Table 2.
ID | Reference* | Camera Type; Technique; Predictions |
Features (F): Quantity / Description; Body Parts (BP) |
Classification Methods | Age; Sample Size |
Accuracy (A); Precision (P); Recall (R); Specificity (S) |
---|---|---|---|---|---|---|
Conventional Machine Learning Classification | ||||||
1 | Baccinelli et al., 2020 |
2D Video; Movement Detection; Extract movement features |
F: 7/trajectory, motion, image; BP: hands and feet |
Extraction of quantitative measures |
39–41 weeks (GA); 300 videos (90 infants high risk ASD) |
NR (ICC: 87–98) |
2 | Caruso et al., 2020 | 103 videos (53 low risk, 50 high risk ASD) | ||||
3 | Doroniewicz et al., 2020 |
2D Video; Pose Estimation; Classify WMs and PR |
F: 16/scope, nature, and location of each limb’s movement; BP: limbs |
SVM-RBF, RF, LDA |
38–42 weeks (GA); 31 videos |
(SVM): A:80;P:64;R:71;S:83 (RF): A:81;P:53;R:44;S:93 (DA): A:80;P:50;R:40;S:94 |
4** | Tsuji et al., 2020 |
2D Video; Movement Detection; Classify GMs |
F: 25/movement magnitude, balance, rhythm, body centre; BP: limbs |
LLGMN |
25–40 weeks (GA), 0–15 weeks (PTA), NR for half of the infants; 47 videos (21 infants) |
A:91;P:NR;R:NR;S:NR |
5 | Schroeder et al., 2020 |
RGB-D Video; Shape and Pose Estimation; Classify GMs |
F: 6890/SMIL; BP: 23 joints |
RGB-D, 3D SMIL (Auto-Generated) |
2–4 months (PTA); 29 videos (high risk CP) |
A:80;P:NR;R:NR;S:92 |
6 | Hesse et al., 2019 | Custom Model |
2–4 months (PTA); 12 videos |
NR (PCkh 2.0, P:90) | ||
7 | Hesse, Boden-steiner, et al., 2019 | |||||
8 | Hesse, et al., 2018 |
2–4 months (PTA); 136 videos (37 infants) |
||||
9 | Hesse, Schroeder, et al., 2018 | |||||
10 | Hesse et al., 2017 | F: NA/Random Ferns; | ||||
11 | Hesse et al., 2015 |
NR; 1 infant (3D model) |
NA | |||
12 | Ihlen et al., 2020 |
2D Video; Movement Detection CIMA (MEMD); Predict CP |
F: 990/Optical Flow, BP: head, trunk, limbs | LDA |
9–15 weeks (PTA); 377 videos (high-risk CP) |
A:93;P:NR;R:NR;S:82 |
13 | Adde et al., 2018 |
2D Video; Movement Detection; Quantify FMs vs WMs, Classify GMs |
F: NR/spatial (no temporal), CSD; BP: head, trunk, limbs |
LR, Variability of CSD |
3–5,10–15 weeks (PTA); 54 videos (27 infants preterm) |
NR (CSD is 7.5% lower during FMs in comparison to the WMs period) |
14 | Støen et al., 2017 |
2D Video; Movement Detection; Detect FMs |
F: NR/spatial and temporal, CSD; BP: neck, trunk, limbs |
Variability of CSD |
10–15 weeks (PTA); 241 videos (150 infants: 48 abnormal) |
NR (CSD varies between R:80; S;80–90) |
15 | Rahmati et al., 2016 |
2D Video; Movement Detection; Predict CP |
F: NR/Optical Flow, FFT; BP: hands, feet, head, trunk, arms |
SVM, MRF, Particle Matching |
2–4 month (PTA); 78 videos (78 infants: 14 CP) |
(SVM) A:91;P:NR;R:86;S:92 |
16 | Rahmati et al., 2015 |
2D Video; Movement Detection; Predict CP |
F: NR/Optical Flow; BP: hands, feet, head, trunk, arms |
(SVM) A:87;P:NR;R:NR;S:NR | ||
17 | Rahmati, Amo, et al., 2014 |
20 Video; Movement Detection; Predict CP |
F: NR/LDOF, graph-cut; BP: hands, feet, head, trunk |
SVM, MRF | A:87;P:NR;R:50;S:95 | |
18 | Rahmati, Dragon, et al., 2014 | A:NR;P:96;R:NR;S:NR | ||||
19 | Adde et al., 2013 |
2D Video; Movement Detection; Detect FMs, Predict CP |
F: NR/motion, Cs, Qmean, Qsd
CPP; BP: neck, trunk, limbs |
CPP |
9–17 weeks (PTA); 104 videos (52 infants: 24M, 28F) |
(FMs) A:NR;P:NR;R:89;S:79 (CPP) A:NR;P:NR;R:89;S:74 |
20 | Stahl et al., 2012 |
2D Video; CIMA; Detect FMs, Predict CP |
F: 3/Optical Flow (GPU), wavelet, spatio-temporal; BP: head, limbs |
SVM |
10–15 weeks (PTA); 136 videos (82 infants: 15 atypical, 67 typical) |
A:96;P:NR;R:88;S:98 |
21 | Adde et al., 2010 |
2D Video; Movement Detection; Predict CP |
F: NR/CPP, CSD, VSD, ASD, Qmean, Qmedian, QSD; BP: neck, trunk, limbs |
CPP |
10–15 weeks (PTA); 30 videos (high-risk: 13M, 17F) |
(CPP) A:NR;P:NR;R:85;S:88 |
22 | Marchi et al., 2020 |
SMART-D Video (10 cameras + markers); Movement Detection; Correlate FMs age with other measures |
F: NR/coordination, distance, global movement quality; BP: hands and feet |
Custom Model |
9–20 weeks (PTA); 8 videos |
NR (Regression, R2:97) |
23 | Marchi et al., 2019 |
2D Video; Pose Estimation; Classify GMs |
F:NR/OpenPose; BP: 25 joints |
Extraction of quantitative measures |
8–17 weeks (PTA); 21 videos (14 typical, 7 atypical) |
|
24** | Chambers et al., 2019 |
2D Video; Pose Estimation; Estimate risk |
F: 38/OpenPose and kinematics, NGBS; BP: 25 joints |
Naive Bayes, Kinematics Data |
4–11 months; 104 videos: 85 Youtube, 19 clinical |
A:NR;P:92;R:94;S:NR |
25 | Dai et al., 2019 |
2D Video; Movement Detection; typical vs atypical |
F: NR/Wavelet, PCA; BP: neck, trunk, limbs |
SVM, XGBoost |
10–12 weeks (PTA); 120 videos (60 typical, 60 atypical) |
A:93;P:NR;R:95;S:92 |
26 | Gajniyarov et al., 2019 |
2D Video Movement Detection; Analyse GMs |
F: NR/segmentation, wavelet, limb speed; BP: hands and feet |
Data Pre-processing |
10 weeks (PTA); 18 videos |
NR (study on data preprocessing) |
27 | Raghuram et al., 2019 |
2D Video; Movement Detection; Detect atypical |
F: 289/skin model, LDOF; BP: neck, trunk, limbs |
Logistic Regression |
3–5 months (PTA); 152 videos |
A:66;P:NR;R:79;S:63 |
28 | Orlandi et al., 2018 |
F: 643/skin model, LDOF; BP: neck, trunk, limbs |
AdaBoost, Random Forest |
3–5 months (PTA); 127 videos (98 typical, 29 atypical) |
A:92;P:NR;R:44;S:88 | |
29** | Das et al., 2018 |
2D Video; Movement Detection; Detect kicks |
F: 5/KAZE, legs in same y-direction; BP: lower limbs |
SVM |
4–7 months (PTA); 16 videos |
A:91;P:88;R:85;S:NR |
30 | Cenci et al., 2017 |
RGB-D Video; Movement Detection; Probability of change |
F: 10/velocity, acceleration amplitude, volume; BP: limbs |
K-means, Markov Chains |
37–38 weeks (GA); 35 videos (1 infant) |
NR (initial test-phase) |
31 | Machireddy et al., 2017 |
2D Video; Movement Detection; Detect FMs |
F: NR/sensor fusion, EKF; BP: limbs |
SVM |
2–4 months; 20 videos |
A:84;P:NR;R:NR;S:NR |
32 | Marschik et al., 2017 |
2D Video; Multimodal Detection; NA |
F: NR/multimodal fusion; BP: the whole body |
Heuristic |
0–4 months; NA |
NA |
33** | Shivakumar et al., 2017 |
RGB-D Video; Movement Detection; Track Body Attributes |
F: NR/Optical Flow; BP: limbs |
Adaptive Window, K-means |
3–11 months (PTA); 3 videos (typical) |
A:NR;P:NR;R:NR;S:NR |
34** | Serrano et al., 2016 |
RGB-D Video; Pose Estimation; Kicking Patterns Analysis |
F: NR/lower limb pose, RPSR; BP: lower limbs |
Kicking Patterns of Robot |
NR; 1 robotic infant |
NR (qualitative analysis) |
35** | Olsen, 2015 |
RGB-D Video; Pose Estimation; Detect Kickings |
F: NR/Optical Flow; BP: stomach, head, limbs, feet |
K-NN, Classification Tree, SVM |
1–6 months; 11 videos |
A:90;P:NR;R:NR;S:NR |
Deep Learning Classification | ||||||
36 | McCay et al., 2020 |
2D Video; Pose Estimation; Classify GMs |
F: NR/OpenPose, HOJO2D, HOJD2D; BP: 14 joints |
FCNet model |
2–4 months (PTA); 12 videos |
A:NR;P:NR;R:NR;S:NR |
37 | McCay et al., 2019 | |||||
38 | Moccia et al., 2020 |
RGB-D Video; Pose Estimation; Detect Joints |
F: NR/spatio-temporal; BP: shoulders, elbows, wrists, hips, knees, ankles |
Dual CNNs |
31–36 weeks (GA); 16 videos |
A:NR;P:NR;R:NR;S:NR |
39 | Moccia et al., 2019 | |||||
40 | Schmidt et al., 2019 |
2D Video; Movement Detection; Classify GMs |
F: NR/OpticalFlow, FFT, Keras VGG19; BP: limbs |
LSTM |
2–4 month (PTA); 78 videos (78 infants: 14 CP) |
A:65;P:NR;R:51;S:27 |
Articles are first arranged in descending order of the publication year, followed by ascending order of the last name of the first author. Studies with an inherent connection, i.e., leading authors are identical or worked jointly, are stacked together and shaded with the same background colour, also ordered first by the publication year and then by the last name of the first author.
Studies in which the ages of the participants fell (partly) beyond the appropriate range according to the standard GMA (Einspieler et al., 2014), or the age range was (partly) missing.
Key of Terms.
Generic: ASD – Autism Spectrum Disorder; CP – Cerebral Palsy; CS – Cramped Synchronised; FM – Fidgety Movements; GA – Gestational Age; GMS – General Movements; GMA – General Movement Assessment; NA – Not Applicable; NR – Not Reported; PTA – Postterm age. PR – Poor Repertoire; WM – Writhing Movements.
Techniques and Models: ASD – Acceleration Standard Deviation; CIMA – Computer-based Infant Movement Assessment; CPP – Cerebral Palsy Predictor; CSD – Standard Deviation of the Center of Motion; FFT – Fast Fourier Transformation; HOJD2D – Histograms of Joint Displacement 2D; HOJO2D – Histograms of Joint Orientation 2D; ICC – Intraclass Correlation Coefficient; LDA – Linear Discriminant Analysis; LDOF – Large Displacement Optical Flow; LLGMN – Log-linearised Gaussian Mixture; LR – Logistic Regression; MEMD – Multivariate Empirical Mode Decomposition; MRF – Multi-label Markov Random Field; NGBS – Naive Gaussian Bayesian Surprise; PCKh 2.0 – Percentage of Correct Keypoints in Relation to Head Segment Length (two times the head segment length); QMEAN – Quantity of Motion Mean; Qmedian – Quantity of Motion Median; QSD – Quantity of Motion Standard Deviation; RBF – Radial Basis Function Kernel; RF – Random Forests; RPSR – Robust Point Set Registration; SMIL – 3D Skinned Multi-Infant Linear (Based on SMPL Model for Adults); SMPL – Skinned Multi-Person Linear Model; SVM – Support Vector Machine; VSD – Standard Velocity Deviation.