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Abstract

Purpose of Review: Increasingly sophisticated systems for monitoring the brain have led to an 

increase in the use of multimodality monitoring (MMM) to detect secondary brain injuries before 

irreversible damage occurs after brain trauma. This review examines the challenges and 

opportunities associated with MMM in this population.

Recent Findings: Locally and internationally, the use of MMM varies. Practical challenges 

include difficulties with data acquisition, curation, and harmonization with other data sources 

limiting collaboration. However, efforts toward integration of MMM data, advancements in data 

science, and the availability of cloud-based infrastructures are now affording the opportunity for 

MMM to advance the care of patients with brain trauma.

Summary: MMM provides data to guide the precision management of patients with traumatic 

brain injury in real-time. While challenges exist, there are exciting opportunities for MMM to live 

up to this promise and to drive new insights into the physiology of the brain and beyond.
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Introduction

The development of neurocritical care over the last half century has led to improvements in 

patient care in part through a focus on continuous, bedside monitoring of the brain(1). 

Technological innovations have resulted in the widespread adoption of devices to 

complement the clinical neurological examination, such as parenchymal pressure sensors 

and continuous electroencephalography (cEEG). Increasingly sophisticated devices have 

been more recently developed to measure the oxygenation and metabolism within the brain 

tissue. Multimodality monitoring (MMM) is characterized by the integration and 

interpretation of these multiple sources of information to more comprehensively understand 

and monitor the brain after injury.

The sheer quantity of data available in a typical intensive care environment is 

overwhelming(2). The additional complexity that results from integrating and responding to 

multiple real-time measurements of brain physiology highlights the significant challenges to 

the use of MMM in the critically ill(3). However, there is promise in the use of MMM to 

guide the management of patients with severe brain injuries more precisely and the next 

wave of technological progress in computer science and engineering provides exciting 

opportunities for the future.

MMM in TBI

In the US each year, 56,000 people die from severe traumatic brain injury (sTBI)(4) and an 

estimated 30,000 with sTBI require intensive care(5). Primary brain injuries are 

characterized by the pathoanatomic damage incurred by the specific mechanism of trauma, 

and include contusions, intracranial hemorrhage, and axonal shear injuries. Secondary brain 

injuries refer to downstream pathology that evolves following the primary brain injury. In 

patients who eventually die after sTBI, secondary brain injuries such as herniation or 

necrosis are seen in half and histopathologic evidence of ischemia has been reported in more 

than 90%(6). However, ‘secondary brain injury’ is a broad term. Brain injuries such as TBI 

create heterogeneous zones of vulnerable tissue at high risk for further injury(7) resulting 

from mismatches between the metabolic supply and demand of the brain. After sTBI, 

inadequate perfusion pressure, brain tissue hypoxia, autoregulatory dysfunction, seizures, 

and spreading depolarizations of brain tissue have been observed in 50-90% of patients with 

ramifications for the health and recovery of the brain(8-11).

The goal of neurocritical care is to prevent or mitigate secondary brain injuries through 

prediction, early detection, or by monitoring treatment response(12). Clinically, secondary 

brain injury manifests as neurological deterioration, which occurs in one-quarter of patients 

with sTBI, increasing mortality from 10% to 56%(8). The clinical neurological exam is the 

standard for detecting the clinical sequelae of secondary brain injury. However, early 

detection is challenging in patients with sTBI due to coma or concomitant injuries that limit 

the sensitivity of the neurological examination. Snapshots of the brain, such as computed 

tomography (CT) or magnetic resonance imaging (MRI) may provide important information 

about secondary brain injuries, but typically at a time when damage is no longer reversible. 

The central use of MMM is to leverage real-time objective measurements of the mechanics, 
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metabolism, and function of the brain to guide clinical management based on each patient’s 

individual pathophysiology and to detect physiologic alterations before secondary brain 

injuries can occur.

There are no standards for what technologies constitute ‘multimodality monitoring’. An 

understanding of brain physiology requires standard contextual ICU measurements such as 

arterial blood pressure (ABP) or temperature in addition to brain-specific measurements, 

such as EEG activity or brain tissue oxygenation (PbtO2). In the absence of standards, there 

is significant variability in the clinical practice of neuromonitoring. Intracranial pressure 

(ICP) monitoring is the most common modality(13). However, in the US, as few as 11.5% of 

patients who might be eligible for ICP monitoring actually undergo the procedure(14) and 

internationally, significant variability exists in the clinical criteria for its use (15). When 

brain monitoring is performed, a survey of primarily US institutions showed that most (95%) 

reported monitoring ICP, whereas cEEG was used by only 58% of the intensivists who 

responded, followed by transcranial Doppler (TCD; 49%)(13). This experience mirrors that 

across 66 centers in Europe, in which TCD was used by 38% and brain tissue oxygen 

monitoring by 19%. The use of other devices was rare, including jugular venous oximetry 

(9%), microdialysis (6%), regional cerebral blood flow (5%), near-infrared spectroscopy 

(NIRS; 2%), and EEG (<5%)(15).

In contrast to stand-alone measurements, integrated MMM enables an understanding of 

physiologic dynamics that may not be captured or quantified by commercial measurement 

devices. For instance, the correlation between ABP and ICP has been validated as an index 

of autoregulatory function(16), but requires time-synchronized capture of both 

measurements at a sampling frequency of at least once-per-minute(17). Furthermore, 

computational algorithms are required to infer optimum targets for cerebral perfusion 

pressure (ICM+®; Cambridge, UK). Tools such as this highlight the need for access to time-

resolute data and an ability to manipulate that data through either existing or home-grown 

software. In a review of the capabilities of centers involved in TBI research internationally, 

barriers to the use of MMM data included lack of access to waveform-level data; variability 

in the recording, capture, and labelling of specific measurements; a lack of standard 

annotations to understand the impact of bedside events; and a lack of automated integration 

with other clinical information, such as imaging(18).

Challenges in MMM

Data Acquisition

Multiple challenges restrict the full extent to which MMM can be deployed to improve 

neurocritical care. Neurocritical monitoring involves supplementing standard ICU data such 

as the electrocardiogram, ABP, respiratory and ventilator parameters, and temperature with 

brain-specific measurements such as ICP, PbtO2, or EEG. The volume of this waveform-

level, high-resolution data at scale is incredibly large precluding permanent storage at most 

institutions, although device-specific data from individual patients can often be acquired and 

stored locally. For example, ICP recorded through the Camino® Intracranial Pressure 

Monitor (Natus Medical Incorporated; Pleasanton, CA) can be exported as a continuous, 

high-resolution waveform. However, this often requires direct interaction with the monitor 
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itself or additional connectivity solutions to send the data to an intermediary server. When 

several such devices are used to generate measurements, a significant barrier occurs when 

each device manufacturer uses proprietary methods for collecting and converting signals or 

unique communication protocols. Details about the name of the device, the location of the 

monitoring probe, the units used to measure the ICP, and the sampling frequency may be 

missing or variably expressed based on the proprietary format of the metadata. These 

include important considerations in terms of how the data were recorded, too. The validity of 

ICP measurement using an external ventricular drainage catheter (EVD) depends on whether 

or not cerebrospinal fluid drainage was being performed concomitantly with ICP 

measurements, and at what level the catheter had been levelled. Additionally, even when 

signals can be acquired, they lack synchronization with other contextual data, such as 

medication administration. Without adequate synchronized, time-stamped annotations, data 

interpretation may be limited.

Obstacles to the clinical use of MMM also involve connectivity with clinical data and a lack 

of a standard data formats. Existing electronic health record (EHR) systems do not enable 

the collection of waveform-resolution data in neurocritical care units such that this 

potentially rich source of data is not integrated with a patient’s clinical record. Systems have 

been developed to collect and integrate data from multiple devices, such as the bedside CNS 

Monitor (Moberg Solutions, Inc; Ambler, PA), the BedMasterEx™ software platform (Excel 

Medical Electronics, Inc; Jupiter, FL), the PC-based ICM+® software, or the cloud-based 

Sickbay™ platform (Medical informatics Corp; Houston, TX). Yet, to date, these solutions 

do not integrate seamlessly with the EHR. MMM research often requires development of ad 
hoc data infrastructures in order to collect, integrate, and share data between sites. This 

process can be extremely time-consuming and expensive, resulting in scattered systems all 

attempting to achieve a similar task. Currently there is no universally agreed-upon standard 

format for multidimensional data including the high-resolution data recorded in neurocritical 

care, but there are examples of frameworks that are being adopted, such as the HDF5 

format(19). For EEG data, the EDF/EDF+ standard has been widely adopted, and as a result 

there are data repositories and analysis software solutions that have grown to support this 

format independent of the EEG platform used for data collection. Developing a standard 

data format with defined metadata to capture critical device information and contextual 

clinical events in the form of annotations will prove invaluable for systems in which 

collected data then can be easily organized, shared, and stored for clinical or research use.

Data Curation

The use of continuous physiologic data has been shown to predict subsequent clinical 

outcomes, including patient deterioration, better than intermittent data(20). However, 

physiologic monitoring data is typically linked with EHR data only as sparse, discrete 

numerical data validated by ICU staff every hour. Concurrent clinical data, including 

medication doses and administration times, can add valuable information to help 

contextualize these physiologic data. As a result, MMM data is often curated with clinical 

data post hoc, following the completion of monitoring. The creation of a platform for 

seamless, real-time integration of EHR data with physiologic waveforms needed for MMM 

is an area of opportunity for streamlining utilization of existing technologies.
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Integrating recorded data from different technologies also poses challenges. Pre-processing, 

which refers to data cleaning and manipulation prior to use, is often required to facilitate 

compatibility between data formats. For example, in paradigms that link EEG temporally to 

MRI data, pre-processing is required to remove artifacts prior to source localization. 

Stimulation-based paradigms that link clinical activity or neurologic examination to 

physiologic data may shed light on phenotypes such as coma recovery(21, 22), but these 

techniques similarly require pragmatic data cleaning in order to facilitate test-retest 

reliability. Spatial co-registration is also required for functional imaging, for instance 

merging metabolic imaging data with EEG(23, 24). Software used for analyzing different 

data modalities depends upon the type of data and may employ data-specific processing (e.g. 

Persyst® [Persyst; Solana Beach, CA] for EEG data; ICM+® for ICP and ABP data) before 

the data can be linked. This suggests a role for an application programming interface (API) 

to facilitate interoperability and analysis in the clinical environment.

Physiologic data is increasingly being curated in conjunction with metabolomic or genomic 

data. For example, the genotype of SIRT-1 has been associated with ICP trajectory(25) and 

inflammatory markers have been associated with seizures(26) as well as worsening 

epileptiform abnormalities(27). As with the types of data mentioned above, the process of 

linking MMM data with -omics data requires pre-processing. However, systematic efforts at 

research-level prospective data integration are being developed(28). The use of - omics data 

for clinical MMM will depend on the development of increasingly efficient methods of both 

sequencing and analysis.

Metadata

Metadata captures critical context for understanding data at hand. There is a clear need for 

metadata related to physiologic signals in order to better contextualize, utilize, and 

understand MMM. For instance, there is limited focus on the location of MMM devices 

relative to injury, yet after sTBI, PbtO2 values have been found to be prognostically 

significant only when probes are located near a lesion(29) and nonconvulsive seizures 

ipsilateral to microdialysis probes have been associated with greater metabolic crisis(9). 

Metadata including information about additional devices (including potential interference), 

clinical context such the presence of a decompressive hemicraniectomy, and signal quality 

may be similarly important to the interpretation of MMM data.

Collaborative Use

Increased interest in the use of MMM data has resulted in a number of inter-institutional 

collaborative research efforts. Due to HIPAA-related privacy constraints, MMM data may 

require deidentification depending on the nature of Data Use Agreements (DUA) between 

sites and the intended users of the data. Fully deidentified data requires all 18 HIPAA-

defined identifiers be removed, which includes date-time information critical to the time-

series data captured in neurocritical care. Inclusion of this data may be considered as part of 

a limited dataset subject to typical human subjects research approvals. Currently, there are 

few available tools to provide robust deidentification across different types of data. Data is 

typically deidentified locally, often manually, prior to uploading data into common 

resources, such as a shared database or cloud-based storage solution.
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In addition to privacy concerns, there are issues related to the interoperability of 

terminologies used to describe clinical data, in particular physiologic data. Terminologies 

exist broadly for data captured in EHR systems, such as the Systematized Nomenclature of 

Medicine Clinical Terms (SNOMED CT®), and for specific data types such as laboratory 

data (e.g. Logical Observation Identifiers Names and Codes [LOINC]). The National 

Institutes of Health have further defined core, supplemental, and exploratory Common Data 

Elements for patients with specific clinical phenotypes, including TBI(30). In the case of the 

Digital Imaging and Communications in Medicine (DICOM) format used for imaging data, 

terminologies were developed in conjunction with the data format, but this standard has 

suffered from significant variability in the structure and use of its metadata. A strategy to 

define terminology as part of the core metadata within a data format may allow for 

hierarchical file structures that incorporate distinct data types, including timestamps for 

high-resolution physiologic data, as in the open-source HDF5 format(19). More recently, 

standards have evolved to define concepts and their relationship with other ontologies, 

including SNOMED and LOINC mentioned above. The Observational health Data Sciences 

and Informatics (OHDSI) consortium has adopted the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model. Other standards such as the Informatics for 

Integrating Biology at the Bedside (i2B2) data model have been developed and tools are now 

available to harmonize between standards such that an increasing number of sites may be 

able to combine health data for collaborative research(31).

In the space between concerns about privacy and interoperability, there are opportunities for 

federated approaches to combining MMM data for research. Data federation involves the 

creation of virtual database structures, meaning data may be stored, analyzed, and retained 

locally while being accessed using common data models(32). This approach can be flexible. 

For instance, summary descriptive data can be created prior to aggregation (e.g. PCORnet 

Common Data Model) or complex data modeling can be carried out on premises and the 

weights calculated for the model may be shared limiting concerns for patient privacy or 

inadvertent regulatory non-compliance within local frameworks(33).

Opportunities in MMM

Data Analytics

Despite challenges in the acquisition, curation, and collaborative use of MMM data in 

clinical practice and research, advances in data science provide exciting opportunities to 

integrate and summarize complex brain physiology in order to more precisely guide clinical 

care. Computational tools that leverage data to describe, predict or prescribe a course of 

action can be collectively referred to as analytics. These tools require methods to identify 

clinically relevant features within the data. For instance, the mean ICP over an epoch may be 

less important than the relationship between ICP and perfusion in specific patients(34). The 

features of MMM that map to clinically important endpoints have yet to be defined(35). Far 

from an existential challenge to the use of MMM, this need provides an exciting avenue for 

data science to define the fingerprints of an individual’s physiologic response to injury – a 

concept that expands the systems biology and integrative physiology approaches underlying 

physiomics(36), incorporating patient-specific networks of physiologic interactions(37) to 
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define physiologic endophenotypes. This concept may allow for innovations in treatment 

strategies to improve outcome after TBI.

Data analytics approaches respond to several of the challenges discussed above, but also 

require specific solutions of their own in order to realize the potential for MMM. For 

instance, overcoming data acquisition hurdles reduces the need for pre-processing 

procedures, thereby fostering real-time use of MMM data. Efforts are underway to 

standardize acquisition of clinical and high-resolution data for research purposes, including 

the Data Access Quality and Curation for Observational Research Designs (DAQCORD; 

daqcord.org) project(38). Work is also being done to formalize data labels and metadata 

specific to brain monitoring data leveraging large multi-institutional clinical trials as a test 

bed for data harmonization (including Transforming Research and Clinical Knowledge in 

Traumatic Brain Injury [TRACK-TBI; NIH U01NS086090] and the Brain Oxygen 

Optimization in Severe TBI Phase III studies [BOOSTIII; NIH U01NS099046]. Once data is 

harmonized, common algorithms for artifact rejection and normalization can be deployed, 

from simple threshold-based tools to AI-based open-source software solutions(39).

An important opportunity exists in understanding which aspects of MMM matter to patient 

care. The canary in the coal mine has been the traditional use of average ICP measurements 

to guide management, an approach that has been recently reframed(34, 35). Movements to 

standardize the clinical reporting and interpretation of MMM data may serve as a guide to a 

more systematic understand of how MMM may be interpreted clinically. Yet, the ability for 

humans to process multiple sources of independent data is inherently limited. Computational 

analytic approaches integrating MMM data complement these efforts by uncovering 

complex inter-relationships between the body and the brain(40, 41), the network architecture 

of the brain itself(42), and the regulation of cerebral blood flow after injury(16). The clinical 

utility of MMM data will require clinical experience married with sophisticated 

computational tools. Early examples of this include cluster-based analyses uncovering 

patterns within MMM data that correspond to unique cohorts of patients with different 

outcomes and individual physiologic states that evolve over time(43, 44). Hidden Markov 

models have similarly demonstrated time-dependent physiologic states defined by time-

series ICP, cerebral perfusion pressure (CPP), autoregulatory capacity, and compensatory 

reserve(45).

Traditional statistical learning approaches such as regression modeling typically focus on 

discrete clinical data. For example, in patients with moderate to severe TBI, a combination 

of clinical and radiologic variables available at the time of admission have been used to 

create a model of unfavorable outcome or death that has been validated across more than 

15,000 patients with an area under the receiver operating characteristic curve (AUC) of 

~80%(46). The addition of physiologic data to this model has consistently improved its 

predictive ability. In one study, the use of cEEG monitoring within the first 24 hours of 

trauma improved the AUC from 65% to 77%(47). In another, the addition of minute-to-

minute ICP and ABP values increased the AUC from 72% to 90%(48). Further integration 

of MMM data with the rich clinical information captured within the EHR is critical to 

understanding the impact of injury severity and ICU care (e.g. sedation) on patient 

trajectory.
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A ‘Medical Record’ for the Brain

MMM serves to guide clinicians in their management of patients by detecting subtle changes 

in brain physiology prior to irreversible secondary brain injury. We describe here our recent 

work in overcoming many of the challenges to the use of MMM by designing a dynamic 

medical record focused on brain monitoring data, one that ultimately aims to provide real-

time precision management of TBI (Figure).

First, we designed an architecture for a cloud-based analytics platform for neurocritical care 

data. In brief, this platform consists of three basic elements: components, data paths, and 

standards. A component is a “node” in the system and can be a source of data such as a 

medical device or a data repository. Data paths refer to getting data from one node to another 

such as from the EHR to an analytics tool. Standards are those required to harmonize data 

from different patients or multiple institutions including uniform data labels, archive 

formats, and/or transfer protocols.

We have implemented our design using cloud-based object storage as a repository for high-

resolution physiological data from TBI patients. Nodes consist of devices collecting vital 

signs data (Intellivue [Philips North American Corporation; Andover, MA) and Carescape™ 

[GE Healthcare; Chicago, IL]), ICP (Camino® ICP Monitor [Natus Medical Inc; Pleasanton, 

CA], RAUMEDIC DATALOGGER and EASY logo [Raumedic; River Mills, NC), PbtO2 

(Licox® [Integra LifeSciences; Plansboro Township, NJ] and RAUMEDIC devices), and 

others. Device data is sent to a bedside CNS Monitor which acts to aggregate data sources. 

For the data path from devices to aggregator, we used the devices’ proprietary protocols 

since no standard medical device communications protocol has yet been widely adopted. 

Software was written to implement the data path subsequently from clinical sites to the 

cloud object storage repository. This upload portal is capable of user authentication, initial 

error-checking, and secure transfer to cloud object storage. Data is mapped to standardized 

labels and metadata is extracted. Events and annotations noted at the bedside are extracted 

from a separate data file.

Additional data paths are being developed from the EHR to the cloud object storage 

repository to incorporate laboratory and medication administration information. 

Interoperable cloud-based applications comprise additional nodes. For example, a 

visualization tool has been implemented that provides flexible views of the data alongside 

events and medications. An API is currently under development to allow for modular data 

analytic “plug-ins” allowing clinicians and researchers to choose computational analytics as 

needed for specific applications or specific patients.

Examples of Modular Analytics

EEG and Sedative Medication Data

Seizures and periodic or rhythmic discharges occur in 14-61% of patients with TBI admitted 

to the ICU. When recurrent seizures or status epilepticus (SE) occurs, patients may be 

treated with anesthetic coma. However, when sedation is weaned, uncertain EEG patterns 

may emerge that mimic SE(49), albeit transiently, before EEG begins to improve(50). In 

contrast, weaning sedative medications may be informed by changes in EEG activity not 
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apparent to the human eye(51). Therefore, inclusion of medication data from the EHR may 

be instrumental to understanding EEG monitoring data during liberation from anesthetics, 

limiting morbidity associated with prolonged mechanical ventilation and sedation.

Optimum CPP

The concept of optimum CPP (CPPopt) derives from observations that while autoregulation 

is frequently dysfunctional following TBI, there is often a narrow range of CPP at which 

autoregulatory mechanisms continue to function. Operating at CPPopt may limit the sequelae 

of falling below the lower limits of autoregulation (ischemia, hypoxia, elevations in ICP) or 

riding above the upper limits of autoregulation (hyperemia, elevations in ICP). Identification 

of CPPopt requires 10-second measurements of average ICP and mean arterial pressure to 

generate a 5-minute moving average correlation coefficient termed the Pressure Reactivity 

Index (PRx) which is mapped against average CPP values yielding a U-shaped curve(16). As 

a proof of concept, we developed a graphical user interface that incorporates second-by-

second ICP and ABP from the CNS Monitor translated to Matlab (MathWorks; Natick, MA) 

format and published multi-window weighting algorithms(52) to generate a time-series of 

estimated CPPopt values. Communication of CPPopt into the EHR forms a critical next step 

through the Substitutable Medical Applications, Reusable Technologies (SMART) standard 

using a Fast Healthcare Interoperability Resources (FHIR) API.

The Future of MMM

There are several hurdles that will need to be addressed in the near future. First, data 

workflows to eliminate artifacts in real-time are critical. For example, ICP measurements 

recorded while an EVD is clamped are not useful for calculating the PRx, but these epochs 

can be readily distinguished from valid, pulsatile ICP waveform data. Artifact reduction 

technologies for EEG data are more mature, but there is a need for data-specific algorithms. 

Second, contextual clinical data requires automated methods of accurate time-synchronized 

annotation. Currently, bedside annotations are not standardized and medication 

administration data contained within the EHR may be inaccurate by minutes or even hours 

in some cases. Finally, metadata that captures data critical for the interpretation of MMM 

data is needed, likely as an extension of the existing NIH/NINDS Common Data Elements 

and incorporated into Common Data Models and/or open-source, portable data formats.

Conclusions

While the goal of MMM is to provide critical information about the health and function of 

brain tissue in real-time to guide patient-specific management, the promise of MMM for 

clinical and research purposes is limited by challenges in data acquisition, curation, and 

collaboration. Efforts are underway to create scalable solutions to overcome these barriers 

and provide a) methods for integrating and harmonizing high-resolution MMM data with 

biological, clinical, radiographic, and outcomes data; b) a common resource that will 

leverage data science tools to derive novel insights into patient-level physiology; and c) an 

open-source API to allow data exploration and analysis ad hoc by clinicians and researchers 

without the need for computer science expertise. MMM provides an exciting opportunity to 

develop tools for clinicians to use in order to provide patients with TBI the precise 
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management that they require and to develop new scientific insights into the physiology of 

brain trauma and beyond.
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Figure 1: A Medical Record for the Brain
A schematic depicting an architecture designed to overcome many of the challenges to the 

use of multimodality monitoring for clinical and research use. Nodes refer to sources of data 

including devices such as bedside vital sign monitoring devices, intracranial monitoring 

devices, or systems designed to capture electroencephalography activity. Nodes also refer to 

sources of clinical and contextual data such as the electronic health record (EHR) or 

annotations made at bedside, as shown here through an interactive touchscreen interface. 

Blue arrows indicate data pathways, which refer to methods of moving data from one node 

to another. Harmonization mapping refers to methods that allow for disparate data paths to 

link to a specific patient encounter and to synchronize with date/time stamps using standard 

definitions or labels. These standards further allow harmonization across patients and 

institutions. Harmonized data is then uploaded to a cloud-based object storage repository in 

order to maximize collaboration while limiting local resource utilization.
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