the context of cystic kidney 

disease. This hypothesis is supported by data indicating that genetic deletion or 

pharmacologic inhibition of Ccl2 (also known as monocyte chemoattractant-1 or MCP-1) 

and macrophage migration inhibitory factor reduce the severity of cystic kidney disease (36–

38). More importantly, the level of cyst reduction using macrophage-targeted therapeutics 

was comparable to other inhibitors commonly used in the PKD field, such as tolvaptan or 

rapamycin (39,40). Whereas several studies indicate that inhibition of these macrophage 

ligand:receptor interactions restricts cyst growth, other studies did not report similar findings 

(41–43). The involvement of infiltrating macrophages in cystic disease remains 

controversial, and has been reviewed previously (44–47). For comparison, we include a table 

that summarizes the outcomes from multiple studies targeting macrophages in cyst severity 

(Table 1).

Resident-Macrophage Involvement in Cystic Kidney Disease

In retrospect, data suggested the presence and involvement of resident macrophages in cystic 

kidney disease for several decades. For example, multiple studies indicate that alternatively 

activated M2-like macrophages expressing CD206 (26,35,48), a newly identified cross-

species marker of resident macrophages (11,49), could promote renal cyst formation. 

Microarray analysis from Mrug et al. (50) found that in a nonorthologous model of 

autosomal recessive polycystic kidney disease (Cys1cpk/cpk), the most highly expressed 
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genes were those associated with the innate immune response. Of interest, several of these 

innate immune genes were recently identified as being specific for resident macrophages by 

single-cell RNA sequencing (C1qa, Cxcl16) (11). Also, Viau et al. (36) found increased 

numbers of both infiltrating and resident macrophages during cyst progression in inducible 

Lkb1 and Pkd1 mouse models. Although the authors emphasized the importance of 

infiltrating macrophages in controlling cyst progression in this study, they also observed an 

increased number of resident macrophages expressing CCR2 (receptor for MCP-1) in cystic 

kidneys, suggesting the MCP1-CCR2 axis may also be important for resident macrophages.

Zimmerman et al. (20) provided evidence for the involvement of resident macrophages in 

cystic disease using conditional Ift88 cilia mutant mice. These mutants develop a cystic 

kidney disease phenotype, where the severity is greatly influenced by the age at which cilia 

loss is induced (51). Ift88 loss induced in juvenile periods (before postnatal day 14) leads to 

rapid and severe cyst formation. In contrast, induction in adults results in slow cyst 

progression occurring in focal regions of the kidney. The rate of cyst formation in adult-

induced mutants was found to be greatly increased and more widespread after ischemia-

reperfusion injury. In correlation with these rates of cystogenesis, the authors showed that 

resident macrophages in wild-type mouse kidneys undergo a phenotypic switch (from 

CD11clow to CD11chigh) during the postnatal period. CD11clow resident macrophages are 

enriched during juvenile periods, negligible in adult mice, and reappeared after renal 

ischemia-reperfusion injury in adult cilia mutant mice. More importantly, the number of 

CD11clow resident macrophages was increased before and during cyst formation, suggesting 

a potential causative or at least contributing role for these cells in cyst formation. Analysis of 

confocal images indicated most resident macrophages coexpressed F4/80, Ki67, and CD206 

in cystic regions, suggesting a reciprocal communication between resident macrophages and 

cyst-lining epithelial cells (Figure 2). To understand the mechanism through which resident 

macrophages were accumulating, the authors performed parabiosis experiments by joining 

the circulation of a CD45.2 control or cilia mutant mouse with a congenic CD45.1 wild-type 

mouse and found the accumulation of resident macrophages in cilia mutant kidneys was 

independent of peripheral blood input. Analysis of cell proliferation using Ki67 indicated 

that accumulation of resident macrophages in injured cilia mutant mice was largely driven 

by self-proliferation. To determine the cell type that was responsible for driving resident 

macrophage proliferation, the authors flow sorted epithelial populations and showed the 

expression of membrane-bound colony stimulation factor 1 was significantly increased in 

the proximal tubule cells of the injured cilia mutant kidneys compared with injured controls 

(Figure 2). Inhibition of CSF1R kinase signaling, using GW2580 (52), reduced resident 

macrophage proliferation, prevented the accumulation of CD11clow resident macrophages, 

and reduced the severity of cystic disease in the injured conditional Ift88 model and in the 

more rapidly progressing cpk mouse model. Interestingly, GW2580 treatment did not affect 

the infiltrating macrophage number, suggesting the effects of GW2580 were resident-

macrophage specific.

Data showing that resident macrophages could promote cystic disease were supported by 

follow-up studies investigating the involvement of macrophage subsets in an orthologous 

mouse model of autosomal dominant polycystic kidney disease (ADPKD) (53). Using 

conditional Pkd1 mice with unilateral nephrectomy, Zimmerman and colleagues showed the 
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numbers of infiltrating and resident macrophages were increased in conditional Pkd1 mice 

with unilateral nephrectomy compared with sham-operated mice, and that the increase 

occurred before the onset of severe cystogenesis. Furthermore, the authors showed that IFN 

regulatory factor 5 (Irf5), a transcription factor known to induce inflammatory cytokine 

production in macrophages (54), was increased in infiltrating and resident macrophages in 

cystic kidneys. To identify the function of IRF5 in macrophages and its importance in cyst 

formation, the authors suppressed the expression of IRF5 with an antisense oligo (ASO) 

treatment and found that IRF5 suppression decreased the number of kidney-resident 

macrophages, reduced inflammatory gene expression, and reduced cyst growth. More 

careful characterization of infiltrating and resident macrophages showed that IRF5 ASO 

treatment specifically reduced Irf5 and Il6 expression in resident macrophages, but did not 

affect their expression in infiltrating macrophages. More importantly, the authors found that 

IRF5 ASO-treated mice have reduced STAT3 phosphorylation and expression of p-STAT3 

target genes compared with vehicle treated mice suggesting that IRF5-expressing resident 

macrophages released inflammatory cytokines (IL-6) stimulating STAT3 phosphorylation in 

the epithelium thereby promoting cyst growth in mice lacking Pkd1.

The data presented in this review suggest the involvement of resident macrophages in cystic 

kidney disease. However, the exact mechanism by which resident macrophages influence 

cyst growth is largely unknown. Although Zimmerman and colleagues provided evidence 

that cytokines such as IL6 may influence cyst growth through a STAT-dependent 

mechanism, other direct or indirect mechanisms are likely involved in regulating cyst 

formation and disease progression (55) (Figure 2). For example, resident macrophages 

control injury and repair processes in the kidney by promoting tubular epithelial cell 

proliferation and de-differentiation, which are hallmarks of renal cyst formation (55). RNA 

sequencing of resident macrophages after AKI indicated transcriptional reprogramming of 

resident macrophages, including upregulation of several Wnt genes (Wnt4, Wnt7b, Wnt10a, 
and Wnt10b) (21). Wnt-induced β-catenin signaling can protect against epithelial apoptosis 

and promote proliferative repair (27,56,57). In addition, Wnt signaling can also drive 

interstitial myofibroblast activation and proliferation, leading to increased matrix-protein 

deposition and renal fibrosis (56,58). These data suggest that resident macrophage–derived 

Wnts promote the proliferation of cystic epithelium and drive interstitial fibrosis during 

cystic disease progression.

It is also possible that resident macrophages serve as “first responders” in the kidney and 

control the accumulation and effector function of other immune cells, such as neutrophils, 

infiltrating macrophages, and T cells, which have all been observed in patients and mouse 

models of cystic kidney disease (47,59–62). In fact, resident macrophages are well suited for 

this role as they are able to maintain a persistent residence in an adult kidney through self-

proliferation and are located directly adjacent to the tubular epithelium (63). Thus, they may 

serve as sentinels in the kidney to regulate the accumulation of other immune cells that 

influence cyst growth and progression. Indeed, due to their residency advantage, resident 

macrophages can act more rapidly than neutrophils, which have always been regarded as 

first responders in kidney injury. Using a combination of intravital imaging and confocal 

multiplex microscopy, Uderhardt et al. (24) observed that resident macrophages exert a 

“cloaking” behavior by extending pseudopods around a local injury, which will prevent 
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injury-induced neutrophil activation and neutrophil-driven inflammation. Thus, it is possible 

resident macrophages serve a similar role in cystic disease.

In addition, epithelial apoptosis is detected during cyst formation (64) and macrophages are 

known to be professional phagocytes. Thus, resident macrophages may control cyst growth 

through phagocytosis of damaged epithelial cells and subsequent activation of inflammatory 

signaling pathways. This is supported by data showing that resident macrophages can detect 

and scavenge immune complexes or foreign debris in the interstitium, and upregulate several 

inflammatory signaling pathways including NF-κB and JAK/STAT, both of which are 

associated with worsened cystic disease (22,65).

Moreover, resident macrophages could also contribute to cyst progression through other 

mechanisms, including regulation of vasculature abnormalities through their proposed 

proangiogenic functions (23,66,67). It is also possible resident macrophages directly or 

indirectly regulate fluid secretion as data suggest macrophage-derived cytokines mediate the 

localization and activity of multiple ion channels in kidney and other tissues (68–71). All of 

these processes have been reported to be involved in cystic kidney disease (72,73).

Targeting Resident Macrophages as a Potential Therapeutic Intervention

Inhibition or reduction of resident-macrophage numbers has beneficial effects both on cyst 

burden and disease progression in multiple preclinical models (20,53). However, because the 

mechanism of resident-macrophage involvement in cyst growth is unknown, and the 

approaches for identifying these cells across species are difficult, there have been significant 

limitations in targeting these cells in patients with cystic kidney disease. Despite these 

limitations, it should be noted that inhibition of two proinflammatory signaling pathways 

that are present in resident macrophages, the NF-κB and JAK/STAT pathway, has 

significantly ameliorated cystic severity in animal models (45,46). For example, a STAT3 

inhibitor, S3I-201, significantly inhibited cyst formation and growth in a neonatal PKD 

mouse model (74). In addition, triptolide has well-known anti-inflammatory effects through 

inhibiting NF-κB transactivation and its beneficial effect on cystogenesis in ADPKD mouse 

models has been reported for decades (75,76). Results from a phase 3 clinical trial of 

triptolide in ADPKD (NCT02115659) are much anticipated (https://clinicaltrials.gov/ct2/

show/NCT02115659).

Another caveat to understanding resident-macrophage involvement is the difficulty of 

translating resident-macrophage–focused animal studies to humans. This difficulty is due to 

the fact that markers used to delineate mouse macrophages (i.e., F4/80) are not expressed by 

their human counterparts, making it challenging to identify analogous populations between 

species. Also, due to the lack of an appropriate method, there is no way to distinguish 

monocyte-derived infiltrating macrophages from embryonically seeded resident 

macrophages in the human kidney. Utilizing the recently developed single-cell RNA 

sequencing technique, Zimmerman et al. (11) identified a cross-species kidney resident-

macrophage–specific gene expression signature by sequencing CD45+ cells isolated from 

mouse, rat, pig, and human kidney tissue. As part of this signature, the authors identified 

C1QC, CD81, and CD74 as novel, cross-species markers of resident macrophages. The 
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authors went on to show these markers were expressed in mouse resident macrophages at the 

protein level, and were coexpressed at the protein level in a population of CD45+ cells 

isolated from rats and humans. Thus, it is likely that resident macrophages are present in 

other species and C1q, CD81, and CD74 can be used to identify these cells.

The identification of resident macrophages in human kidneys will greatly facilitate clinically 

relevant translational research from murine models to human patients. Macrophage targeting 

as a potential therapeutic intervention has been implicated and has led to promising results 

in preclinical models of inflammatory diseases and cancer (77). However, specifically 

targeting resident macrophages in the kidney of patients is extremely challenging, due to the 

lack of precise approaches to deplete kidney resident macrophages from their useful 

counterparts in other tissues. Thus, any resident-macrophage inhibitors would deplete 

resident macrophages in all tissues where they are essential for basic biologic functions such 

as synapse pruning, cardiac electrical conduction, and preventing infections (78,79). 

Therefore, it is critical to develop kidney-specific approaches to selectively deplete resident 

macrophages.

Conclusions and Future Perspectives

In summary, studies have shown the involvement of renal resident macrophages in cyst 

progression and that targeting resident macrophages using genetic deletion or pharmacologic 

inhibition is a promising therapeutic target for reducing cyst growth. Understating the 

function of resident macrophages in physiologic and pathologic conditions is important to 

reveal their mechanism of action in cystic kidney disease and translate these novel 

mechanisms to benefit patients with cystic kidney disease.
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Figure 1. |. The origins of macrophages in kidney.
Two types of macrophages are present in the adult mouse kidney. Resident macrophages 

predominantly originate from embryonic precursors, migrate into the kidney during early 

development, and are maintained in the kidney through local proliferation. Infiltrating 

macrophages are derived from monocyte precursors in the bone marrow, and are recruited to 

the kidney in response to local inflammation. The dashed arrow indicates a limited but 

continuous contribution of monocyte-derived cells to the resident-macrophage pool in adult 

mouse kidneys.
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Figure 2. |. Proposed functions of resident macrophages during cyst formation and expansion.
Multiple processes occur during cyst formation and expansion, including increased epithelial 

proliferation and apoptosis, interstitial inflammation, increased extracellular matrix 

deposition and renal fibrosis, and vasculature abnormalities. Resident macrophages may be 

involved in controlling several of these processes directly or indirectly. It has been proposed 

that resident macrophages can promote cystic epithelial proliferation by secretion of 

cytokines and phagocytosis of apoptotic epithelial cells. Also, renal-resident macrophages 

may drive interstitial myofibroblast activation and proliferation, leading to increased 

extracellular matrix deposition and renal fibrosis. Resident macrophages may serve as “first 

responders” in the kidney and control the accumulation and effector function of other 

immune cells, such as neutrophils, infiltrating macrophages, and T cells, to indirectly 

regulate cyst formation. Finally, renal resident macrophages may also regulate vasculature 

abnormalities through their proposed proangiogenic functions. The inset indicates the 

reciprocal communication between resident macrophages and the cilia mutant epithelium via 
mb-CSF1/CSF-1R. ECM, extracellular matrix; mb-CSF1, membrane-bound colony-

stimulating factor-1; RM, resident macrophages; IM, infiltrating macrophages.
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