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To the Editor:

Relapse in acute myeloid leukemia (AML) patients remains a clinical challenge. The 

majority of AML patients who receive induction treatment with combination chemotherapy 

achieve clinicopathologic remission. However, a significant proportion of these patients 

will relapse and succumb to chemoresistant disease [1]. The biological mechanisms that 

contribute to relapsed AML are yet to be fully deciphered. Previous studies investigating 

genetic contributions to AML disease relapse included small numbers of patient samples 

and/or focused on a small number of AML subtypes. These studies have suggested that 

disease relapse is associated with founder clone recurrence, subclonal expansion and/or the 

occurrence of relapse-specific events (reviewed in [2]). To better understand the somatic 

genomic changes that drive AML relapse, we analyzed specimens (n = 120) from a 

clinically annotated adult relapsed AML patient cohort [3] (Supplementary Table S1, 

Supplementary Fig. S1) for somatic events. The median age of the patient cohort was 50 

years. All patients received standard of care combination chemotherapy, achieved complete 

remission and experienced disease relapse.

We first reanalyzed whole exome sequencing (diagnosis, relapse and matched germlines) 

of 49 patients [3] in order to capture the complete intragenic mutational burden (Fig. 

1A, Supplementary Tables S2 and S3). 21 patients had at least one mutation lost at 

relapse. Twenty-three patients gained at least one mutation at relapse. A subset of recurrent 

somatic mutations were validated using orthogonal sequencing (Supplementary Fig. S2; 

Supplementary Tables S4 and S5). In addition to previously reported commonly mutated 

genes [4, 5], we identified recurrently mutated genes (at least two patients) that were stable 

or gained upon disease relapse. Other mutations impacted chromatin remodeling (ARID1B, 
BCORL1, CREBBP) and chromatid cohesion (ESPL1) (Supplementary Tables S2 and S3). 

Previously, mutations in chromatin-related genes at diagnosis were reported to associate 

with higher rates of relapse [6].

To further understand the patterns of disease progression, we performed copy number 

alteration (CNA) analyses using sparse whole genome sequencing in paired patient 
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specimens (n = 69; Supplementary Fig. S3). Results were compared to clinical cytogenetics 

data and two specimens were removed from the analysis due to discrepant findings. 44.7% 

of the 67 patients assessed (n = 30) had no detectable CNAs (Supplementary Table S6). In 

the remaining patients, 34 events were gained and 14 were lost at relapse. A high number 

of CNAs (three or more unrelated events) was present in 14.9% of the patients (n = 10): 

three with CNAs at both diagnosis and relapse, two with diagnosis-specific events, and five 

with CNAs gained upon relapse. Four of the five cases presented with “atypical” Complex 

Karyotype disease and were not associated with TP53 mutations [7]. The remaining case 

exhibited a TP53 R273H mutation that increased in allelic frequency from 0.0864 at 

diagnosis to 0.281 at relapse with sparse sequencing data revealing associated deletions 

at 5q and 17p among others (Supplementary Fig. S3; Supplementary Tables S2, S3 and 

S6). These karyotype changes are in agreement with a previous report revealing changes in 

disease karyotypes upon disease relapse [8].

To identify genetic variation associated with subclone expansion or contraction during 

disease progression, we implemented a targeted panel sequencing experiment on 63 

matched diagnosis and relapse patient specimens. We focused on 38 genes frequently 

mutated in AML, previously reported as oncogenic and likely-oncogenic somatic events [6] 

(Supplementary Tables S2b and S7). Genetic variation was considered significantly higher 

or lower if the difference in allele fraction at relapse compared to diagnosis was at least 

0.05 VAF with a significance of p < 0.05 in a Fisher statistical test (Supplementary Table 

S7). In more than 50% of the patients that had a mutation in TP53, WT1 or the canonical 

FLT3-ITD, the mutant subclone expanded at relapse compared to diagnosis (Fig. 1B). By 

contrast, more than 50% of the subclones with MAPK activating mutations (e.g., NRAS, 
PTPN11, and non-ITD FLT3) contracted at relapse (Fig. 1B). Interestingly, in two patients, 

a sub-clonal NRAS mutation at the time of diagnosis was lost yet they gained another 

subclonal mutation in the same gene at relapse. Mutations in CEBPA, DNMT3A, and NPM1 
were more often associated with a clonal fraction that was stable between diagnosis and 

relapse (Fig. 1B).

We next determined inferred clonal evolution for each patient of the targeted panel 

sequencing cohort between diagnosis and relapse. Sixty of the patients could be divided 

into three groups based on the greatest magnitude of change (Fig. 2A; Supplementary Table 

S8). Group 1: Subclonal changes: 31 patients exhibited significant change(s) in subclonal 

composition (Supplementary Fig. S4; representative examples in Fig. 2B and Supplementary 

Fig. S5). Group 2: Clonal changes: 19 patients had either a conversion of at least one 

subclonal fraction at diagnosis into a clonal event at relapse or a de novo clonal event at 

relapse (Supplementary Fig. S6; representative example in Fig. 2C. and Supplementary Fig. 

S7). Group 3: Stable: ten patients had no significant difference observed (Supplementary 

Fig. S8; representative example in Fig. 2D). In three cases, we could not reconcile the 

changes between the diagnosis and relapse samples, suggesting either complex dynamics 

not explained by the models, or the presence of uncommon events outside of the targeted 

regions.

For three of the patients included in the study, serial specimens were available for further 

clonal progression assessment (Supplementary Tables S2c and S9). Results were consistent 
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with stable disease after first relapse (AML_124 and AML_126; Supplementary Fig. S9) 

and the possibility of further subclonal changes during disease progression (AML_130; Fig. 

2E). These data further support the occurrence of the proposed evolution models observed 

throughout the disease time course.

We previously reported that shifts in DNA methylation heterogeneity could classify patients 

who progress from diagnosis to relapse [3]. We did not find any significant association 

between the genomic evolution patterns and DNA methylation heterogeneity groupings 

(Kruskal–Wallis test, P = 0.433). Furthermore, patients’ age, sex, ELN classification [9], 

treatment type, and time to relapse did not significantly associate with the genomic evolution 

classifications (Kruskal–Wallis test, P > 0.05; Supplementary Table S10).

Our work suggests that clonal dynamics can potentially contribute to therapeutic resistance 

and disease progression. Our evolution model predictions are similar to those originally 

reported from mutational or cytogenetics data [2]. However, we cannot exclude the 

possibility that alternative drivers of clonal composition were not detected in our data, nor 

that different treatments will associate with different clonal evolution patterns. Interestingly, 

the lack of association between epigenetic and genetic evolution progression patterns further 

supports an independent role for each process during disease progression and the potential 

for parallel approaches cells can take to disease diversification [3].

Our data suggests that subclonal changes could be pathogenic in the etiology of AML 

relapse. Expansion of clones with FLT3-ITD at relapse suggests that this enrichment 

may contribute to disease progression potentially via STAT5 activation, enhanced cell 

proliferation and/or differentiation blockade [10]. Likewise, expansion of WT1 mutations 

in a subset of patients may contribute to transcriptional dysregulation and impaired 

hematopoietic differentiation associated with leukemogenesis [11] or to resistance to 

treatment with DNA damage agents possibly through disrupted TP53 stabilization and 

transcriptional activity [12]. Finally, our data suggesting the loss of subclones with 

MAPK activator gene mutations support previous findings consistent with NRAS mutations 

predisposing leukemic cells to cytarabine-induced differentiation [13]. Changes in FLT3­
ITD and karyotype also represent a potential important clinical consideration for treatment 

of relapsed disease with targeted [14] or PLK1-directed therapy [15]. Importantly, the fact 

that actionable driver mutations present at diagnosis can be lost or gained at relapse supports 

a role for temporal monitoring to inform clinicians about possible personalized targeted 

therapies to consider to maximize clinical benefits in relapsed AML patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genomic landscape of relapsed AML.
A Comutation map for the whole exome sequencing cohort. Each row is a gene and each 

column a patient. Mutations were summarized by gene with the exception of FLT3-ITD 

independently plotted. A cell is colored if the corresponding gene is mutated in the 

corresponding patient. Every gene that is mutated in at least three patients is included. 

The bar plot shows the number of patients for which we detected a mutation in this gene. 

Colors: brown = events detected in both diagnosis and relapse, red = events only detected 

at diagnosis, and blue= events only detected at relapse. B Co-mutation map in the targeted 
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panel cohort. Each cell is colored blue if the event is found stable between diagnosis and 

relapse, orange if it significantly contracts between diagnosis and relapse, and green if it 

significantly expands between diagnosis and relapse.
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Fig. 2. Clonal evolution during disease progression (targeted panel sequencing cohort).
A Partition of the targeted panel sequencing cohort into each of the evolution patterns. 

Graphical representations of examples of each evolution pattern identified: subclonal (B: 

AML_001), clonal changes (C: AML_023), and stable changes (D: AML_029) using a fish 

plot representation. The clone with the highest VAF at a given time point was considered 

the parent clone. Subclones were defined based on criteria detailed in the Clonal evolution 

analysis subsection of “Materials and Methods”. The color key for gene contributions to 

the pattern is located in the lower right corner of the figure. E Graphical representation of 

AML_130 tumor evolution pattern. Each vertical bar indicates a tumor sample collection 

time point, with the time point (in days) along the x-axis.
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