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Abstract

Background: The clinical and scientific value of Prechtl general movement assessment (GMA) 

has been increasingly recognised, which has extended beyond the detection of cerebral palsy 
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throughout the years. With advancing computer science, a surging interest in developing 

automated GMA emerges.

Aims: In this scoping review, we focused on video-based approaches, since it remains authentic 

to the non-intrusive principle of the classic GMA. Specifically, we aimed to provide an overview 

of recent video-based approaches targeting GMs; identify their techniques for movement detection 

and classification; examine if the technological solutions conform to the fundamental concepts of 

GMA; and discuss the challenges of developing automated GMA.

Methods and procedures: We performed a systematic search for computer vision-based 

studies on GMs.

Outcomes and results: We identified 40 peer-reviewed articles, most (n = 30) were published 

between 2017 and 2020. A wide variety of sensing, tracking, detection, and classification tools for 

computer vision-based GMA were found. Only a small portion of these studies applied deep-

learning approaches. A comprehensive comparison between data acquisition and sensing setups 

across the reviewed studies, highlighting limitations and advantages of each modality in 

performing automated GMA is provided.

Conclusions and implications: A “method-of-choice” for automated GMA does not exist. 

Besides creating large datasets, understanding the fundamental concepts and prerequisites of GMA 

is necessary for developing automated solutions. Future research shall look beyond the narrow 

field of detecting cerebral palsy and open up to the full potential of applying GMA to enable an 

even broader application.
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1. Introduction

Early detection of developmental disorders of various aetiologies, which are usually 

diagnosed during toddler-years or older, is a major challenge to clinicians and scientists 

across disciplines. Over the years, this field has become increasingly complex and has 

incorporated developmental, clinical, as well as technical perspectives. Besides the classic 

biomarker approaches targeting earlier identification of such late detected developmental 
disorders (LDDDs), the assessment of neurofunctional or behavioural biomarkers has caught 

increasing attention (e.g., Varcin & Nelson, 2016; Marschik, Einspieler, Sigafoos, Enzinger, 

& Bölte, 2016; Marschik et al., 2017; Peyton & Einspieler, 2018). Research in different 

behavioural domains from early life and onwards has adopted both retrospective and 

prospective paradigms, such as the retrospective work on Rett syndrome (e.g., Einspieler & 

Marschik, 2019), or the ever-growing field of prospective siblings studies on autism 

spectrum disorders (e.g., Ali, Charman, Johnson, Jones, & Team, 2020; Bölte et al., 2016; 

McDonald et al., 2020; Murphy & Spooren, 2012; Ozonoff et al., 2015; Shephard et al., 

2019)
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In this scoping review, we address one specific behavioural domain, the developing motor 

functions in the first few months of life. We focus on the subdomain of spontaneous general 
movements (GMs) and aim to recapitulate current computer vision-based studies on tracking 

and detection of GMs.

First operationalised by Heinz Prechtl and colleagues (e.g., Einspieler, Marschik, & Prechtl, 

2008; Prechtl, 1990; Prechtl et al., 1997), the assessment of GMs has opened a unique 

window for scientists and clinicians to sight with their bare eyes the integrity of the young 

developing nervous system. Our interdisciplinary developmental neuroscience lab and the 

systemic ethology and development research lab, originated and founded by Heinz Prechtl 

and Christa Einspieler, inherit the long tradition and rich experience of studying GMs and 

bear the mission to extend the knowledge of GMs. Maintaining the high standard of the 

Prechtl general movement assessment (GMA), it is our vision to translate the classic GM 

field, the prediction of cerebral palsy (CP), to broader applications, incorporating innovative 

routes and wider perspectives.

GMs are but a part of the spontaneous movement repertoire (i.e., not induced by any external 

stimulus) and are present from early foetal life towards the end of the first half-year 

postterm. GMs involve the entire body, hence the term general movements. GMs are variable 

sequences of movements of the arm, leg, neck, and trunk with changing intensity, force, and 

speed (e.g., Einspieler, Marschik et al., 2008; Einspieler & Prechtl, 2005). A sequence of 

GMs waxes and wanes gradually, involving fluent and elegant rotations along the limbs’ axis 

and slight changes in the movement direction. GMs are complex in appearance, and 

importantly, variable. When the developing nervous system is impaired, GMs lose 

complexity; their smooth and variable character alters and becomes monotonous, abrupt, or 

disorganised. Importantly, GMs present distinct age-specific patterns during the pre-term 

and term periods, and at 3–5 months of age. While at term age and shortly after, the writhing 

movements (WMs) dominate, the fidgety movements (FMs) gradually set in between 6–8 

weeks, become pronounced at 12–16 weeks, and vanish around 20 weeks of postterm age 

(PTA). The quality of GMs can be examined by the Prechtl GMA, one of the most sensitive 

and reliable diagnostic tools for the prediction of cerebral palsy (e.g., Kwong, Fitzgerald, 

Doyle, Cheong, & Spittle, 2018; Novak et al., 2017; Prechtl et al., 1997). Quality of GMs is 

defined into age-specific normal vs abnormal categories. Abnormal GM patterns during the 

writhing movement period include: poor repertoire, cramped-synchronized, or chaotic 
movements; and during the fidgety movement period: abnormal or absent fidgety movement 

patterns. Especially, normal FMs suggest normal neurological development while the 

absence of FMs at 3–5 months PTA is the most sensitive and specific indicator of later 

neurological impairments, such as cerebral palsy (e.g., Bosanquet, Copeland, Ware, & Boyd, 

2013; Einspieler, Bos et al., 2019; Einspieler, Utsch et al., 2019; Einspieler, Peharz, & 

Marschik, 2016; Einspieler & Prechtl, 2005; Kwong et al., 2018; Prechtl et al., 1997).

Initially a powerful predictor of CP, general movements have been studied worldwide in a 

multitude of neurodevelopmental and genetic disorders (e.g., Herrero et al., 2017; Romeo et 

al., 2008; Tomantschger et al., 2018). Accumulating evidence reveals elevated occurrences 

of aberrant GMs in infants later diagnosed with LDDDs, e.g., autism spectrum disorder, Rett 

syndrome (e.g., Einspieler et al., 2014; Einspieler & Marschik, 2019; Zappella et al., 2015), 
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or a range of early-identifiable disorders such as Down syndrome (e.g., Herrero et al., 2017) 

and Cornelia de Lange syndrome (e.g., Marschik, Soloveichick, Windpassinger, & 

Einspieler, 2015). Abnormal GMs are also present in infants born to mothers with viral 

infections like HIV or Zika that affect the central nervous system (e.g., Brasil et al., 2016; 

Einspieler, Utsch et al., 2019; Einspieler & Marschik, 2020a, 2020b; Palchik, Einspieler, 

Evstafeyeva, Talisa, & Marschik, 2013; Soares-Marangoni et al., 2019). The significance of 

GMs in early brain development in general and, consequentially, its long-term relevance for 

the later development of cognitive, speech-language, and motor functions has been 

increasingly recognised (e.g., Einspieler, Bos, Libertus, & Marschik, 2016; Einspieler, 

Peharz et al., 2016; Grunewaldt et al., 2014; Salavati et al., 2017). Although abnormal GMs, 

especially the absence of FMs during 3–5 months, do not point to a specific disorder, they 

flag high risks for future neurological impairments. If GMA could be manualised in daily 

clinical routines, it would support the earlier identification of LDDDs and other 

neurodevelopmental impairments. Infants identified with abnormal GMs would be 

monitored more closely, and could thus, be referred sooner for specific diagnostic 

evaluations and benefit earlier from interventions (e.g., Peyton & Einspieler, 2018; Zang et 

al., 2016).

As GMA requires only 3–5 minutes observation of an infant’s spontaneous movement (i.e., 

the infant needs not to be touched by the assessor), it is an evaluation far easier to be carried 

out than most assessments for neurological development. Hence GMA is suitable for daily 

clinical applications, particularly in low-resource settings. Being entirely non-intrusive, 

GMA is widely accepted by caregivers with divergent social and cultural backgrounds (e.g., 

Burger & Louw, 2009; Soleimani, Teymouri, & Biglarian, 2013; Tomantschger et al., 2018).

However, GMA can only be performed by certified assessors. Acquiring specific high-

quality training is a prerequisite for a GMA assessor, and regular practices and recalibrations 

are indispensable. This is one reason why GMA has not yet been established universally in 

the daily clinical routines. Although interrater reliability of GMA has proven to be excellent 

across various studies at different sites (e.g., Einspieler & Prechtl, 2005; Kwong et al., 2018; 

Valle, Støen, Sæther, Jensenius, & Adde, 2015; Yuge et al., 2011), assessor skills surely vary 

from individual to individual and can be influenced by adverse human or environmental 

factors. So much as the clinical and scientific credit of GMA has been acknowledged, we 

need complementing avenues to scale up this valuable tool, where modern technology may 

be able to play a more decisive role. Indeed, in the past two decades, a boom of 

technological approaches aiming at automated or technology-assisted GMA have surfaced. 

These efforts range from mobile-app-based recording tools, e.g., the Baby Moves (Spittle et 

al., 2016) and the GMApp (Marschik, Pokorny, et al., 2017), to automated pose estimation 

through sensor-based or markerless approaches (e.g., Irshad, Nisar, Gouverneur, Rapp, & 

Grzegorzek, 2020; Marcroft, Khan, Embleton, Trenell, & Plötz, 2015; Marschik et al., 

2017).

In this paper, we provide an in-depth analysis of the most recent technology-driven studies 

on GMs. We focus on video-based approaches only, since GMA is in origin a visual-based 

method. Advanced computer vision technology remains authentic to the non-intrusive 

character of the classic GMA, allowing automated analyses of the infant’s spontaneous 
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movements, which is not influenced by the use of wearable sensors and other devices (for 

recent overviews on diverse sensors targeting GMs, please see Hyde et al., 2019; Irshad et 

al., 2020; Marcroft et al., 2015). Different from previous reviews, we examine in particular if 

the existent technological attempts targeting automated GMA are in accordance with the 

fundamental concepts underlying this unique clinical tool. Specifically, we aim to: (1) 

provide an overview of available video-based approaches targeting GMs; (2) identify their 

techniques for movement detection, tracking, data pre-processing, and classification; and 

most importantly, (3) discuss from both, the conceptual and the technological perspectives, 

the major challenges, as well as advantages of incorporating automated visual-based 

approaches into classic GMA to enable an even broader application in daily clinical routines.

2. Materials and methods

2.1. Search methods

A search with thirteen well-known databases and research networks (Fig. 1) was carried out 

in September 2020. Fig. 1 summarises the complete search and screening procedure. In 

addition to the thirteen different sources, we also searched in Google, including personal 

webpages, blogs, forums, thesis, patents, and performed ancestral research of published 

papers to collect additional studies.

Following our aims, we defined three core categories of interests (COIs) for the search 

process: general movements, machine learning, and computer vision. Search terms of each 

COI are presented in Table 1. Studies published in English and found to be related to the 

three COIs were all collected and organised first via Zotero (Zotero (about), 2020). All the 

records were subsequently exported from Zotero to the visualisation tool SurVis (Beck, 

Koch, & Weiskopf, 2016) for automatic analysis of publication dates, keywords, authors, 

and topic clusters. We applied text analysis (using R) to examine the full texts (e.g., leading 

journals, top keywords). Our search concentrated on technological approaches and studies of 

infants, covering applications on both the automated analysis of movements and the early 

detection/prediction of developmental disorders. The search resulted in a total of 433 

relevant records. In the following step, we screened these 433 records.

2.2. Screening

First, all duplicates and non-peer-reviewed articles were deleted. Second, articles published 

before 2010 were excluded to focus on the significant technological advancements during 

the past decade. Third, we removed studies of older infants (participants were on average 6 

months of age or older); studies not targeting GMs; studies that did not apply machine 

learning; or studies that did not use video-based techniques.

3. Results

According to our search and screening procedures, we identified 40 peer-reviewed articles, 

10 being conference contributions. All of these studies provided in-depth technical and 

algorithmic details on infant movement analysis and applied automated video-based 

approaches with machine and deep learning techniques (Table 2). Most studies (n = 30) were 
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published between 2017 and 2020, indicating a strong interest in, and a boom of, video-

based approaches addressing GMA in the recent years.

Table 2 provides a detailed overview of the various studies targeting automated GMA, 

summarising their approaches and techniques on infant movement detection, tracking, and 

classification. Table 3 provides a comprehensive comparison between data acquisition and 

sensing setups across the reviewed studies, highlighting limitations and advantages of each 

modality in performing automated GMA.

In Table 2, we split the studies into two generic groups: conventional machine learning 

models (CML, n = 35; e.g., SVM, random forest) and deep learning models (DL, n = 5; e.g., 

CNN, LSTM). In regards to tracking and detection techniques, 12 CML studies and 4 DL 

studies applied pose estimation (with OpenPose or a custom pose implementation). The 

other 24 CML studies applied diverse tracking and detection methods.

Multiple motion-related techniques were exploited, such as Optical Flow, i.e., a technique 

for tracking the motion of an infant across multiple frames to estimate the velocity of body 

parts and predict the position of each body part in the next frame, or a Particle Filter used as 

a technique for localisation and mapping in Optical Flow, or Graph-cut, a graph-based 

segmentation technique used before executing a Particle Filter.

As presented in Table 2, a variety of movement features were extracted, such as kinematic 

features (i.e., standard or customised features that define velocity and acceleration of points 

in a moving body); frequencies, amplitudes, and covariation of movement’ parameters (e.g., 

position, velocity, or acceleration); other spectral components (e.g., harmonics in periodic 

vibrations in moving body parts, used for FMs detection). Using pose estimation, Orlandi et 

al. (2018) developed a new set of time-related features to detect FMs. Moccia, Migliorelli, 

Carnielli, and Frontoni (2020), with a newly invented “Pose Tool”, calculated the standard 

deviation of joint angles over time by using visual indicators to represent such deviations. 

Cenci, Liciotti, Frontoni, Zingaretti, and Carnielli (2017) introduced a new movement state-

vector to their model defining whether a targeted body part is or is not in motion by 

modelling the infant’s movement sequence as a series of transitional states using a Markov 

Chain (MC).

To categorise these features, diverse computational algorithms were used, such as KAZE, 

i.e., a multiscale 2D feature detection and description algorithm (Alcantarilla, Bartoli, & 

Davison, 2012), Large Displacement Optical Flow (LDOF), i.e., an integration of rich 

descriptors into a variational optical flow setting to detect small-fast moving body parts (J. 

M. Brox, 2011; T. Brox, Bruhn, Papenberg, & Weickert, 2004), Markov Random Fields 

(MRF), i.e., used to encode contextual constraints into the prior probability (Pal & Pal, 

1993), and Random Spectral Regression (RSR), i.e., a human action recognition algorithm 

based on random spectral regression (Lin, Zhu, Fan, & Fan, 2011).

4. Discussion

Over the past decade, the significant clinical and scientific value of the Prechtl GMA has 

been increasingly recognised. Armed with the rapid advancing computer science, a surging 
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interest in developing automated GMA prevails in the field. Among the identified studies 

directly devoted to automated vision-based GMA, the majority were published within the 

past five years, and more are coming day after day (e.g., Doroniewicz et al., 2020; Groos, 

Adde, Støen, Ramampiaro, & Ihlen, 2020). As a limitation, we targeted only the 

publications in English during the past decade. Some work in the field could hence have 

escaped our review. Still, this scoping review, which aims at mapping the key concepts 

underpinning the research area of vision-based GMA, reflects on the cutting-edge of the 

field. In this section, we discuss the current approaches addressing automated solutions of 

GMA from both conceptual and technological perspectives.

4.1. Conceptual considerations

Given the expanding interests in automated movement analysis, any attempt to develop 

computer-driven GMA requires a genuine understanding of the underlying concepts of the 

GMs and an intensified scientific sensitivity. GMA is by nature gestalt, the perception and 

interpretation of the infant’s entire movement pattern without emphasising isolated parts. By 

contrast, computer-based methods are built upon minute features to generate algorithms. 

Although the automated GMA aims at overall classification, it remains a critical question, if 

and how human gestalt perception can be appropriately emulated by artificial intelligence 

(AI)? To validate tech-driven GMA, not only the interpretation of the classes, but more 

importantly, the extracted features, especially those obtained with unsupervised machine 

learning techniques, are of great conceptual, theoretical, and clinical importance. Otherwise, 

we might end up with merely a handful of discrete labels while losing the essential scientific 

and clinical semantics of GMA. To this end, we would need a more open communication 

between GMA experts and computer scientists to ensure the validity of future computerised 

models.

Speaking of the fundamental concepts of GMA, GMs are a significant constituent of the 

young infants’ broad spontaneous movement repertoire and must be observed within the 

specific age span. As introduced at the beginning, infant movement patterns change 

dramatically during the very first months of life. Movements around term age are 

qualitatively different from the ones during the 3–5 month period, as these motor patterns 

mirror the developmental status of the nervous system at each respective age. Unfortunately, 

essential information on the participants’ characteristics (e.g., the gestational age) was 

frequently missing in the discussed studies (Table 2). Some studies, although technically 

related to automated GMA, sampled infants beyond the age at which the GMs could be 

observed (e.g., Ouss et al., 2018, 2020). This implies that the classification algorithms of 

these studies might have been built upon (at least partly) inappropriate inputs, and the 

prediction would then have little to do with GMA per se. Relatedly, the current motion-

tracking libraries and frameworks are mostly based on models for tracking adult movements, 

which are inherently different from those of the young infants. There is a need for further 

exploration as to how and if these “large-body oriented” motion tracking frameworks could 

be adapted to track infants’ body parts and joints, as well as their motor specificities with 

suitable recording setups. Infant-specific models are needed in their own right to account for 

the subject’s age-specific anatomical and motor constraints (Hesse, Pujades et al., 2018; 

Hesse, Schroeder et al., 2018; Ihlen et al., 2020).
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Needless to say, computational models can only make predictions based on the datasets they 

are trained on, no more and no less. The nature of the input for training a model inevitably 

determines the validity and quality of its output. While attempting to acquire data for 

creating algorithms for automated GMA, we face the following challenges:

4.1.1. Sample attributes—Besides the age-specificity issue discussed above, we need 

to ask which high-risk groups or disorders are targeted (e.g., preterm-infants, who are at 

elevated risk for developing CP)? Is an adequate and appropriate control group (i.e., 

typically developing infants) included, which is important for all machine learning methods 

(Schmidt, Regan, Fahey, & Paplinski, 2019)? Is the sample representative for the targeted 

group and the sample size (number of participants and the amount of data from each infant) 

sufficient, so that the outcome is reliable and generalisable? We should not forget that GMs 

have a large, complex, and variable repertoire, bringing difficulties for machine learning 

approaches to acquire a representative dataset. For example, when relying on retrospective 

videos from infants with atypical development, due to the uncertain representativeness of the 

training datasets, it might be challenging to achieve high external validity when testing the 

created model on novel samples (Irshad et al., 2020).

4.1.2. Sensing and recording setups—As previously mentioned, despite the type of 

camera setups (Table 3), the non-intrusive classic GMA requires a standard viewing 

perspective to observe the infant’s entire body. The infant is in supine position and 

untouched, moving free of any external stimulus, and should also be in an appropriate 

behavioural state (Einspieler et al., 2014). Otherwise, the movement pattern could be 

distorted. To maintain the non-intrusive character of the GMA, vision-based markerless 

approaches appear more favourable than the ones using wearable sensors, or attaching 

markers to the infant’s body. Although marker- and wearable sensor-based approaches have 

technical merits (see Irshad et al., 2020), it is yet to be examined whether these markers or 

sensors may interfere with the infants’ spontaneous movements, or whether the device-

attaching procedures, usually time-consuming and during which the infant has to be touched 

or manipulated, could affect the infant’s consequential behavioural state (e.g., becoming 

fussy and distracted).

4.1.3. Dataset annotation and segmentation—The quality of the annotation, being 

a key for the machine learning training dataset and the basis for classification, is largely 

neglected in the majority of the reviewed articles. In most cases, no information was 

provided on whether the dataset was annotated by certified GMA assessors, let alone the 

inter- and intra-rater reliability of the annotation by the GMA assessors. At the moment, no 

expert-annotated and validated public accessible large datasets are yet available for the 

purpose of scientific research. To realise automated GMA, creating such datasets might be 

challenging, partly due to complex confidentiality and privacy issues, which are however 

indispensable.

During the data annotation procedure, the duration of the video segments to be labelled is 

another puzzling issue. For machine learning methods, the shorter the movement duration, 

the less complex the model (i.e., less parameters), and thus, the shorter the time needed for 

training the model (assuming that shorter movement durations lead to smaller feature 
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vectors). For human assessors, however, a 2–5 min observation is normally required by the 

GMA standard to evaluate the infant’s movement repertoire. It is yet to be explored, if 

human assessors are capable of annotating very short video clips confidently and reliably. 

More importantly, it is normal if a desired type of movements (targeted by the computer 

model), for example, the FMs, is absent for a short interval (e.g., 5 s) in a fully typically 

developing infant, who is in the fidgety movement age period. If the data annotation would 

be based, for example, on 20-second clips each, where both the fidgety movements (“1′′) 

and non-fidgety movements (“0′′) could occur, an annotation of either “0′′ or “1′′ for the 

respective 20 s could be inappropriate. That said, we need to find a compromise between a 

reasonable unit duration, appropriate feature encoding for machine learning algorithm and a 

minimum length of video for human assessors to be able to evaluate.

4.2. Technological considerations

From a technological perspective, a wide variety of sensing, tracking, detection, and 

classification tools for automated GMA based on computer vision are available (Table 2). 

Not only research approaches are heterogeneous, their datasets for training and testing 

across studies are also divergent. For this reason, a cross-study comparison on the model 

performance is almost impossible. Only a small portion of the existing studies applied deep 

learning approaches (DL, n = 5), which is likely to change in the near future. DL, being able 

to extract latent data features in an unsupervised way (e.g., using autoencoder architectures), 

is more suitable for handling massive datasets to achieve high performance. Efforts on 

creating larger validated datasets are needed and will allow further advancements in 

developing the DL models.

Given the various techniques applied, no current automated solution could yet defeat human 

GMA experts. Consequently, a fully automated GMA for the clinical practice seems rather 

elusive in the near future. To increase the performance of the technical approaches, on one 

hand, we need to better comprehend the underlying principles of the classic GMA, create 

larger annotated valid datasets, and revisit the capability and limitation of the existing 

approaches; on the other hand, we might need to develop novel strategies. For example, in 

addition to traditional methods to prevent overfitting such as training using early validation 

stop or utility of drop-out layers in DL, we could introduce additional regularisation 

methods (e.g., noise injection; Kukačka, Golkov, & Cremers, 2017) to the models to reduce 

overfitting and therefore increase their generalisation properties. It may be beneficial to 

transfer motion information acquired using DL approaches of different application domains 

to pose estimation of infants (e.g., Sim2Real; Doersch & Zisserman, 2019); or, to adopt 

interactive machine learning techniques using feedback from the users to enable modifiable 

and self-improving models.

As each of the recording- and data acquisition setups and their belonging classification 

techniques have inherent strengths and limits (Table 3), a “method-of-choice” for automated 

GMA does not seem to exist. One might think of an ideal solution that combines multiple 

setups to complement each other. However, bearing in mind classic GMA’s non-intrusive 

principle and its merits of being easy-to-use, time- and cost-efficient, to scale up GMA, we 

must avoid sophisticated, time-consuming, or intrusive setups (e.g., combining wearable 
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sensors or markers with a complex video recording system requiring to configure and 

calibrate multiple 3D cameras). Such setups are constrained by intricate technical 

requirements both for data acquisition and processing. For one thing, these setups may 

influence the infant’s motor pattern, as discussed above. For another, they may prove 

unsuitable for everyday clinical implementation, being especially inapt in low-resource 

settings. This way, we would lose the basis for realising the ultimate goal of worldwide 

routine application of GMA. Nonetheless, depending on the purpose of the respective 

automated tool, e.g., precise clinical judgement versus initial rapid screening for further 

referrals or diagnostics, one needs to weigh in on the recording and data acquisition setups 

and choose and design an appropriate combination.

Regarding current tracking techniques, state-of-the-art methods such as DeepLabCut 

(Mathis et al., 2018) and OpenPose (Cao, Martinez, Simon, Wei, & Sheikh, 2019) show 

promising results when tracking both animals and human adults. A new commercial 

framework, WrnchAI (WrnchAI, 2020) is reported to offer much faster and more accurate 

adult movement tracking than OpenPose (Gupta, 2020). Whether this holds true for young 

infants is an open question. As pose estimation includes skeleton constraints as additional 

prior information, it needs to be examined whether such constraints truly improve the 

movement detection, or whether they might not be permissive for GMA, hence hindering 

automated detection (Rahmati, Aamo, Stavdahl, Dragon, & Adde, 2014).

Some additional technical considerations may also improve the classification models. For 

example, having obtained sufficient annotated data, common practice in the field is to split 

the dataset into three parts, i.e., training set to update model parameters, validation set to 

evaluate model overfitting, and testing set to assess the classification accuracy and how well 

the model generalises to new data. If only a small dataset is available, data splitting will 

become challenging and additional strategies will be required (e.g., Beleites, Neugebauer, 

Bocklitz, Krafft, & Popp, 2013; Riley et al., 2020; Shahinfar, Meek, & Falzon, 2020). 

Furthermore, given that a considerable number of features have been extracted and presented 

by the different studies, whether or not to include a feature pre-selection step is still an open 

question, depending also on the movement detection (e.g., movement shape vs body pose 

estimation) and learning (e.g., supervised vs unsupervised) approaches used. Without pre-

selection, a significantly higher number of variables must be explored by the classification 

algorithm. Finally, the most popular algorithms for movement classification are currently 

SVMs, Random Forests and CNNs, due to their simplicity and straightforward application 

for a large variety of problems. Novel algorithms have been introduced to the field of 

automated GMA, such as the Naive Gaussian Bayesian Surprise (NGBS), applied to 

calculate how much each infant’s movements in a dataset deviate from a group of typically 

developing infants as the indicator of risk for atypical GMs (Chambers et al., 2019). Similar 

as in choosing the suitable sensing setups, the selection of the most appropriate algorithm is 

also contingent on, among others, the data acquisition approaches, the dataset 

characteristics, and the goal of classification and detection.

Regardless of the technological refinements, currently, automated solutions are developed to 

complement, but not to replace human assessment in clinical practices. Extending the 

machine learning technology of tracking and classifying the GMs, future computer-based 
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approaches with multimodal setups (e.g., motion-sensor, pressure-sensitive matt, eye-

tracker) may be developed to improve human performance by actively supporting the GMA 

assessors in real-time across multiple training and clinical settings.

5. Conclusion

Automated video-based approaches, being authentic to the non-intrusive principle of the 

classic GMA, supported by rapid advancements in AI technologies, have the potential to 

scale up the clinical application of GMA. Technology advancements will enable better data 

pre-processing (e.g., image enhancement, noise attenuation, region-of-interest detection), 

improve feature extraction and analyses and lead to an objective and more accurate 

prediction. Currently, automated GMA models are yet inferior to human experts. Despite 

their classification performance, current models can deal with but a fraction of the tasks 

(e.g., some binary or multiple classifications) that a human expert can solve in a standard 

GMA of a few minutes (e.g., evaluating simultaneously the movement characteristics 

including complexity and variability, age-specific repertoire, posture, and motor optimality). 

It is, thus, unlikely that human assessors can be replaced by fully automated systems in the 

near future. To improve computer-based approaches, there is still a lot to learn from the 

human GMA experts. This concerns prerequisites for performing GMA and evaluation 

process embracing manifold aspects to encapsulate infant movements. While developing 

automated detection and classification models for GMA, a parallel line of research is needed 

aiming at interactive, real-time support and training for human GMA assessors. By 

supplementing human faculties (versatile and adaptable to complex and ever-changing 

situations, proficient in transferring rich experience to novel situations) with computerised 

tools (objective, stable, fast, and extendable), a future augmented GMA may yield 

outstanding performance, superior to what humans or computers could achieve alone.

While recent studies focused primarily on the prediction of CP, it is crucial for future 

research to look beyond this narrow field and open up to the potential of applying GMA to 

identify deviant early motor functions in infants with various developmental and 

neurological disorders, infectious diseases affecting the developing nervous system, and 

genetic disorders. Availing of the advanced computer-vision technology, GMA may be 

employed to detect more general disintegrity of the developing nervous system through fine-

grained high-standard analyses of infant early motor functions. Based on the profound 

understanding of GMs, incorporating state-of-the-art technology, we are envisioning a 

worldwide daily clinical application of GMA for the youngest population in the near future.
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What this paper adds?

• An overview of computer vision-based approaches in the study of general 

movements is provided.

• The advantages, limitations, and future directions of vison-based approaches 

in performing automated general movement assessment (GMA) are discussed.

• Prospects of computer-driven GMA are discussed. The necessity of 

understanding the nature of general movements and GMA while developing 

automated solutions is highlighted.

• It is suggested that future research shall look beyond the narrow field of 

detecting cerebral palsy and open up to the potential of applying GMA to 

identify more general disintegrity of the developing nervous system in early 

infancy.
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Fig. 1. 
Literature search and screening procedure.
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Table 1

Search categories and terms.

Categories Search Terms

General 
Movements

baby OR child* OR infan* OR newborn OR *term OR neonatal OR abnormal OR anomaly OR atypical OR disorder OR 
risk OR sign* OR typical OR diagnos* OR analys* OR early OR assessment OR behavio* OR *marker OR cerebral palsy 
OR development* OR fidgety OR body OR gma OR gm OR outcome OR general movement* OR motor AND

Machine 
Learning

accuracy OR adaptive OR advanced OR auto OR biosensor OR classification OR detect* OR learn* predict* OR 
recognition OR recommend* OR sens* OR neuro* OR algorithm* OR deep OR model* OR machine AND

Computer Vision 2d OR 3d OR action OR activity OR classifier OR estimat* OR framework OR human OR intelligen* OR motion OR 
pose OR predict OR tracking OR video

Res Dev Disabil. Author manuscript; available in PMC 2021 March 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Silva et al. Page 22

Table 2

Video-based technological approaches for studying GMs.

ID REFERENCE*
CAMERA TYPE;
TECHNIQUE;
PREDICTIONS

FEATURES (F): 
QUANTITY / 
DESCRIPTION;
BODY PARTS 
(BP)

CLASSIFICATION 
METHODS

AGE;
SAMPLE 
SIZE

ACCURACY (A);
PRECISION (P);
RECALL (R);
SPECIFICITY (S)

CONVENTIONAL MACHINE LEARNING CLASSIFICATION

1 Baccinelli et al., 
2020 2D Video;

Movement 
Detection;
Extract movement 
features

F: 7/trajectory, 
motion, image;
BP: hands and feet

Extraction of 
quantitative 
measures

39–41 weeks 
(GA);
300 videos 
(90 infants 
high risk 
ASD) NR (ICC: 87–98)

2 Caruso et al., 
2020

103 videos 
(53 low risk, 
50 high risk 
ASD)

3 Doroniewicz et 
al., 2020

2D Video;
Pose Estimation;
Classify WMs and 
PR

F: 16/scope, nature, 
and location of each 
limb’s movement;
BP: limbs

SVM-RBF, RF, 
LDA

38–42 weeks 
(GA);
31 videos

(SVM): 
A:80;P:64;R:71;S:83 
(RF): 
A:81;P:53;R:44;S:93 
(DA): 
A:80;P:50;R:40;S:94

4** Tsuji et al., 2020

2D Video;
Movement 
Detection;
Classify GMs

F: 25/movement 
magnitude, balance, 
rhythm, body 
centre;
BP: limbs

LLGMN

25–40 weeks 
(GA), 0–15 
weeks 
(PTA), NR 
for half of 
the infants;
47 videos 
(21 infants)

A:91;P:NR;R:NR;S:NR

5 Schroeder et al., 
2020

RGB-D Video;
Shape and Pose 
Estimation;
Classify GMs

F: 6890/SMIL;
BP: 23 joints

RGB-D, 3D SMIL 
(Auto-Generated)

2–4 months 
(PTA);
29 videos 
(high risk 
CP)

A:80;P:NR;R:NR;S:92

6 Hesse et al., 
2019

Custom Model

2–4 months 
(PTA);
12 videos

NR (PCkh 2.0, P:90)

7
Hesse, Boden-
steiner, et al., 
2019

8 Hesse, et al., 
2018

2–4 months 
(PTA);
136 videos 
(37 infants)

9
Hesse, 
Schroeder, et al., 
2018

10 Hesse et al., 
2017

F: NA/Random 
Ferns;

11 Hesse et al., 
2015

NR;
1 infant (3D 
model)

NA

12 Ihlen et al., 2020

2D Video;
Movement 
Detection CIMA 
(MEMD);
Predict CP

F: 990/Optical 
Flow, BP: head, 
trunk, limbs

LDA

9–15 weeks 
(PTA);
377 videos 
(high-risk 
CP)

A:93;P:NR;R:NR;S:82

13 Adde et al., 2018
2D Video;
Movement 
Detection;

F: NR/spatial (no 
temporal), CSD;

LR, Variability of 
CSD

3–5,10–15 
weeks 
(PTA);

NR (CSD is 7.5% lower 
during FMs in comparison 
to the WMs period)
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ID REFERENCE*
CAMERA TYPE;
TECHNIQUE;
PREDICTIONS

FEATURES (F): 
QUANTITY / 
DESCRIPTION;
BODY PARTS 
(BP)

CLASSIFICATION 
METHODS

AGE;
SAMPLE 
SIZE

ACCURACY (A);
PRECISION (P);
RECALL (R);
SPECIFICITY (S)

Quantify FMs vs 
WMs, Classify 
GMs

BP: head, trunk, 
limbs

54 videos 
(27 infants 
preterm)

14 Støen et al., 
2017

2D Video;
Movement 
Detection;
Detect FMs

F: NR/spatial and 
temporal, CSD;
BP: neck, trunk, 
limbs

Variability of CSD

10–15 weeks 
(PTA);
241 videos 
(150 infants: 
48 
abnormal)

NR (CSD varies between 
R:80;
S;80–90)

15 Rahmati et al., 
2016

2D Video;
Movement 
Detection;
Predict CP

F: NR/Optical 
Flow, FFT;
BP: hands, feet, 
head, trunk, arms SVM, MRF, Particle 

Matching
2–4 month 
(PTA);
78 videos 
(78 infants: 
14 CP)

(SVM) 
A:91;P:NR;R:86;S:92

16 Rahmati et al., 
2015

2D Video;
Movement 
Detection;
Predict CP

F: NR/Optical 
Flow;
BP: hands, feet, 
head, trunk, arms

(SVM) 
A:87;P:NR;R:NR;S:NR

17 Rahmati, Amo, 
et al., 2014 20 Video;

Movement 
Detection;
Predict CP

F: NR/LDOF, 
graph-cut;
BP: hands, feet, 
head, trunk

SVM, MRF

A:87;P:NR;R:50;S:95

18
Rahmati, 
Dragon, et al., 
2014

A:NR;P:96;R:NR;S:NR

19 Adde et al., 2013

2D Video;
Movement 
Detection;
Detect FMs, 
Predict CP

F: NR/motion, Cs, 
Qmean, Qsd
CPP;
BP: neck, trunk, 
limbs

CPP

9–17 weeks 
(PTA);
104 videos 
(52 infants: 
24M, 28F)

(FMs) 
A:NR;P:NR;R:89;S:79 
(CPP) 
A:NR;P:NR;R:89;S:74

20 Stahl et al., 2012

2D Video;
CIMA;
Detect FMs, 
Predict CP

F: 3/Optical Flow 
(GPU), wavelet, 
spatio-temporal;
BP: head, limbs

SVM

10–15 weeks 
(PTA);
136 videos 
(82 infants: 
15 atypical, 
67 typical)

A:96;P:NR;R:88;S:98

21 Adde et al., 2010

2D Video;
Movement 
Detection;
Predict CP

F: NR/CPP, CSD, 
VSD, ASD, Qmean, 
Qmedian, QSD;
BP: neck, trunk, 
limbs

CPP

10–15 weeks 
(PTA);
30 videos 
(high-risk: 
13M, 17F)

(CPP) 
A:NR;P:NR;R:85;S:88

22 Marchi et al., 
2020

SMART-D Video 
(10 cameras + 
markers);
Movement 
Detection;
Correlate FMs age 
with other 
measures

F: NR/coordination, 
distance, global 
movement quality;
BP: hands and feet

Custom Model
9–20 weeks 
(PTA);
8 videos

NR (Regression, R2:97)

23 Marchi et al., 
2019

2D Video;
Pose Estimation;
Classify GMs

F:NR/OpenPose;
BP: 25 joints

Extraction of 
quantitative 
measures

8–17 weeks 
(PTA);
21 videos 
(14 typical, 
7 atypical)

24** Chambers et al., 
2019

2D Video;
Pose Estimation;
Estimate risk

F: 38/OpenPose and 
kinematics, NGBS;
BP: 25 joints

Naive Bayes, 
Kinematics Data

4–11 
months;
104 videos: 
85 Youtube, 
19 clinical

A:NR;P:92;R:94;S:NR

25 Dai et al., 2019 2D Video;
Movement 

F: NR/Wavelet, 
PCA; SVM, XGBoost

10–12 weeks 
(PTA);
120 videos 

A:93;P:NR;R:95;S:92
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ID REFERENCE*
CAMERA TYPE;
TECHNIQUE;
PREDICTIONS

FEATURES (F): 
QUANTITY / 
DESCRIPTION;
BODY PARTS 
(BP)

CLASSIFICATION 
METHODS

AGE;
SAMPLE 
SIZE

ACCURACY (A);
PRECISION (P);
RECALL (R);
SPECIFICITY (S)

Detection;
typical vs atypical

BP: neck, trunk, 
limbs

(60 typical, 
60 atypical)

26 Gajniyarov et 
al., 2019

2D Video 
Movement 
Detection;
Analyse GMs

F: NR/
segmentation, 
wavelet, limb 
speed;
BP: hands and feet

Data Pre-processing
10 weeks 
(PTA);
18 videos

NR (study on data 
preprocessing)

27 Raghuram et al., 
2019

2D Video;
Movement 
Detection;
Detect atypical

F: 289/skin model, 
LDOF;
BP: neck, trunk, 
limbs

Logistic Regression
3–5 months 
(PTA);
152 videos

A:66;P:NR;R:79;S:63

28 Orlandi et al., 
2018

F: 643/skin model, 
LDOF;
BP: neck, trunk, 
limbs

AdaBoost, Random 
Forest

3–5 months 
(PTA);
127 videos 
(98 typical, 
29 atypical)

A:92;P:NR;R:44;S:88

29** Das et al., 2018

2D Video;
Movement 
Detection;
Detect kicks

F: 5/KAZE, legs in 
same y-direction;
BP: lower limbs

SVM
4–7 months 
(PTA);
16 videos

A:91;P:88;R:85;S:NR

30 Cenci et al., 
2017

RGB-D Video;
Movement 
Detection;
Probability of 
change

F: 10/velocity, 
acceleration 
amplitude, volume;
BP: limbs

K-means, Markov 
Chains

37–38 weeks 
(GA);
35 videos (1 
infant)

NR (initial test-phase)

31 Machireddy et 
al., 2017

2D Video;
Movement 
Detection;
Detect FMs

F: NR/sensor 
fusion, EKF;
BP: limbs

SVM 2–4 months;
20 videos A:84;P:NR;R:NR;S:NR

32 Marschik et al., 
2017

2D Video;
Multimodal 
Detection;
NA

F: NR/multimodal 
fusion;
BP: the whole body

Heuristic 0–4 months;
NA NA

33** Shivakumar et 
al., 2017

RGB-D Video;
Movement 
Detection;
Track Body 
Attributes

F: NR/Optical 
Flow;
BP: limbs

Adaptive Window, 
K-means

3–11 months 
(PTA);
3 videos 
(typical)

A:NR;P:NR;R:NR;S:NR

34** Serrano et al., 
2016

RGB-D Video;
Pose Estimation;
Kicking Patterns 
Analysis

F: NR/lower limb 
pose, RPSR;
BP: lower limbs

Kicking Patterns of 
Robot

NR;
1 robotic 
infant

NR (qualitative analysis)

35** Olsen, 2015
RGB-D Video;
Pose Estimation;
Detect Kickings

F: NR/Optical 
Flow;
BP: stomach, head, 
limbs, feet

K-NN, 
Classification Tree, 
SVM

1–6 months;
11 videos A:90;P:NR;R:NR;S:NR

DEEP LEARNING CLASSIFICATION

36 McCay et al., 
2020 2D Video;

Pose Estimation;
Classify GMs

F: NR/OpenPose, 
HOJO2D, 
HOJD2D;
BP: 14 joints

FCNet model
2–4 months 
(PTA);
12 videos

A:NR;P:NR;R:NR;S:NR

37 McCay et al., 
2019

38 Moccia et al., 
2020 RGB-D Video;

Pose Estimation;
Detect Joints

F: NR/spatio-
temporal;
BP: shoulders, 
elbows, wrists, hips, 
knees, ankles

Dual CNNs
31–36 weeks 
(GA);
16 videos

A:NR;P:NR;R:NR;S:NR

39 Moccia et al., 
2019
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ID REFERENCE*
CAMERA TYPE;
TECHNIQUE;
PREDICTIONS

FEATURES (F): 
QUANTITY / 
DESCRIPTION;
BODY PARTS 
(BP)

CLASSIFICATION 
METHODS

AGE;
SAMPLE 
SIZE

ACCURACY (A);
PRECISION (P);
RECALL (R);
SPECIFICITY (S)

40 Schmidt et al., 
2019

2D Video;
Movement 
Detection;
Classify GMs

F: NR/OpticalFlow, 
FFT, Keras 
VGG19;
BP: limbs

LSTM

2–4 month 
(PTA);
78 videos 
(78 infants: 
14 CP)

A:65;P:NR;R:51;S:27

*
Articles are first arranged in descending order of the publication year, followed by ascending order of the last name of the first author. Studies 

with an inherent connection, i.e., leading authors are identical or worked jointly, are stacked together and shaded with the same background colour, 
also ordered first by the publication year and then by the last name of the first author.

**
Studies in which the ages of the participants fell (partly) beyond the appropriate range according to the standard GMA (Einspieler et al., 2014), 

or the age range was (partly) missing.

Key of Terms.

Generic: ASD – Autism Spectrum Disorder; CP – Cerebral Palsy; CS – Cramped Synchronised; FM – Fidgety Movements; GA – Gestational Age; 
GMS – General Movements; GMA – General Movement Assessment; NA – Not Applicable; NR – Not Reported; PTA – Postterm age. PR – Poor 
Repertoire; WM – Writhing Movements.

Techniques and Models: ASD – Acceleration Standard Deviation; CIMA – Computer-based Infant Movement Assessment; CPP – Cerebral Palsy 

Predictor; CSD – Standard Deviation of the Center of Motion; FFT – Fast Fourier Transformation; HOJD2D – Histograms of Joint Displacement 

2D; HOJO2D – Histograms of Joint Orientation 2D; ICC – Intraclass Correlation Coefficient; LDA – Linear Discriminant Analysis; LDOF – Large 
Displacement Optical Flow; LLGMN – Log-linearised Gaussian Mixture; LR – Logistic Regression; MEMD – Multivariate Empirical Mode 
Decomposition; MRF – Multi-label Markov Random Field; NGBS – Naive Gaussian Bayesian Surprise; PCKh 2.0 – Percentage of Correct 
Keypoints in Relation to Head Segment Length (two times the head segment length); QMEAN – Quantity of Motion Mean; Qmedian – Quantity of 
Motion Median; QSD – Quantity of Motion Standard Deviation; RBF – Radial Basis Function Kernel; RF – Random Forests; RPSR – Robust 

Point Set Registration; SMIL – 3D Skinned Multi-Infant Linear (Based on SMPL Model for Adults); SMPL – Skinned Multi-Person Linear Model; 
SVM – Support Vector Machine; VSD – Standard Velocity Deviation.
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Table 3

Challenges, limitations, and future directions of different computer vision sensing and data processing 

approaches.

Current approaches / Problems Future directions / Improvements/ Challenges

Sensors Current approaches Future directions

Mostly 2D single cameras Multiple 2D cameras

Problems 3D (depth) sensors

Only 2D information Pressure mat sensors

Occlusions Improvements

3D information

Less occlusions

More information due to multi-sensory integration

Data Current approaches Future directions

Small datasets Collect more data

Problems Make it publicly available

Not enough data to employ deep learning methods Make use of home videos

Not publicly available - no benchmarking possible Employ DL methods

Incorrect or incomplete data in some cases, e.g., 
inaccurate outcome labelling due to lack of 
longitudinal studies, the inclusion of incorrect age-
specificity cases, use of low-inter-rater agreement or 
small rater-group or lack of experienced raters in 
data labelling, disorders or gender misrepresentation

Make use of transfer learning (e.g., Tan et al., 2018)

Challenges

Need to solve anonymisation issue (automated techniques for face 
detection and replacement can be applied)

Development of methods which can cope with different light 
conditions, resolution, frame rate

Body areas of 
interest

Current approaches Future directions

Mostly movement of arms, legs, head Hand, fingers, feet

Problems Eye movement data

Incomplete information of full-body movement Mimic

Challenges

Integration and analysis of multimodal information

Motion 
tracking

Current approaches Future directions

Mostly in 2D space Full-body tracking in 3D using well-established methods in DL 
(e.g., DeepLabCut and OpenPose frameworks)

Problems Challenges

Only 2D information DL methods need to be adapted to infants

Motion 
encoding

Current approaches Future directions

Conventional features based on: displacement, 
distance, velocity, acceleration, speed, and time

Motion encoding using well-established methods from robotics:

Problems Dynamic Movement Primitives (e.g., Ijspeert, Nakanishi, 
Hoffmann, Pastor, & Schaal, 2013), Gaussian Mixture Models (e.g., 
Calinon, 2016; Khansari Zadeh & Billard, 2011), Probabilistic 
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Current approaches / Problems Future directions / Improvements/ Challenges

Movement Primitives (Paraschos, Daniel, Peters, & Neumann, 
2018)

Only 2D features Learn features from expert knowledge during observation (e.g., 
Silva et al., 2018, 2019)

Improvements

3D features

New motion encoding and features

Classification 
algorithms

Current approaches Future directions

Conventional ML methods, e.g., SVM, Decision 
Trees, Neural

Employ ANN, DL

Networks, Hidden Markov Models Employ Interactive Machine Learning (learning with feedback)

Supervised learning without feedback during 
learning

Improvements

Better models with more accurate predictions

Challenges

More data is needed
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