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Abstract

Cortical neurons exhibit extreme diversity in gene expression as well as in morphological

and electrophysiological properties’-2. Most existing neural taxonomies are based on either
transcriptomic®# or morpho-electric® 6 criteria, as it has been technically challenging to study
both aspects of neuronal diversity in the same set of cells’. Here we used Patch-seq® to combine
patch-clamp recording, biocytin staining, and single-cell RNA sequencing of more than 1,300
neurons in adult mouse primary motor cortex, providing a morpho-electric annotation of almost
all transcriptomically defined neural cell types. We found that, although broad families of
transcriptomic types (those expressing Vip, Pvalb, Sstand so on) had distinct and essentially non-
overlapping morpho-electric phenotypes, individual transcriptomic types within the same family
were not well separated in the morpho-electric space. Instead, there was a continuum of variability
in morphology and electrophysiology, with neighbouring transcriptomic cell types showing similar
morpho-electric features, often without clear boundaries between them. Our results suggest that
neuronal types in the neocortex do not always form discrete entities. Instead, neurons form a
hierarchy that consists of distinct non-overlapping branches at the level of families, but can form
continuous and correlated transcriptomic and morpho-electrical landscapes within families.

As animals can be grouped into species and assembled into a hierarchy of phylogenetic
relationships to form the ‘tree of life’, neurons in the brain are thought to form discrete cell
types, which in turn can be cast in a hierarchy of neuronal families and classes. The current
view is that a neuronal cell type is characterized by a common genetic profile that gives rise
to distinct physiological and anatomical properties, including patterns of connectivity”2. A
comprehensive multi-modal taxonomy of neurons would resemble a “parts list” of the brain,
helping us to decipher its bewildering complexity1011,

For decades, neurons have been classified into types by their anatomical and physiological
characteristics, and more recently by molecular markers'-212.13 High-throughput single-cell
sequencing techniques have identified dozens of types of neuron on the basis of their
transcriptional profiles3414.15 put linking transcriptomically defined cell types (t-types) to
their phenotypes has remained a major challenge®. However, to understand the roles of
t-types in cortical computations, it is necessary to know their anatomy, connectivity, and
electrophysiology”’.

Our work is part of the BRAIN initiative cell census network (BICCN) effort to fully
characterize the cellular taxonomy of neurons in mouse primary motor cortex (MOp). We
used the Patch-seq technique817-19 to describe the morpho-electric phenotypes for most

of the t-types in MOp2°. Our analysis suggests that, in both excitatory and inhibitory

classes of neurons, broad transcriptomic families (also known as ‘subclasses’2%) have largely
distinct phenotypes, but uncovers continuous morpho-electric variation within most of these
families.

Nature. Author manuscript; available in PMC 2021 October 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Scalaetal. Page 3

Patch-seqg of mouse primary motor cortex

We sampled neurons across all layers (L) of adult mouse MOp (median postnatal day (P)
75) using various Cre driver lines to cover as diverse a population of neurons as possible.
Neurons in acute slices were patch-clamped and stimulated with brief current pulses to
record their electrophysiological activity at room temperature and then filled with biocytin
for subsequent morphological recovery and reconstruction, and their RNA was extracted and
sequenced using the Smart-seq2 protocol?! (Extended Data Fig. 1). In total, we performed
whole-cell recordings from more than 2,000 cells, of which 1,329 cells (from 266 mice)
passed initial quality control. The mRNA of these 1,329 cells was sequenced, yielding on
average 1.3 million exonic and 0.7 million intronic reads (medians; mean + s.d. on a logyg
scale: 6.0 £ 0.6 and 5.6 + 0.8, respectively) and 9,100 + 3,500 (mean * s.d.) detected genes
per cell (Extended Data Fig. 2). Of these neurons, 646 had sufficient staining for their
morphologies to be reconstructed.

Using the gene expression profiles, we mapped all sequenced neurons to the transcriptomic
cell types (t-types) that have been identified using dissociated cells in a parallel study within
the BICCN consortium?2°. To assign cell types, we used a nearest centroid classifier with
Pearson correlation of log-expression across the most variable genes as a distance metric
(Extended Data Fig. 1). Bootstrapping over genes was used to assess mapping confidence.
The mapping was done separately using each of the seven reference data sets obtained

with different sequencing technologies, including single-cell and single-nucleus Smart-seq2
and 10x sequencing?0. We found that Patch-seq expression profiles were most similar to

the single-nucleus Smart-seq2 data (Extended Data Fig. 2g, h). At the same time, there

was good agreement between t-type assignments based on Smart-seq2 and those based on
10x reference data (Extended Data Fig. 2i), so consensus t-type assignment over all seven
reference data sets was used for all subsequent analysis. Cells that showed poor mapping
(owing to a low read count or excessive RNA contamination) were excluded (Extended Data
Fig. 2), leaving 1,227 neurons for further analysis (817 inhibitory, 410 excitatory; 369 and
269 with morphological reconstructions, respectively).

The resulting data set covered 77 out of the 90 neuronal t-types (Fig. 1a), with 73 t-types
having at least one morphologically reconstructed neuron. The coverage was good for
interneurons derived from the caudal and medial ganglionic eminences (CGE and MGE) and
for excitatory neurons. Within-type distributions of soma depths (Fig. 1b) agreed well with
previous data* and with the layer-specific nomenclature of excitatory t-types, confirming

the validity of our t-type assignment. Positioning all cells on reference maps made with &
distributed stochastic neighbour embedding (t-SNE)?2:23 also showed good overall coverage
(Fig. 1c—e) with only few uncovered regions.

The observed phenotypes included most of the morphological and electrophysiological types
of cortical neurons that have been described previously in mice and rats®24, allowing us to

link transcriptomic and morpho-electric descriptions (Extended Data Fig. 3, Supplementary

File 1).
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A detailed description of all t-types is provided in Extended Data Tables 1, 2. One
interesting case was the transcriptomically isolated Lamp5 Lhx6type, which consists

of deep L5/L6 neurogliaform cells (NGCs). This type, unlike all other Lamp5types, is
putatively MGE-derived?, so its identity was an open question®. Our results suggest that
although all deep NGCs belong to the Lamp5 subclass, some are derived from the CGE
and some from the MGE, as in the hippocampus2>-27. Another finding was that the Sst
Pvalb Calb2 type, which is transcriptomically in between the Sstand Pvalb subclasses, was
also in between these subclasses in terms of its morpho-electric phenotype?8. Furthermore,
we confirmed that chandelier cells from both superficial and deep layers belonged to
transcriptomically isolated Pvalb Vipr2types. We also showed that three previously
described morphological types of L5 Pvalb cells®, as well as two morphological types of
L5 Martinotti cells?%:30, corresponded to different t-types. We were also able to identify a
t-type, L4/5 IT_1, that was located on the boundary between L2/3 and L5 and probably
corresponds to the quasi-L4 neurons described previously in motor cortex3L.

Distinct phenotypes of major families

We next asked to what extent the morpho-electric phenotype could be predicted by

gene expression across the entire data set. To obtain quantitative characterizations of the
morpho-electric phenotypes, we extracted 29 electrophysiological (Extended Data Fig.

4, Supplementary File 2) and about 50 morphological features for each cell. We first
focused on 17 electrophysiological features and used sparse reduced-rank regression3?, a
technique that predicts the firing properties on the basis of a low-dimensional latent space
representation computed from a sparse selection of genes. We used cross-validation to
tune the regularization strength (Extended Data Fig. 5). The selected model used 25 genes
with a 5-dimensional latent space and achieved a cross-validated A2 of 0.38. To visualize
the structure of the latent space, we projected gene expression and electrophysiological
properties onto the latent dimensions (Fig. 2). The cross-validated correlations between the
first three pairs of projections were 0.90, 0.74, and 0.67, respectively.

These first three components clearly separated five major groups of neurons: the Pvalb,

Sst, Vip, and Lamp5 interneuron subclasses, and the excitatory neuron class (Fig. 2).

These groups had distinct electrophysiological properties: for example, as expected, Pvalb
neurons were characterized by high firing rates while Sstneurons had high values of the
hyperpolarization sag and rebound (Fig. 2, right). Some of the genes selected by the model
were prominent marker genes, such as the pan-inhibitory markers GadZ and S/c6al (related
to GABA (y-aminobutyric acid) processing), or the more specific inhibitory markers Sst,
Vip, Pvalb, Tacl, and Htr3a. Notably, some other selected genes were more directly related
to electrophysiological properties, such as the calcium channel subunit genes Cacnaleand
Cacna2d3 or the potassium channel-interacting protein gene KcnipZ2, which can modulate
firing properties in individual families. A reduced-rank regression model restricted to using
only ion channel genes (Extended Data Fig. 5) did not perform much worse than the full
model (cross-validated /2 = 0.33 and correlations 0.86, 0.71, and 0.56, respectively, with
regularization set to select 25 genes). Reduced-rank regression analysis using morphological
features supported the separation of major families (Extended Data Fig. 5).
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Similarly, a 2D t-SNE embedding of Patch-seq cells based on the same electrophysiological
features showed that the major transcriptomic families have distinct electrophysiological
properties (Fig. 3a): the Pvalb, Lamp5, Sst, Vip, CT (corticothalamic), IT
(intratelencephalic), and ET (extratelencephalic) subclasses were mostly well separated from
each other. We quantified this separation using a confusion matrix for A&-nearest neighbours
(KNN) classification of cells into families: it was mostly diagonal, with only the ET and

IT subclasses strongly overlapping (Fig. 3d). We confirmed the electrophysiological overlap
between IT and ET neurons in follow-up experiments at 34 °C (Extended Data Fig. 6).

We also constructed a 2D t-SNE embedding based on the morphological features (Fig.

3b). We used only dendritic features for the excitatory cells, but both axonal and dendritic
features for the inhibitory cells, leading to a strong separation between these two major
classes. Within each class, cells were strongly segregated by the soma depth, with excitatory
cells forming mostly a one-dimensional manifold. The separability between inhibitory
families was weaker than with electrophysiological features (Fig. 3d). The between-family
separability was strongest when we had combined electrophysiological and morphological
features into a joint representation (Fig. 3c, d), showing that these sets of properties are not
redundant. The ellipses in Fig. 3c highlight prominent t-types and groups of t-types with
similar morpho-electric properties.

In summary, different transcriptomic families had largely distinct morpho-electric
phenotypes, in agreement with them being well separated in the transcriptomic space®.

Continuous phenotypic variation

Within individual transcriptomic families, morpho-electric phenotypes rarely formed
isolated clusters (Fig. 3). Moreover, we often found that morpho-electric phenotypes
varied continuously from one t-type to another (Fig. 4). For example, electrophysiological
properties of the t-types within the Vijp subclass varied continuously across the
transcriptomic landscape; the membrane time constant, for instance, had its largest values
close to the Sncg subclass and gradually decreased towards Vip Gpe3 (Fig. 4a). We observed
the same in the Sstsubclass, which is known to be transcriptomically* and morpho-
electrically29:30:33 diverse in L5. Here we also found that morpho-electric properties varied
continuously across the transcriptomic landscape, with neighbouring t-types consistently
showing similar morphologies and similar rebound values (Fig. 4b). We confirmed this
effect in follow-up experiments at physiological temperature (Extended Data Fig. 6).

To quantify this effect, for each pair of t-types within each family we computed the
transcriptomic distance (correlation distance between average log-counts in the reference
data) and the electrophysiological distance (Euclidean distance between average feature
vectors) between them. Pooling the pairs across all families, we found that these two
distance measures were correlated, with = 0.60 (Fig. 4c, n= 200 pairs; Extended Data
Fig. 7). The correlation was also observed within multiple individual families and for many
individual electrophysiological features (Extended Data Fig. 7).
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The IT subclass provides an example of a similar phenomenon in another data modality
(Fig. 4d). IT neurons span all layers from L2/3 to L6, and IT t-types are largely
layer-restricted®. However, we found that IT t-types did not form distinct groups for

each cortical layer; instead, the soma depth and RNA expression varied continuously
along a one-dimensional manifold (Fig. 4d), in agreement with parallel findings based

on a spatial transcriptomics approach34. For example, L4/5 and L5 IT t-types that were
transcriptomically close to the L2/3 IT t-types were located at the top of L5 close to the
border between L2/3 and L5, whereas L5 IT t-types that were transcriptomically close to
L6 IT t-types were located at the bottom of L5 close to the border with L6. Transcriptomic
distances between t-types were strongly correlated with the average soma depth differences
(r=0.70; Fig. 4d).

Finally, the Pvalb subclass is usually understood as electrophysiologically homogenous

(all neurons are fast spiking) but has been described as morphologically diverse, in
particular in L5°. However, it was previously unclear whether different morphologies such
as shrub-like or horizontally elongated correspond to different t-types®. While we found that
different t-types had different preferred morphologies (Extended Data Table 1), they showed
substantial overlap, in agreement with the L5 Pva/b t-types themselves not having clear
boundaries? (Fig. 1d). The shape of the axonal arbor showed continuous changes across

the transcriptomic landscape (Fig. 4e): small shrub-like basket cells, horizontally elongated
basket cells, and vertically elongated classical basket cells were located in different corners
of the t-SNE embedding, with intermediate morphologies in between.

In summary, within major transcriptomic families, morpho-electric phenotypes and/or soma
depth often varied smoothly across neighbouring t-types, indicating that transcriptomic
neighbourhood relationships in many cases corresponded to similarities in other modalities.

Variability in individual t-types

To study the morpho-electric phenotypes of individual t-types, we measured how
consistently they conformed to their respective transcriptomic families (Fig. 5a) and

how variable they were within a t-type (Fig. 5b). First, we used a kNN classifier to

classify cells from each t-type with at least ten cells into transcriptomic families, using
electrophysiological features. Most t-types could be unambiguously placed into the correct
family (Fig. 5a), but some t-types were in between two families. For example, many Sst
Pvalb Calb2 neurons were classified as belonging to the Pvalb subclass on the basis of
electrophysiology. Similarly, Lamp5 Eg/n3_1 neurons had rather Vip- and Sst-like firing
instead of the typical Lamp5 electrophysiology, and Vip Mybpcl neurons often had Sst-like
firing. Thus, while overall transcriptomic family was highly predictive of the cell phenotype,
some t-types exhibited properties similar to those of another transcriptomic family.

Next, we measured the normalized total variance of each t-type using electrophysiological
features and compared it to the normalized total variance of phenotype clusters derived by
k-means clustering (with & set to the number of t-types). The rationale here was that the
variance of the A-means clusters would reflect the minimal possible variance obtainable
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in our data set. Values much above the cluster variances indicate non-trivial phenotypic
variability within a t-type.

We found that many t-types had total variance substantially above the variances of the
k-means clusters (Fig. 5b) and an alternative analysis using entropies of Leiden clustering®®
often highlighted the same t-types as variable (Extended Data Fig. 8). Not all t-types
showed high variability: some of them, such as Pvalb Vipr2 2 (chandelier cells), appeared
morpho-electrically homogeneous. By contrast, Vip Mybpcl 2was marked as having high
electrophysiological variability and indeed had high variance in input resistance, membrane
time constant, and rebound (Extended Data Fig. 4). This variability was not random:;
overlaying the rebound values on the t-SNE embedding (Fig. 5¢) showed that cells with
low rebound were located close to the boundary with the low-rebound Vip Sncg type.
Similarly, Sst Pvalb CalbZ2 cells had high variability in terms of the maximum firing rate, but
high-firing cells were mostly grouped in one part of the transcriptomic landscape (Fig. 5d).

We found similar examples in the morphological modality (Extended Data Fig. 8). Together,
these examples suggest that within-t-type morpho-electric variability can in some cases

be related to the underlying transcriptomic variability. This is in agreement with the idea
that on a fine within-family scale, both transcriptomic and morpho-electric landscapes are
continuous rather than discrete.

Discussion

We used Patch-seq to provide the missing link between transcriptomic and morpho-electric
descriptions of neurons in adult mouse motor cortex. Broad transcriptomic families were
mostly well separated in their morpho-electric properties. Previous studies using transgenic
lines had shown that morpho-electric properties within these families can be highly
variable®24, We found that this variation is structured across the transcriptomic landscape,
such that the morpho-electric distance between t-types within a family is correlated with
their transcriptomic distance. Furthermore, we found non-trivial morpho-electric variability
within multiple t-types. Although we cannot fully exclude the possibility that some of this
variability can be attributed to technical challenges of Patch-seq or to factors such as the
exact spatial location of the cell within motor cortex3®, there are clear cases in our data that
suggest that within-type morpho-electric variability is related to within-type transcriptomic
variability.

We therefore suggest that the “tree of cortical cell types’ may look more like a banana tree
with a few large leaves, rather than an olive tree with many small ones. In this metaphor,
neurons follow a hierarchy consisting of distinct, non-overlapping branches at the level

of families (large leaves), but with a spectrum of cells forming continuous and correlated
transcriptomic and morpho-electrical landscapes within each leaf.

This is at odds with the notion that t-types are discrete entities, an implicit assumption
behind any cluster analysis. Consistent with our interpretation, recent transcriptomic and
anatomical studies have argued that neurons in hippocampus, striatum, and cerebellum can
be better described as forming partially continuous manifolds27-37-39, Similarly, cortical
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studies have identified many intermediate cells with uncertain t-type assignments3#4. Thus,
the goal to assemble an exhaustive inventory of neural cell types might be unattainable if
the types, unlike the chemical elements in the periodic table, are not discrete entities. We
believe that there is an urgent need for theoretical work on how to conceptualize and model
hierarchical discrete/continuous cell variability in a principled way’.

Developmentally, it is thought that neural diversity is generated through a combination of
intrinsic genetic programs in progenitor cells, and activity-dependent and environmental
factors#0-44, It remains unclear to what extent the interplay between hard-wired genetic
programs and extrinsic cues might explain our observations.

Our study has several limitations. First, some t-types were covered only sparsely or not at
all. Additional experiments with more specific Cre lines could fill some of the gaps, but
some very rare putative t-types might not be amenable to Patch-seq study. Second, as the
RNA extraction process may have interfered with biocytin diffusionl” and as MOp is quite
thick, it was difficult to recover complete morphologies of some groups of neurons, such as
deep L5 Martinotti cells with thin long axons that reach all the way to L1.

A parallel Patch-seq study of the inhibitory neurons in the mouse visual cortex#® focused on
isolating multimodal neural types (‘met-types’) but also often observed continuous variation.
Our data sets are overall in good agreement (Extended Data Fig. 9) and together offer an
unprecedented view of cell type variability in the neocortex. Future studies will need to

add additional modalities, such as long-range projections, local connectivity, and in vivo
functional characterization.

Online content

Methods

Animals

Any methods, additional references, Nature Research reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2907-3.

No statistical methods were used to predetermine sample size. The experiments were
not randomized and investigators were not blinded to allocation during experiments and
outcome assessment, unless otherwise stated.

Experiments on adult male and female mice (7= 266; median age 75 days, interquartile
range 64-100, full range 35-245 days, Extended Data Fig. 2a) were performed on
wild-type C57BI/6 (n=27), Viaat-Cre/Ai9 (vesicular inhibitory amino acid transporter,
encoded by the S/c32al gene, n= 24), Sst-Cre/Ai9 (somatostatin, 7= 75), Vjp-Cre/Ai9
(vasoactive intestinal polypeptide, 1= 46), Pvalb-Cre/Ai9 (parvalbumin, n=76), Npy-
Cre/Ai9 (neuropeptide Y, n=2), Vipr2-Cre/Ai9 (vasoactive intestinal peptide receptor 2, n
=7), Scl17a8-Cre/Ai9 (VGLUTS3, vesicular glutamate transporter 3, 7= 6), Gnb4-Cre/Ai9
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(n=1), and Slc17a&iCrelAi9 (n=2) mice. Numbers above refer to mice from which
sequencing data were successfully obtained. Several more animals were used for measuring
layer boundaries and follow-up experiments at physiological temperature (see below). Mice
were co-housed with littermates (2-5 per cage) in a controlled environment at 22-24 °C
and 30-70% humidity. Mice were maintained with unrestricted access to food and water on
a 12-h light/dark cycle. Procedures for mouse maintenance and surgeries were performed
according to protocols approved by the Institutional Animal Care and Use Committee
(IACUC) of Baylor College of Medicine.

The Viaat-Cre line was generously donated by Huda Zoghbi (Baylor College of Medicine),
the Slc17a8-iCre line by Rebecca Seal (University of Pittsburg). The Gnb4-Cre line was
from the Allen Institute for Brain Science. The other Cre and reporter lines were purchased
from the Jackson Laboratory: SstCre (stock no. 013044), Vip-Cre (stock no. 010908),
Pvalb-Cre (stock no. 008069), Vipr2-Cre (stock no. 031332), S/c17a8-Cre (stock no.
028534), Npy-Cre (stock no. 027851), Ai9 reporter (stock no. 007909).

We were unable to find any labelled cells in MOp in the Gnb4-Cre mice: all labelled cells
were far outside of MOp and close to the claustrum?®. For this reason, the data set does not
include any Gnb4-positive cells.

Slice preparation

The MOp brain slices were obtained following previously described protocols®28. In brief,
the animals were deeply anaesthetized using 3% isoflurane and decapitated. The brain

was rapidly removed and collected into cold (04 °C) oxygenated NMDG (A-methyl-D-
glucamine) solution containing 93 mM NMDG, 93 mM HCI, 2.5 mM KCI, 1.2 mM
NaH,PO4, 30 mM NaHCOs3, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate,

2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgSO,4 and 0.5 mM CaCl,, pH 7.35 (all
from Sigma-Aldrich). We cut 300-pm-thick coronal slices using a Leica VT1200 microtome
following coordinates provided in the Allen Brain Atlas for adult mouse (http://atlas.brain-
map.org). The slices were subsequently incubated at 34.0 + 0.5 °C in oxygenated NMDG
solution for 10-15 min before being transferred to the artificial cerebrospinal fluid (ACSF)
solution containing: 125 mM NaCl, 2.5 mM KClI, 1.25 mM NaH,POg4, 25 mM NaHCOs3, 1
mM MgCl,, 11.1 mM glucose and 2 mM CaCly, pH 7.4 (all from Sigma-Aldrich) for about
1 h. The slices were allowed to recover in ACSF equilibrated with CO,/O5 gas mixture (5%
CO», 95% O,), at room temperature (approximately 25 °C) for 1 h before experiments.
During the recordings, slices were submerged in a customized chamber continuously
perfused with oxygenated physiological solution. Recorded cells were generally located
15-60 um deep under the slice surface.

Patch-seq recording procedures

In order to simultaneously obtain electrophysiological, morphological and transcriptomic
data from the same neurons, we applied our recently developed Patch-seq protocoll’, with
some maodifications. In particular, changes were made to the internal solution to optimize

its osmolarity in order to improve staining quality. RNase-free intracellular solution was
prepared as follows: we dissolved 111 mM potassium gluconate, 4 mM KCI, 10 mM HEPES
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and 0.2 mM EGTA in RNase-free water in a 125-ml Erlenmeyer flask. We then covered the
solution with aluminium foil and autoclaved it. After the solution was cooled down to room
temperature, we added 4 mM MgATP, 0.3 mM NagGTP, 5 mM sodium phosphocreatine, and
13.4 mM biocytin (all from Sigma-Aldrich). The pH was adjusted to 7.25 with RNase-free
0.5 M KOH using a dedicated pH meter (cleaned with RNase Zap and RNase-free water
before each use). RNase-free water was then added to the solution in order to obtain the
desired volume. After carefully checking its osmolarity (approximately 235-240 mOSM)
the solution was stored at =20 °C and used for no longer than 3 weeks.

Before each experiment, we combined 494 pl internal solution with 6 pl recombinant RNase
inhibitor (1 U/ul, Takara) to increase RNA yield. The addition of the inhibitor resulted in an
increase in osmolarity to the desired value of 315-320 mOSM without a further dilution’.
The osmolarity of the ACSF was monitored before each experiment and adjusted to be
18-20 mOSM lower than the internal solution. In particular, when the ACSF osmolarity
was too low, we added a small amount of sucrose to ACSF to increase its osmolarity and
bring it to the desired range. This osmolarity difference between ACSF and the internal
solution is important to obtain slight swelling of the cell during the recording session, which
improves the diffusion of biocytin in the neuronal processes. All glassware, spatulas, stir
bars, counters, and anything else that may come into contact with the reagents or solution
were cleaned thoroughly with RNase Zap before use.

Recording pipettes (B200-116-10; Sutter Instrument) of ~3—7 MQ resistance were filled
with 0.1-0.3 ul RNase-free intracellular solution. The size of the pipette tip was chosen
according to the target neuron size: 3-4-MQ pipettes were used to record large neurons (for
example, L5 ET excitatory neurons) and 6-7-MQ pipettes were used to record small cells
such as L1 or Vipinterneurons.

The PatchMaster software (HEKA Elektronik) and custom Matlab scripts were used to
operate the Quadro EPC 10 amplifiers and to perform online and offline data analysis.

We used the following quality control criteria: (1) seal resistance value >1 GQ before
achieving whole-cell configuration; (2) access resistance <30 MQ. Each neuron was injected
with 600-ms-long current pulses starting from —200 pA and up to 1,380 pA with 20-pA
increment steps (in some cases stimulation was stopped before reaching 1,380 pA). There
were 1.3- or 1.4-s intervals between successive current pulses, depending on the used setup.
For most neurons, the stimulation was then repeated multiple times from the beginning.
Electrophysiological traces used for the analysis were acquired between 3 and 15 min after
achieving the whole-cell configuration. Recordings were performed at room temperature (25
°C), as opposed to physiological temperature (34 °C), in order to keep the cells alive for
longer. We performed control experiments at physiological temperature as well (see below).

Typically, excitatory neurons were recorded for 5-20 min while interneurons were recorded
for 20-50 min in order to allow biocytin to diffuse into distal axonal segments. During the
recording, the access resistance was checked every three minutes in order to maintain a
stable seal that would ensure successful biocytin diffusion. The resulting cDNA yield was
not correlated with the hold time (Spearman correlation —0.01).
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Experiments at physiological temperature

A subset of electrophysiological recordings was performed at 34 °C in the presence

of fast glutamatergic and GABAergic synaptic transmission blockers, 1 mM kynurenic

acid (Sigma-Aldrich) and 0.1 mM picrotoxin (Tocris), respectively. The temperature was
maintained stable, and constantly monitored using the temperature controller TCO7 (Luigs
and Neumann). In this set of experiments, the morphologies were not recovered and multiple
neurons were recorded in each slice. The soma depth and the slice thickness were measured
before each recording using Linlab2 software (Scientifica). Intrinsic electrophysiological
recordings were obtained using the same stimulation paradigm as described above.

In these experiments, we targeted L5 Sstand excitatory neurons (Extended Data Fig. 6).

We sequenced in total 185 neurons, obtained from 8 adult mice (7 SsCre/Ai9 and 1
Pvalb-CrelAi9), of which 177 neurons passed the transcriptomic quality control and got a
t-type assignment (see below). One hundred and ten cells mapped to the Sstsubclass, 43

to IT, 12 to ET, 10 to Pvalb, and 2 to NP. 175 cells were assigned to L5 in the post hoc
analysis (see below). We obtained high-quality electrophysiological recordings and extracted
electrophysiological features of 184 cells.

RNA sequencing of patched cells

At the end of the recording session, cell contents were aspirated into the glass pipette by
applying a gentle negative pressure (0.7-1.5 pounds per square inch) for 1-5 min until the
size of the cell body was visibly reduced. In most cases, the cell nucleus was visibly attached
to the pipette tip and extracted from the cell body. We avoided complete nucleus aspiration,
because it can lead to the collapse of the soma structure and of the nearby neurites, resulting
in lower staining quality and stronger background staining. During the aspiration process,
the cell body structure and access resistance were constantly monitored. Special care was
taken to ensure that the seal between the pipette and the cell membrane remained intact

to reduce contamination from the extracellular environment. After aspiration, the contents
of the pipette were immediately ejected into a 0.2-ml PCR tube containing 4 pl lysis

buffer (with ERCC spike-ins), and RNA was subsequently converted into cDNA using a
Smart-seq2-based protocol?! as described previouslyl7. The resulting cDNA libraries were
screened using an Agilent Bioanalyzer 2100. Samples containing less than around 1 ng total
cDNA (in the 15 pl final volume) or with an average size less than 1,500 bp were typically
not sequenced (with some occasional exceptions). The cDNA libraries were then frozen and
sent for sequencing in 12 separate batches.

The cDNA libraries derived from each neuron were purified and 0.2 ng of the purified
cDNA was tagmented using the lllumina Nextera XT Library Preparation with one-fifth
of the volumes stated in the manufacturer’s recommendation. Custom 8-bp index primers
were used at a final concentration of 0.1 M. The resulting cDNA library of each batch
was sequenced on an Illumina NextSeg500 instrument with a sequencing setup of 75-bp
single-end reads and 8-bp index reads. The investigators were blinded to the cell type of
each sample during library construction and sequencing.
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The sequencing data were processed using the zUMIs 2.5.6b pipeline with default settings*’.
Sequencing reads were aligned to the mm10 mouse reference genome using STAR version
2.5.4b%8 and transcript assignment performed with Gencode transcript annotations, version
M23. A substantial portion of the RNA extracted from the neurons was nascent and
contained intronic sequences. To accommaodate this, gene expression counts were separately
calculated using reads mapping to annotated intronic and exonic regions. We detected
42,466 genes, including pseudogenes and annotated non-coding segments, in at least one
cell. The resulting exonic and intronic read count data were used for all transcriptomic
analyses presented here. To quantify gene expression, we typically normalized exon and
intron counts by exonic and intronic gene lengths in kilobases and added normalized counts
together to obtain normalized exonic + intronic expression levels. See below for more
details. Throughout the manuscript, ‘detected gene’ refers to a gene with a non-zero exonic
or intronic count.

Biocytin staining and morphological reconstructions

Morphological recovery was carried out as previously described®17:28. In brief, after

the recordings, the slices were immersed in freshly prepared 2.5% glutaraldehyde, 4%
paraformaldehyde solution in 0.1 M PBS at 4 °C for at least 48 h. The slices were
subsequently processed with the avidin-biotin-peroxidase method to reveal the morphology
of the neurons. As previously described, we took several steps to improve the staining
quality of the fine axonal branches of interneurons®7. First, we used a high biocytin
concentration (0.5 g/100 ml). Second, we incubated with avidin-biotin complex and
detergents at a high concentration (Triton X-100, 5%) for at least 24 h before staining

with 3,3’-diaminobenzidine (DAB).

Recovered cells were manually reconstructed using a 100 x oil-immersion lens and a
camera lucida system (MicroBrightField). We aimed to reconstruct all cells that had
staining of sufficient quality (axons and dendrites for the inhibitory neurons; only dendrites
for the excitatory neurons), and obtained 646 reconstructions in total. In addition, we
reconstructed the dendrites of 30 neurons from the Vjpand Scng subclasses that lacked
sufficient axonal staining. Vip neurons are traditionally classified on the basis of dendritic
morphology, so these reconstructions can inform t-type characterizations. These additional
30 reconstructions are shown, together with the main 646 reconstructions, in Supplementary
File 1.

Forty-five sequenced cells were mistakenly recorded using a solution with a much smaller
concentration of biocytin, and their morphologies could not be recovered. We made sure that
the measured electrophysiological properties of these cells were not systematically different
from those of the the other sequenced cells.

Inevitably, neuronal structures can be severed as a result of the slicing procedure. We took
special care to exclude reconstructions of all neurons that showed any signs of damage, lack
of contrast, or poor overall staining. Consistently with previous studies, tissue shrinkage due
to the fixation and staining procedures was about 10-20%°2849, This shrinkage was not
compensated for in our analysis.
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Cortical thickness normalization and layer assignment

Nissl-stained slices (7= 15 from two wild-type adult mice) were used to measure
normalized layer boundaries in MOp. The Nissl staining protocol was adapted from ref.50.
In brief, brain slices were mounted on slides and allowed to dry. The sections were then
demyelinated, stained with 0.1% cresyl violet-acetate (C5042, Sigma) for 30 min at 60 °C
and further destained. The sections were then coverslipped in Cytoseal 60 (Richard Allan
Scientific). For each slice we measured total thickness from pia to white matter and the
depths of the three between-layer boundaries (L1 to L2/3, L2/3 to L5, L5 to L6), based on
the cortical cytoarchitecture, using a Neurolucida system with 10 x or 20 x magnification.
All measurements were normalized by the respective slice thickness, and the averages over
all n=15 slices were used as the normalized layer boundaries (Extended Data Fig. 2b).

For the Patch-seq neurons, we measured soma depth and the cortical thickness of the slice
using a Neurolucida system. We took their ratio as the normalized soma depth, and assigned
each neuron to a layer (L1, L2/3, L5, or L6) based on the Nissl-determined layer boundaries
(Extended Data Fig. 2b). We obtained soma depth information for 1,284 neurons out of
1,329 (45 neurons were mistakenly recorded using a solution with insufficient biocytin
concentration, and we could measure soma depths for only 2 of those; for 2 other neurons
the measurements could not be carried out because the slices were lost). For the 45 neurons
with missing soma depth measurements, we used the layer targeted during the recording

for all layer-based analyses and visualizations (marker shapes in Figs. 1c—e, 3a—c, layer-
restricted analysis in Fig. 4, Extended Data Fig. 8).

All reconstructed morphologies were normalized by the cortical thickness of the respective
slice to make it possible to display several morphologies next to each other, as in Extended
Data Fig. 3.

t-Type assignment

The t-type assignment procedure was done in two rounds. The first round was for

quality control and initial assignment to one of the three large transcriptomic groups (CGE-
derived interneurons, MGE-derived interneurons, and excitatory neurons) that are perfectly
separated from each other with no transcriptomically intermediate cells*. The second round
was done to assign the cells to specific t-types.

In the first round, we mapped each Patch-seq cell to a large annotated Smart-seq2 reference
data set from adult mouse cortex?, using a procedure similar to the one described in ref.28,
Specifically, using the exon count matrix of the reference data set, we selected the 3,000
most variable genes (see below). We then normalized all exon counts by exonic gene lengths
in kilobases, all intron counts by intronic gene lengths in kilobases (plus 1078, to avoid
division by zero) and added normalized counts together to obtain normalized exonic +
intronic expression levels. We log-transformed these values using log,(x + 1) transformation
and averaged the log-transformed values across all cells in each of the 133 t-types, to obtain
reference transcriptomic profiles of each t-type (133 x 3,000 matrix). Out of these 3,000
genes, 2,666 were present in the genome annotation that we used and were detected in our
data set. We applied the same normalization and log-transformation procedure to the exonic
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and intronic read counts of our cells, and for each cell computed Pearson correlation across
the 2,666 genes with each of the 133 t-types. Each cell was assigned to the t-type to which it
had the highest correlation (Extended Data Fig. 1d).

Cells meeting any of the following exclusion criteria were declared low quality and did not
get a t-type assignment (Extended Data Fig. 2e): cells with the highest correlation below

0.4 (78 cells); cells that would be assigned to non-neural t-types, presumably owing to

RNA contamination®! (14 cells; see also Extended Data Fig. 2j—n); cells with the highest
correlation less than 0.02 above the maximal correlation in one of the other two large
transcriptomic groups (5 cells). The remaining 1,232 cells passed quality control and entered
the second round.

In the second round, cells were independently mapped to the seven transcriptomic data
sets obtained from mouse MOp?2°. The mapping was done only to the t-types from the
transcriptomic group identified in the first round, using the 500 most variable genes in
that data set for that transcriptomic group (so using 7 x 3 = 21 sets of 500 most variable
genes). Gene selection was performed as described below, and t-type assignment was done
exactly as described above. Across the 21 reference subsets, 421-494 most variable genes
were present in our data set, and were used for the t-type assignment (Extended Data Fig.
1e). When mapping to the Smart-seq2 reference data sets, we used normalized intronic
and exonic reference counts, as above. When mapping to the UMI-based reference data
sets, we used the unique molecular identifier (UMI) counts directly, without gene length
normalization.

We used bootstrapping over genes to assess the confidence of each t-type assignment. For
each cell and for each of the seven reference data sets, we repeatedly selected a bootstrap
sample of genes (that is, the same number of genes, selected randomly with repetitions) and
repeated the mapping. This was done 100 times and the fraction of times the cell mapped to
each t-type was taken as the t-type assignment confidence for that t-type (Extended Data Fig.
1f). The confidences obtained with seven reference data sets agreed well with each other
(Extended Data Fig. 2i) and were averaged to obtain the consensus confidence. Finally, the
cell was assigned to the t-type with the highest consensus confidence.

Four cells were assigned to an excitatory t-type, despite having clearly inhibitory firing,
morphology, and/or soma depth location (such as L1). The most likely cause of this was
RNA contamination from excitatory cells, which are much more abundant than inhibitory
cells in the mouse cortex (Extended Data Fig. 2). These four cells were excluded from all
analyses and visualizations (as if they did not pass the transcriptomic quality control). In
addition, one cell was probably located outside MOp, based on the slice anatomy, and was
excluded as well. The final number of cells with t-type assignment was 1,227.

Selection of most variable genes

Several steps of our analysis required selecting a set of the most variable genes in a given
transcriptomic data set. We always selected a fixed predefined number of genes (such as
500, 1,000, or 3,000).
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To select the most variable genes, we found genes that had, at the same time, high non-zero
expression and a high probability of near-zero expression2. Our procedure is described in
more detail elsewhere23. Specifically, we excluded all genes that had counts of at least ¢iin
(for Patch-seq and Smart-seq2: ¢min = 32; for 10X: ¢nin = 0) in fewer than 10 cells. For
each remaining gene we computed the mean log, count across all counts that were larger
than c¢min (non-zero expression, 4) and the fraction of counts that were smaller than or equal
to cmin (probability of near-zero expression, z). Across genes, there was a clear inverse
relationship between g and z, that roughly followed the exponential law: == exp(-1.5 x u+
a) for some horizontal offset 4. Using a binary search, we found a value 5 of this offset that
yielded the desired number of genes with > exp(=1.5 x x+ 5) + 0.002.

For Smart-seq2 and Patch-seq data sets, we used only exonic counts to perform gene
selection.

t-SNE visualization of the transcriptomic data

t-SNE embeddings?? of the three subsets of the single-cell 10x v2 data set?° (Fig. 1c—

) were constructed using the same 500 most variable genes that were used for t-type
assignment (see above). The UMI counts were normalized by each cell’s sequencing depth
(sum of counts), multiplied by the median sequencing depth across all cells, logo(x +
1)-transformed, and reduced to 50 principal components. The resulting /7 x 50 matrix was
used as input to t-SNE. We used FIt-SNE 1.2.153 with default parameters (including learning
rate 77/12 and scaled principal component analysis (PCA) initialization?3). Perplexity was
left at the default value of 30 for both inhibitory subsets and increased to 100 for the
excitatory subset.

To position Patch-seq cells on a reference t-SNE embedding, we used a published
procedure?3. In brief, each cell was positioned at the median embedding location of its

ten nearest neighbours, based on Pearson correlation distance in the high-dimensional space.
As above, we used the sum of the normalized exonic and intronic counts for Patch-seq cells,
and raw UMI counts for the reference cells. All values were logy(x + 1)-transformed and
correlations were computed across the same genes that were used for t-type assignments (see
above).

Extraction of electrophysiological features

Twenty-nine electrophysiological properties of the neurons were automatically extracted
based on the raw membrane voltage traces (Extended Data Fig. 4) using Python scripts from
the Allen Software Development Kit (SDK) (https://github.com/AllenInstitute/ AllenSDK)
with some modifications to account for our experimental paradigm (https://github.com/
berenslab/EphysExtraction).

For each hyperpolarizing current injection, the resting membrane potential was computed as
the mean membrane voltage during 100 ms before stimulation onset and the input resistance
as the difference between the steady state voltage and the resting membrane potential,
divided by the injected current value (we took the average voltage of the last 100 ms before
stimulus offset as steady state). The median of these values over all hyperpolarizing traces
was taken as the final resting membrane potential and input resistance, respectively.
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To estimate the rheobase (the minimum current needed to elicit any spikes), we

used robust regression (random sample consensus algorithm, as implemented in
sklearn.linear_model. RANSACRegressor) of the spiking frequency onto the injected current
using the five lowest depolarizing currents with non-zero spike count (if there were fewer
than five, we used those available). The point at which the regression line crossed the x-axis
gave the rheobase estimate (Extended Data Fig. 4). We restricted it to be between the highest
injected current that elicited no spikes and the lowest injected current that elicited at least
one spike. If the regression line crossed the x-axis outside this interval, the first current step
that elicited at least one spike was used.

The action potential (AP) threshold, AP amplitude, AP width, afterhyperpolarization (AHP),
afterdepolarization (ADP), the first AP latency, and the upstroke-to-downstroke ratio (UDR)
were computed as illustrated in Extended Data Fig. 4, using the first AP fired by the neuron.
AP width was computed at the AP half-height. UDR refers to the ratio of the maximal
membrane voltage derivative during the AP upstroke to the maximal absolute value of the
membrane voltage derivative during the AP downstroke. We also computed the first AP
latency at 20 pA current above the smallest current stimulation value that elicited a spike.

The interspike interval (I1S1) adaptation index for each trace was defined as the ratio of the
second ISl to the first one. The ISI average adaptation index was defined as the mean of
ISI ratios corresponding to all consecutive pairs of ISls in that trace. For both quantities we
took the median over the five lowest depolarizing currents that elicited at least three spikes
(if fewer than five were available, we used all of them). AP amplitude adaptation index and
AP amplitude average adaptation index were defined analogously to the two ISI adaptation
indices, but using the ratios of consecutive AP amplitudes (and using the median over the
five lowest depolarizing currents that elicited at least two spikes).

The maximum number of APs refers to the number of APs emitted during the 600-ms
stimulation window of the highest firing trace. The spike frequency adaptation (SFA)
denotes the ratio of the number of APs in the second half of the stimulation window

to the number of APs in the first half of the stimulation window of the highest firing

trace. If the highest firing trace had fewer than five APs, SFA was not defined. Here and
below the highest firing trace corresponds to the first depolarizing current step that showed
the maximum number of APs during the current stimulation window (after excluding all
stimulation currents for which at least one AP was observed in 100 ms before or in 200 ms
after the stimulation window; see below).

The membrane time constant (z) was computed as the time constant of the exponential fit
to the membrane voltage from the stimulation onset to the first local minimum (we took the
median over all hyperpolarizing traces). Three further features described the sag of the first
(the lowest) hyperpolarization trace. The sag ratio was defined as the difference between
the sag trough voltage (average voltage in a 5-ms window around the sag trough) and the
resting membrane potential, divided by the steady state membrane voltage difference from
the resting membrane potential. The sag time was defined as the time period between the
first and the second moments at which the membrane voltage crossed the steady-state value
after the stimulation onset. The sag area refers to the absolute value of the integral of the
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membrane voltage minus the steady-state voltage during the sag time period (Extended Data
Fig. 4). If the sag trough voltage and the steady-state voltage differed by less than 4 mV, the
sag time and sag area were set to zero.

The rebound was defined as the voltage difference between the resting membrane potential
and the average voltage over 150 ms (or whatever time remained until 300 ms after

the stimulation offset) after rebound onset, which we identified as the time point after
stimulation offset at which the membrane voltage reached the value of the resting membrane
potential. If the membrane voltage never reached the resting membrane potential during the
300 ms after the stimulation offset, the rebound was set to zero. The rebound number of APs
was defined as the number of APs emitted during the same period of time. Both rebound
features were computed using the lowest hyperpolarization trace.

The 1SI coefficient of variation (CV) refers to the standard deviation divided by the mean

of all ISIs in the highest firing trace. Note that a Poisson firing neuron would have 1SI CV
equal to one. The ISI Fano factor refers to the variance divided by the mean of all ISls in the
highest firing rate. The AP CV and AP Fano factor refer to the CV and the Fano factor of the
AP amplitudes in the highest firing trace, respectively.

The burstiness was defined as the difference between the inverse of the smallest ISI within

a detected burst and the inverse of the smallest I1SI outside bursts, divided by their sum. We
took the median over the first five depolarizing traces. We relied on the Allen SDK code to
detect the bursts. In brief, within that code a burst onset was identified whenever a ‘detour’
IS1 was followed by a “direct’ ISI. Detour ISls are ISIs with a non-zero ADP or a drop of at
least 0.5 mV of the membrane voltage after the first AP terminates and before the next one is
elicited. Direct ISls are 1SIs with no ADP and no such drop of membrane voltage before the
second AP. A burst offset was identified whenever a direct ISI was followed by a detour ISI.
Additionally, bursts were required to contain no ‘pauselike’ ISls, defined as unusually long
ISIs for that trace (see Allen SDK for the implementation details).

Some neurons (in particular neurogliaform cells) started to emit APs before and after the
current stimulation window, after the stimulation currents exceeded a certain amount. To
quantify this effect, we defined wildness as the difference in the number of APs between the
highest firing trace (possibly showing APs before or after the stimulation window) and the
highest firing trace as defined above (without any APs outside the stimulation window). For
most neurons, wildness was equal to zero.

For all statistical analysis we used 17 features out of the extracted 29, excluding features that
were equal to zero for many cells (afterdepolarization, burstiness, rebound number of APs,
sag area, sag time, wildness), two Fano factor features that were highly correlated with the
corresponding coefficient of variation features (AP Fano factor, 1SI Fano factor) and another
measure of latency that was highly correlated with the latency itself, features that had very
skewed distributions (AP amplitude average adaptation index, ISI average adaptation index),
and features that were undefined for some of the cells (spike frequency adaptation). Four
features were log-transformed to make their distribution more Gaussian-like: AP coefficient
of variation, ISl coefficient of variation, ISI adaptation index, and latency.
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Extraction of morphological features

Reconstructed morphologies were converted into the SWC format using
NLMorphologyConverter 0.9.0 (http://neuronland.org) and further analysed using
MorphoPy (https://github.com/berenslab/MorphoPy, version 0.6)%4. Each cell was soma-
centred in the x (slice width) and y (slice depth) dimensions, and aligned to pia in the z
(cortical depth) dimension so that z= 0 corresponded to pia. All neurites were smoothed in
the slice depth dimension ()) using a Savitzky—Golay filter of order 3 and window length 21,
after resampling points to have maximally 1 pm spacing. For further analysis we computed
two different feature representations of each cell: the normalized zprofile and a set of
morphometric statistics2428:55,

To compute the normalized z-profile, we divided all the coordinates of the neuronal point
cloud by the thickness of the respective cortical slice, so that z= 1 corresponded to the white
matter border. We projected this point cloud onto the z-axis and binned it into 20 equal-sized
bins spanning [0, 1]. The resulting histogram describes a neuron’s normalized depth profile
perpendicular to the pia. For the purposes of downstream analysis, we treated this as a set of
20 features. The zprofiles were separately computed for axons and dendrites.

Morphometric statistics were separately computed for the dendritic and axonal neurites

to quantify their arborization shape and branching patterns. For the excitatory neurons,
several additional morphometric statistics were computed for the apical dendrites, where
apical dendrite was operationally defined as the dendrite with the longest total path length.
We further used two ‘somatic’ features: normalized soma depth and soma radius. We did
not use any features measuring morphological properties in the slice depth (3) direction
because of possible slice shrinkage artefacts. We did not use any axonal features for the
excitatory cells because only a small part of the axon could typically be reconstructed. For
the inhibitory cells, where dendrite and axon could both be fully recovered, we included
some measures of dendritic and axonal overlap. The full list of morphometric statistics is
given in Supplementary File 3.

We extracted a set of 75 features, of which 40 were defined for excitatory neurons and 62 for
inhibitory neurons, and processed the data for excitatory and inhibitory neurons separately.
In each case, we excluded features with coefficient of variation below 0.25 (among the
features with only positive values). This procedure excluded five features for the excitatory
and nine features for the inhibitory cells. The distributions of the remaining features were
visually checked for outliers and for meaningful variation between transcriptomic types,
leading to a further exclusion of three features for the inhibitory cells. The full list of
excluded features is given in Supplementary File 3. The resulting set of morphometric
statistics used for further analysis consisted of 35 features defined for the excitatory neurons
and 50 features defined for the inhibitory neurons.

Reduced-rank regression

For the RRR analysis32 we used 17 electrophyiological features and all 1,219 cells for which
values for all 17 features and a t-type assignment could be computed. Electrophysiological
features were standardized. Exon counts and intron counts were normalized by the exon/
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intron gene lengths as described above, summed together, converted to CPM, log,(x +
1)-transformed, and then standardized. We selected the 1,000 most variable genes (using raw
exonic counts) and used only those for the RRR analysis.

In brief, RRR finds a linear mapping of gene expression levels to a low-dimensional

latent representation, from which the electrophysiological features are then predicted with
another linear transformation (for mathematical details, see ref. 32). The model uses sparsity
constraints in the form of elastic net penalty to select only a small number of genes. For Fig.
2 we used a model with rank =5, zero ridge penalty (a = 1), and lasso penalty tuned to
yield a selection of 25 genes (A = 0.5). Cross-validation (Extended Data Fig. 5) was done
using 10 folds, elastic net a-values 0.5, 0.75, and 1.0, and A-values from 0.2 to 6.0.

The plots shown in Fig. 2a, b are called bibiplots because they combine two biplots: the left
biplot shows a mapping of gene expression levels onto the two latent dimensions; the right
biplot shows the same mapping of electrophysiological features. To illustrate the meaning

of the latent dimensions, each biplot combines the resulting scatter plots with lines showing
how original features are related to the latent dimensions. Specifically, we computed the
correlations of individual genes or electrophysiological properties with the latent dimensions
and visualized these correlations as lines on the biplot. The circle shows the maximal
possible correlation; only lines longer than 0.4 times the circle radius are shown in Fig.

2. Label positions were automatically adjusted by simulating repulsive forces between all
overlapping pairs of labels, until there was no overlap.

For the model based on ion channel genes, we obtained the list of 328 ion channel genes
from https://www.genenames.org/data/genegroup/#!/group/177 and used all 307 of them that
had non-zero expression in at least 10 of our cells. We used rank r=5, a =1, and A tuned to
yield 25 genes (A = 0.303), as above.

t-SNE visualization of the morpho-electric phenotypes

For the t-SNE visualization?? of the electrophysiological phenotypes, we used 17 features

as described above and all 7= 1,320 cells that had values for all 17 features. All features
were standardized across this set of cells and transformed with PCA into a set of 17 PCs. We
scaled the PCs by the standard deviation of PC1. We used the t-SNE implementation from
scikit-learn Python library with the default perplexity (30), early exaggeration 4 (the default
value 12 can be too large for small data sets), and scaled PCA initialization?3. Fig. 3a shows
n=1,219 cells that had a t-type assignment.

For the t-SNE visualization of the morphological phenotypes, we combined morphometric
statistics with the normalized zprofiles. The pre-processing, including PCA, was done
separately for the excitatory and inhibitory neurons because they used different sets of
morphometric statistics (see above). Only neurons with assigned t-types were used for this
analysis. Two inhibitory neurons were left out because some of the morphometric statistics
could not be extracted owing to insufficient dendritic recovery; this left 367 inhibitory
neurons (with 50 morphometric features) and 269 excitatory neurons (with 35 morphometric
features). All features were standardized and each set was reduced to 20 PCs. We scaled
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the PCs by the standard deviation of the respective PC1, to make the inhibitory and the
excitatory PCs have comparable variances.

We used dendritic zprofiles for the excitatory neurons and axonal zprofiles for the
inhibitory neurons. We reduced each set to five PCs, discarded PC1 (it was strongly
correlated with the normalized soma depth and made the resulting embedding strongly
influenced by the soma depth), and scaled the PCs by the standard deviation of the
respective PC2. We stacked the 20 scaled morphometric PCs and the 4 scaled zprofile
PCs to get a combined 24-dimensional representation, separately for the excitatory and for
the inhibitory neurons. We then combined these representations into one block-diagonal
48-dimensional matrix. This procedure makes the excitatory and the inhibitory populations
both have zero mean. To prevent overlap between these two populations, we added a
small constant value of 0.25 to the excitatory block-diagonal block, leading to the strong
excitatory—inhibitory separation in Fig. 3b. The t-SNE was performed exactly as described
above.

For the t-SNE visualization of the morpho-electrical landscape, we stacked together the
48-dimensional morphological representation and the 16-dimensional electrophysiological
representation obtained above, using only cells that had all morphological and all
electrophysiologcal features (/7= 628). We multiplied the electrophysiological block by v2 to
put its total variance on a similar scale (it only consisted of one set of scaled PCs, whereas
the morphological representation consisted of two sets of scaled PCs: morphometrics and
z-profiles). The resulting 64-dimensional morpho-electrical representation was used for
t-SNE, exactly as described above.

kNN classification of transcriptomic families

To classify neurons into transcriptomic families on the basis of electrophysiological,
morphological, or combined features (Figs. 3d, 5a, Extended Data Fig. 8a), we used a KNN
classifier with k=10 and Euclidean distance metric (taking the majority family among the &
nearest neighbours). This is effectively a leave-one-out cross-validation procedure. For each
data modality we took the exact same data representation that was used for computing t-SNE
embeddings (Fig. 3a—c; see above). Note that the t-SNE algorithm is also based on nearest
neighbours and makes all close neighbours attract each other in the embedding. We chose
the KNN classifier as a simple but versatile non-parametric classifier that is directly related
to the t-SNE embeddings. We did not use the Sncg and NP families owing to insufficient
coverage in our data set (Fig. 1).

Fig. 3d shows the fraction of cells from each family that was classified into each family. Fig.
5a and Extended Data Fig. 8a show fractions of cells from each t-type that were classified
into each family. For morphological and combined features, Extended Data Fig. 8a shows
fractions of cells from the majority layer of each t-type. For example, the Pvalb Relntype
occurred most often in L5, so only cells from that layer were taken for that type. Only
t-types with at least ten cells (or at least ten layer-restricted cells) are shown.
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Within-family analysis

To study the relationship between transcriptomic and electrophyiological distances between
pairs of t-types (Fig. 4c, d, Extended Data Figs. 6, 7), we took all t-types with five or

more cells assigned to them (for Extended Data Fig. 7a: with ten or more). For each pair

of t-types, transcriptomic distance was computed as the Pearson correlation between the
average logo(x + 1)-transformed UMI counts in the single-cell 10x v2 dataZC. The 1,000
most variable genes across all neural types were used for Fig. 4c and Extended Data Fig. 7a,
b, and the 500 most variable genes across the respective transcriptomic group (see above)
were used for Fig. 4d and Extended Data Figs. 6i, j and 7c—n. Electrophysiological distance
was computed as the Euclidean distance between the average feature vectors. Fig. 4d used
the soma depth distance, computed as the absolute value of the difference between the
average normalized soma depths.

T-type variability analysis

The normalized total variance in Fig. 5b and Extended Data Fig. 8b was computed as
follows. For each modality, we took the exact same data representation that was used for
computing t-SNE embeddings (Fig. 3a—c; see above). For each t-type (or layer-restricted
t-type; see above), we took the sum of its variances in all dimensions as the total variance
and divided by the sum of variances in all dimensions across the whole data set:

1 1 2
ijZi € T(Xij - mZi € TXij)

Zj%Zi(Xij—%ZiXijf

where Xj;is a value of feature jof cell / nis the total number of cells, and T'is the set

of cell numbers belonging to the given t-type. The value 0 indicates that all cells from this
t-type have exactly identical features. The value 1 indicates that there is as much variance in
this one t-type as in the whole data set. Only t-types with at least ten cells (or at least ten
layer-restricted cells) are shown in Fig. 5b and Extended Data Fig. 8b.

To provide a sensible baseline for the range of possible normalized total variances in a
population of morpho-electrically homogeneous types, we used a clustering analysis. For the
cells of all the K't-types (or layer-restricted t-types) with at least ten cells in a given panel,
we used the A~means algorithm to cluster them into K clusters, reasoning that these clusters
should be as homogeneous as possible given the variability in our data set. We used the
k-means implementation from scikit-learn with default parameters. We then computed the
normalized total variance of each cluster as described above. Grey shading in Fig. 5b and
Extended Data Fig. 8b shows the interval between the minimum and the maximum cluster
variances. Note that the A-means algorithm directly minimizes within-cluster total variances.

We used the entropies of a Leiden clustering3® as an alternative way to approach the
same question. For each modality, using the exact same data representation as above,
we constructed its KNN graph with &= 10 and clustered it using the Leiden algorithm
as implemented in the Python package leidenalg with RB Configuration Vertex Partition
quality function and resolution parameter manually tuned to produce roughly the same
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number of clusters for each modality as in ref.24, (Extended Data Fig. 8). For each

t-type (or layer-restricted t-type), we then measured the entropy of the distribution of
electrophysiological or morphological cluster IDs, after randomly subsampling the t-type
to ten cells. Subsampling was done to eliminate a possible bias due to the t-type abundance.
The whole procedure was repeated 100 times with different random seeds for the Leiden
clustering and for the subsampling.

Reporting summary

Further information on research design is available in the Nature Research Reporting
Summary linked to this paper.

Data availability

All preprocessed data (gene counts, electrophysiological and morphological features) and
meta data are available at https://github.com/berenslab/mini-atlas, together with direct links
to the raw data. Electrophysiological recordings are available at https://dandiarchive.org/
dandiset/000008 (main data set) and https://dandiarchive.org/dandiset/000035 (physiological
temperature) in NWB format. Sequencing data are available at http://data.nemoarchive.org/
biccn/grant/zeng/tolias in FASTQ format. Morphological reconstructions are available at
https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/ in SWC format.

Code availability

The analysis code in Python is available at https://github.com/berenslab/mini-atlas.

Nature. Author manuscript; available in PMC 2021 October 08.


https://github.com/berenslab/mini-atlas
https://dandiarchive.org/dandiset/000008
https://dandiarchive.org/dandiset/000008
https://dandiarchive.org/dandiset/000035
http://data.nemoarchive.org/biccn/grant/zeng/tolias
http://data.nemoarchive.org/biccn/grant/zeng/tolias
https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/
https://github.com/berenslab/mini-atlas

Page 23

Scalaetal.

Extended Data

©
S _2a
g 0 B8 8
8 5
S8 € 562
] s 25 %
@ 53
oS 3 o0&
£® £2 ¢
a3 < S5 <
O v = o Qo
= 4 Scks
5 5
I3 29
8 8 &
I 13

—_—
_
—_—

Current stimulation
Smart-seq2

-
~

Biocytin staining

x4

P
ca

| 1dway a9l
~ | Tioy qo7
Z_9eslls a9
T 9esiys q97
18910 491
21091

T 1591

¥ 4| Z4ENOd 13 91
- [ di91591

- ¥ | 9edd 1591

*| 6€T1dD 1D 91

| = ~4.| zideat qead
% et | udy glend
£ . Z_1qie] qiend

7281 155
Z_€Ib1D 35S

T €Ib1D 35S
edded 3ss

. *+| zaied qiend 1ss
2qed 155

95dH 355

- | Zzuwdiss

T 24U 35S
M3 geAd 35S
M3 1SS
TR
€_8UAIW 155
Z8UAI 35S

T 8UAI 35S
juad 155

1POY) 155

* | 1zAdN Bous
*| z_1aied bous
. b T 1q|ed bous

€PGEDIS Gdweq

z_swiipd sdweq
T_swiipd sdweq
€_€ulb3 gdwe

2| gCguib3 gdwe

5

T _€ulb3 gdwe
oxed gdue]

PV-Cre

SST-Cre

VIP-Cre
VIAAT-Cre

VIPR2-Cre
NPY-Cre
SLC17A8-Cre
SLC17A8-iCre
GNB4-Cre
WT / Cre-

(=)
—
T

— Tasic et al. 2018

Lo @b 9000000000000000

0009 @

b
m
[ ]
© O %
S o o

uone|aliod

N
S o

TN WAd
zend opu3
8lud) Liad
Tdds OWIA
T450 DWIA
dias obllo
e1bpd 2dOo
dby onsy
wepy zsio
2 dsin a9l
10 W1V a91
2dsin a9l
2 dsin a9l
dSIA 1D 91
dsiA 1D 91
W1V 1D 91
WV dN 91
W1V dN 61
WV 1d §1
W1V 1d §1
dSIA 1d §1
dSIA 1d §1
dSIA L1 91
dSIA L1 91
dsIA 1191
WV 1191
WV 11 61
WV 11 §1
WV 11 61
WV 11 61
dSIA L1 §1
dsIA L1 61
dSIA LI §1
v L€/
W Ll €21
INLL €/
Jdip qrend
iy qrend
T4d9 qrend
qed ajend
SuLaleAd
SIN3SS
Tdixy 1S
Tws31ss
[2TeRES
S @sdH 1sS
zeuiyd 3ss
4 8UAIW 155
UTINISS
za1ed 155
H T28L 155
1POUD 155
1dst1D dip

D WbAd din
Todsy din
podsy din
W Tow dig
S £2d9 dip
pdaybl din
9dayb| din
BRAICIES
064d9 bous
LT21S Bous
1ds7 gdweq
TUIN gdwe
Twe4 gdwe

nuclei_AIBS

—e— 10X_nuclei_v3_AIBS
cells_AIBS

—e— 10X_cells_v3_AIBS

—e— 10X_nuclei_v2_AIBS

—e— SmartSeq
—o— SmartSeq

o
©
o
=

o

oM
>

3
o
>
c

x

o

—

—e— 10X_cells_v2_AIBS

.6

=
o

uone|aiiod

1.0
0.8
0.

0.2
0.0

e

Tdiuy q97
110y 491
Z_9esIys 491
T 9eslys 491
12910 491
2N 1091
TN 1091
Z4EN0d 1 91
di9 1591
9ed) 15 91

© !
B
]
0
.

N N N 00 S N 2 N <
e

E
Qa
S
]

e
(N1
So
>
AL
T

2
&

iy
o
2,
o
T
>
&

zideat]| qrend
:_lwx qlend
Z_1a12D qleAd
T 14120 qlend
PAue)y qlend
6¢14dD glend
TWayb3 qlend
161989 glend

8L Iss
2_€Ib1D 35S

T €Ib1D 35S
edded 3§
zdied qlend 1ss
Zgied 1ss
3sdH 35S
Z_2uID 35S

T Z4uiD 35S
M3 qlend Iss
TM33sS
BT IS
€_8UAW 35S
2_8UAW 155

T 8UAW 35S
Juad 3sS

Z_Tuidias dip
1 Tjuidias din
pous dip

1zZAdN bous
Z_141eD Bous

1 1q[eD bous
8e/TIS 6ouS
TepTI0) Hous
9xy1 sdweq
€PSEDIS Sdwey
Z_sunipd gdwey
T_Suwiipd sdwey
€_guib3 gdweq
Z_€ulb3 Gdwey
T €ulb3 gdwen
oxed gdweq

o {
o S "
. S S] N
(2] —_
e 2&5%0
rgo_.O/
aa?_L_I
E E © =
tS.m.mn,.
Ssos 32 4
m.m.nm.kwe
] c
S5 0o g £ =
o
Sn.SSﬁ_r.v
85 ¢ 220
22 5 PW o
25 2893¢
wum.ln’r
& = o &
2 L ™ 35 5
aAIde
. Z2 2 o < e
SDnynTO
15} g Do
E g8 £ “—
=8 awc @ g
e 2 c+xv d O
r.leaL.I
Oo & 8~ E
9o @ g § c
ucror.l
]
o Q2 s 5 0O
< o 2 o O
S L R €35
5L 45 .+ 2
Q D . < W 3§
mm"m_bc
W.meLh
v 2 =
=
T8 EEE o
o8 §.2 o
Wnswrt
o © ie]
S8 E£EZS
P%nﬂﬁg
— 3 = - '»
o %)
J.mm..nma
o222 c'a 2 g
Fm.mUFm
aOte.y
S O v O c =
Soc £ 378 s
O oS -
-9 22 8 0
o ehCO.m.
g TC 8 & ¢
g g8 2 2528
% £0 5 3 & 3
X;nh [<5]
° o 9
- o o

4= 92USpRUOD

Nature. Author manuscript; available in PMC 2021 October 08.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Scalaetal.

Page 24

stands for cells from any Cre line that were not labelled with a fluorescent indicator, or for
the cells patched in wild type mice. 1,227 cells shown. d, t-Type assignment procedure for
one example cell (d—f). Correlations to the mean log expression of all t-types from ref. 4,
using 3,000 most variable genes. Maximum correlation is to the excitatory neurons. t-Type
names are shortened, and every second one is omitted for compactness. e, Correlations to
all excitatory t-types from ref. 20 using all seven reference data sets and 500 most variable
genes. f, t-Type assignment confidences for all seven data sets, obtained via bootstrapping
over genes. The average confidence is shown in black. The mode of the average confidence
was taken as the final t-type.
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Extended Data Fig. 2 |. Quality control.
a, Age distribution of the mice used in the experiments. Median: 75 days. b, Soma depths

of all cells and cortical thickness of the corresponding slices. Dashed lines show layer
boundaries, based on the Nissl-stained slices (measured layer boundaries shown as blue
points). All soma depths were normalized by dividing them by the cortical thickness. c,
Relationship between the number of exonic and intronic counts. The apparent bimodality
could be explained by whether the nucleus was extracted or not during Patch-seq aspiration.
Whenever the nucleus was not extracted, low amount of nonspliced RNA led to low

Clgb, log2(x+1) counts
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intronic counts; otherwise, the number of intronic and exonic counts was almost the

same. Red: cells eventually failing quality control. d, Relationship between sequencing
depth (total number of reads) and the number of detected genes (humber of genes with
non-zero counts). e, Relationship between the number of detected genes and the maximal
correlation to clusters from ref. 4. Cells with maximal correlation below 0.4 were declared
low quality. f, Relationship between the maximal correlation across neural clusters and

the maximal correlation across non-neural clusters from ref. 4. Cells with maximal neural
correlation below 0.4 were declared low quality. See Methods for additional QC criteria.

g, Maximal correlations using single-cell and single-nucleus Smart-seq2 reference data
sets?0. h, Maximal correlations using Smart-seq2 reference data sets (maximum across cell
types and across two data sets) and using 10x reference data sets (maximum across cell
types and across five data sets). i, t-Type assignment using single-cell Smart-seq?2 reference
data set and using single-cell 10x v2 reference data set. All points are on the integer

grid; marker size shows the number of cells at the corresponding location. Dashed lines
separate CGE-derived interneurons, MGE-derived interneurons, and excitatory neurons. The
mapping was done within each order, so there cannot be any cells outside of the diagonal
blocks. j, Expression of several prominent markers of non-neural cells, in comparison to the
Smart-seq?2 data set from ref. 4. The values are log,(x + 1)-transformed sums of exonic and

intronic counts, shown with random U(—%, %) jitter. Percentage values refer to the fraction

of cells with non-zero counts. PVM stands for perivascular macrophages. We selected these
markers because they have very low expression in neural cells. A neuronal marker Snap25
is shown for comparison. Cells from the reference data set are shown with the alpha-level
set to the ratio of our data set size to that data set size (0.06), to make the dot plots more
comparable. k, I, Neural and glial expression in our data set (k) and in the FACS-sorted data
set4 (1) (plotted using the colours from the original publication, without transparency). m, n,
The same using the excitatory marker S/c17a7and the inhibitory marker Gaad’.
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Extended Data Fig. 3 |. Diversity of mouse cortical neurons.
Two representative examples per t-type, or one if only one reconstruction was available. In

total 135 neurons in 73 t-types. For interneurons, dendrites are shown in darker colours. For
excitatory neurons, only dendrites are shown. Black dots mark soma locations. Horizontal
grey lines show approximate layer boundaries. Three voltage traces are shown for each
neuron: the hyperpolarization trace obtained with the smallest current stimulation, the first
depolarization trace eliciting at least one action potential, and the depolarization trace
showing maximal firing rate. Stimulation length: 600 ms. The length of the shown voltage
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traces: 900 ms. Electrophysiological recording for one neuron did not pass quality control
and is not shown.
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Extended Data Fig. 4 |. Extraction and distribution of electrophysiological features.
Panels a—f show data from the same exemplary cell. a, Membrane potential responses to

the consecutive step current injections. Hyperpolarizing currents were used to compute the
input resistance (274.80 MOhm) and membrane time constant tau (21.95 ms). b, The first
five traces showing spikes were used to compute 1SI adaptation index (1.26), I1SI average
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adaptation index (1.15), AP amplitude adaptation index (0.91) and AP amplitude average
adaptation index (0.99). ¢, The first AP elicited in this neuron. It was used to compute AP
threshold (—40.18 mV), AP amplitude (81.17 mV), AP width (0.80 ms), AHP (-12.60 mV),
ADP (0 mV), UDR (1.62) and latency of the first spike (69.28 ms). d, Regression line gives
the rheobase estimate (20.44 pA). e, The highest firing trace with 32 APs. This trace was
used to estimate the ISI CV (0.27), ISI Fano factor (0.0014 ms), AP CV (0.17) and AP
Fano factor (1.32 mV). f, The lowest hyperpolarization trace was used to compute the sag
ratio (1.17), sag time (0.26 ms), sag area (31.16 mV-ms) and rebound (17.84 mV). g, Eight
important electrophysiological features are shown for all cells across all t-types. For t-types
with at least three cells, horizontal lines show median values. See Supplementary File 2 for
all electrophysiological features.
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Extended Data Fig. 5 |. Additional reduced-rank regression analysis and cross-validation.
a, Cross-validated /2 of ‘naive’ and ‘relaxed’ sparse RRR solutions32 for various elastic net

penalties (a and ). ‘Relaxed’ means that the model was re-fit without a lasso penalty using
only the selected genes; ‘naive’ means that it was not re-fit. Vertical dashed lines at 25 genes
corresponds to the choice made for Fig. 2. The best performance is around ~100 genes, but
we chose 25 for the sake of interpretability. The subsequent panels only show results for

the ‘relaxed’ models. b, Cross-validated /2 using a = 1 for different ranks from rank 1 to
rank 16 (full rank). ¢, Cross-validated /2 using a = 1 and A needed to obtain 25 genes for
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different ranks. The peak performance is achieved with rank ~13 (inset), but rank-5 model
used in the main text is almost as good. d, Cross-validated correlations between sequential
projections of the transcriptomic and electrophysiological data sets (rank-5 models with

a = 1). For any given number of selected genes, correlations decrease monotonically for
higher components. e, f, Reduced-rank regression model using only ion channel genes. A
full analogue of Fig. 2 but using only 328 ion channel genes (see Methods), of which

307 were detected in our data set in at least 10 cells. g—j, Reduced-rank regression model
predicting morphological features. An analogue of Fig. 2 but using morphological, instead
of electrophysiological features. The analysis was done separately for the excitatory (g-h)
and for the inhibitory (i—j) neurons because different sets of morphological features were
computed for these sets of neurons. Excitatory neurons: 269 cells, 35 features. Rank-5
model, A = 0.59, adjusted to yield 25 genes. Only a subset of morphological features are
labelled to reduce the clutter (abbreviations: “W” — width, “H” — height). Inhibitory
neurons: 367 cells, 50 features, A = 0.49.
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Extended Data Fig. 6 |. Electrophysiological properties of IT, ET, and Sst neurons in Layer 5 at

physiological temperatu

re.

a—e, Each panel shows a comparison between L5 neurons from the IT and the ET subclasses
(pooled across all t-types within each subclass). The main set of experiments was done at
room temperature (25 °C). Follow-up experiments were done at physiological temperature
(34 °C), in the presence of 1 mM kynurenic acid and 0.1 mM picrotoxin in order to

block fast glutamatergic and GABAergic synaptic transmission. Horizontal lines show
median values. The first four panels correspond to features showing the largest IT/ET
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differences at room temperature, according to the two-sided Wilcoxon-Mann-Whitney

test statistic (and omitting several features that are very correlated with the shown ones:
upstroke-to-downstroke ratio, sag time, and sag area). The last panel additionally shows

one feature that showed prominent difference at 34 °C. f, g, IT and ET neurons recorded

at 34 °C in two-dimensional representations using the features with highest separability.

h, The change of electrophysiological properties between room temperature (25 °C) and
physiological temperature (34 °C) for various t-types from the Sstsubclass. Only L5 neurons
are shown. Only t-types with =5 cells in both conditions are shown. Horizontal lines denote
median values. AP amplitude and AP width changed the most between conditions, but

the relative differences between t-types stayed roughly the same. The other four shown
features did not change much, and the relative differences between t-types stayed the

same. i, Overlay of the L5 Sstcells over the reference t-SNE embedding, coloured by
rebound, as in Fig. 4b. The inset shows the correlation between transcriptomic distances and
electrophysiological differences between all pairs of Sstt-types (only for t-types with at least
5 cells, and excluding Sst Chodl), together with its p-value. j, The same analysis as in (c) but
using the experiments performed at physiological temperature. No corrections for multiple
comparisons were applied.
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Extended Data Fig. 7 |. Transcriptomic and electrophysiological distances within individual

families.

a, b, Pooled within-family analysis. The same analysis as in Fig. 4c but showing within-
family as well as between-family pairs of t-types. Using a cutoff of at least 10 neurons

per t-type (a) and a cutoff of at least 5 neurons per t-type (b). c—n, Transcriptomic and
electrophysiological distances within individual families. Only t-types with = 5 neurons are
used for this analysis (used t-types are listed in the second column). Transcriptomically well-
isolated Sst Chodland Pvalb Vipr2_2were excluded. Three electrophysiological features
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with the highest correlation to the transcriptomic distance are shown on the right, for each

family.
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Extended Data Fig. 8 |. Phenotypic variability of individual t-types.

The extended version of Fig. 5. a, Confusion matrices for classifying cells from each t-type
into seven transcriptomic families, using electrophysiological, morphological, and combined

features. Only t-types with at least 10 cells are shown. For morphological and combined

features we only took cells from one cortical layer. Values in each column sum to 1. Arrows
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mark t-types that are classified into wrong families more often than 25% of the time. We
used KNN-based classifier with A= 10. b, Normalized total variance of features in each
t-type. Higher values correspond to t-types with more variable phenotypes. Horizontal grey
band shows the min/max normalized variances of A-means clusters. ¢, Three exemplary
traces of cells from the Vip Mybpcl 2type (all with confidence = 95%) and t-SNE overlay
coloured by the rebound. Inset: the same t-SNE embedding as in Fig. 1. Main plot: zoom-in.
d, Three exemplary traces of cells from the Sst Pvalb CalbZ2 (confidence = 95%) and t-SNE
overlay coloured by the maximum firing rate. e, Exemplary morphologies of L5 cells from
the Pvalb Relntype and t-SNE overlay coloured by the axonal width/height log-ratio as in
Fig. 4e. f, Exemplary morphologies of Pvalb Vipr2_ 2 chandelier neurons and t-SNE overlay
coloured by the axonal width/height log-ratio as in Fig. 4e. g—i, We used Leiden clustering3®
to cluster the cells based on electrophysiological, morphological, and combined features.
The clustering resolution was adjusted to roughly match the number of e-types, m-types,
and em-types from ref. 24. The cluster colours in these panels are arbitrary and not the same
as the colours used for t-types. j—I, For each t-type with at least 10 cells, we measured the
entropy of the cluster assignments. Entropy zero corresponds to all cells getting into one
cluster. Higher entropies mean that cells get distributed across many clusters. We repeated
the clustering 100 times with different random seeds, and for each of them, subsampled
each t-type to 10 cells to measure the entropy. Points show 100 repetitions, big markers
show medians. When using morphological and combined features, all t-types were layer-
restricted, as above. The t-type colours do not correspond to the colours in panels (j—i).
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Extended Data Fig. 9 |. Interneurons assigned to the Tasic et al.4 t-types.
This is an exact analogue of Fig. 1b and Extended Data Fig. 3 using inhibitory t-types from

ref. 4. It allows the direct comparison with the results from ref. 45, We used the same neurons
as in Extended Data Fig. 3 whenever possible. 99 neurons in 55 t-types.
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Extended Data Table 1 |

Description of the inhibitory t-types

All marker genes are given based on Ref. [20].

Lamp5 subclass

Lampb Pax6
Lampb Egin3_1

Lampb Egin3 2
Lamp5 Egin3_3
Lamp5 Pdlim5_1

Lamp5 Pdlim5_2

Lamp5 Slc35d3

Lampb Lhx6

Sncg subclass

L1

Alpha? cells in L1 [56]: Nanf~ Chrna7*. Compared to £g/n3_2, larger hyperpolarization sag,
stronger bursts, and rebound firing.

Canopy cells in L1 [56]: Nanf* Npy ™.
L1

Ndnf* Npy*. Late-spiking neurogliaform cells (NGCs) in L1 with wide asymmetric action
potentials (APs) and deep afterhyperpolarization (AHP).

Ndnf . NGCs in L2/3, L5, and L6, showing layer-adapting axonal morphology.

Deep L5/L6 neurogliaform-llke cells with NGC morphology and deep AHP but narrow APs.
Putatively MGE-derived [4], suggesting that although all deep NGCs belong to the Lamp5
subclass, some are CGE- and some are MGE-derlved (as Is the case In hippocampus [25, 26,
27)).

SncgColi4al

Sncg Slc17a8
Sncg Calb1_1
Sncg Calb1_2
Sncg Npy2r

Vip subclass

The Sncg subclass (mostly Vip~and strongly Cck®) proved difficult to sample due to the lack of
specialized Cre lines. We found them in all layers from L1 to L6 (preferentially in the upper L2/3)
with diverse morphologies: they mostly showed irregular firing, sometimes with a strong rebound.
Several cells in the upper L2/3 had large axonal morphologies, likely corresponding to the ‘large
Cckbasket cells’ [2],

Vip Sncg

Vip Serpinfl_1
Vip Serpinfl_2

Vip Serpinfl_3
Vip Htrlf

Vip Gpc3

Vip C1ql1

Vip Mybpcl 1
Vip Chat 1

Vip Mybpcl 2
Vip Mybpcl_3
Vip Chat 2
Vip igfbp6_ 1
Vip lgfbp6_2
Sst subclass

Abundant in L2/3 [57], strong Cck* expression, local dendritic and axonal morphologies = “‘small
Cck basket cells’ [2], High input resistance [2],

Cck*, deep L5 and L6, large axonal arborization.

}

L2/3, upper L5

} L5, mostly local morphology [57], some cells with deep-projecting axons [5][57]. In Vip
Mybpcl_1 (Calb2*)and Vip Chat_1(CalbZ* Chat”) also some bipolar cells in L2/3 and upper

L5. Vipneurons are traditionally characterized by high Input resistance [2], but some of these
types, especially Vip Gpc3, showed only moderate input resistance, comparable to the Sstsubclass.
This type also had particularly low resting membrane potential.

} Abundant in L2/3 [57], Vertically oriented morphologies, sometimes with bipolar dendritic
structure. Diverse firing patterns with some neurons exhibiting large membrane time constant,
hyperpolarization sag and strong rebound firing. High Input resistance [2].

Upper L2/3.

} - [We did not obtain any cells from these types, presumably due to their very weak Vip
expression [4].]

Sst Chodl

All layers from upper L2/3 down to the bottom of L6. This type is thought to have long-range
projections [4, 24] and for two cells in L6 we could Indeed see an axon disappearing Into the white
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matter. Low rebound potential and low hyperpolarization sag. High variability in membrane time
constant.

Sst Penk L6. Mostly local axonal arborization within L6 [58].

Sst Myh8 1 L5. ‘“T-shaped’ Martinotti morphologies [29, 30] and strong rebound firing.

Sst Myh8 2 L5. Strong rebound firing.

Sst Myh8_3 L5. Sometimes rebound firing. Strong hyperpolarization sag.

Sst Hirla L5. Similar to transcriptomically neighboring Sst Hpse.

Sst Etvl L5. “T-shaped” Martinotti morphologies [29, 30] and strong rebound firing.

Sst Pvalb Etvl hgb;;z?:ﬁggt’ié\:lfsr;gotti morphologies [29, 30] and strong rebound firing. Strong

gz gzg: 21 } Lower L5. Mostly local axonal arbor but with some sparse ascending axons.

Sst Hpse !.fowe_r L2/3 gmd upper L5, Martinotti morphology. Compared to Ca/bZ, denser local axons, sparser

anning-out’ [29, 30] projections to L1, smaller membrane time constant [28], Non-zero ADR

Sst Calb? Abundant in L2/3, Martinotti morphology, adapting firing pattern [2][59]. ‘Fanning-out” Martinotti
morphology [29, 30] in upper L5. Non-zero ADP.

Sst Pvalb Calb? k/lza/rstl ri_ocz\t/;/’esroénF;w_idég :kne(: Eé?lhrfwrofri;;ir?cﬂ c:gt; than typical for the Sstsubclass [28]. Some cells have

SstPappa -

SstC1q13 1 } Lower L5. Non-Martlnotti morphology without ascending axons [2, 24], Deep AHP.

Sst C1gl3 2

Sst Tac2 LS.

SstTh 1 Lower L5 and L6.

SstTh 2 -

SstTh 3 L6, Mostly local axonal arborization within L6 [58].

Pvalb subclass
} L6, fast spiking. Mostly local axons [58], Some neurons exhibited a horizontally elongated or

Pvalb Gabrg1 downward projecting axon mostly innervating L6b [24], Larger hyperpolarization sag and rebound

Pvalb Egfem1 potential compared to the other FS neurons.

Pvalb Gpri49 Middle L5, fast spiking. Preferentially horizontally elongated basket cells [5].

Pyalb Kankd Lower L5 and L6, fast spiking. A variety of axonal morphologies, including some with large local

Pvalb Calb1 1

Pvalb Calb1l 2

Pvalb Reln

Pvalb I1 rapl2

Pvalb Vipr2_1

Pvalb Vipr2_2

arborization with dense spherical shape.

L6, fast spiking. Mostly local axons [58], Some neurons exhibited a horizontally elongated or
downward projecting axon mostly innervating L6b [24].

Upper L5, fast spiking. A variety of axonal morphologies, including some with large local
arborization with dense spherical shape.

Upper L5, fast spiking. Preferentially small (or shrub) basket cells [5].

Abundant in L2/3, fast spiking. Strongly layer-adapting morphology: classical L2/3 basket
morphology in L2/3 [5], mostly large basket cell morphology in upper L5 [5]. Some neurons
showed delayed firing [60] with large latency.

Chandelier cells, recognizable by the straight terminal axonal ‘cartridges’ [2]. Mostly upper L2/3,
some in deep L5. Fast spiking, but lower firing rate compared to basket cells, practically absent
hyperpolarization sag.

Note: we did not encounter double-bouquet basket cells, previously described in L2/3 of mouse V1 [5], or L6 FS cells with
translaminar axons reaching up to L1, that were also reported In V1 [24][60].

References®6-61 are cited in this table.
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Extended Data Table 2 |

Description of the excitatory t-types

Transcriptomically, cortical excitatory neurons are classified Into the well-separated Intertelencephalic (1T),
extratelencephalic (ET, also called PT for pyramidal tract), corticothalamic (CT), and near-projecting (NP) subclasses
[4], Morphologically they have been classified Into big-tufted, small-tufted, untufted neurons, depending on the shape
of the apical dendrite tuft, stellate neurons without an apical dendrite, and horizontal/inverted neurons in L6 [62, 63, 64,

65],
IT subclass
L2/31T_1 -
L23IT 2 -
L2/31IT 3 Abundant in L2/3. Tufted pyramidal cells with high rheobase.
L451T 1 Located on the boundary between L2/3 and L5, likely corresponded to the quasi-L4 neurons described
- previously in motor cortex [31], Diverse morphologies with some pyramidal and some stellate cells.
L4/51T 2 Upper L5. Thin untufted apical dendrite.
L51T 1
L5IT 2 } L5. Large tufted pyramidal neurons. Most belonged to L5 /7_1.
L51T 3
L51T 4 Located at the boundary between L5 and L6. Short and untufted pyramical cells.
L61T 1 Upper L6. Short and untufted pyramidal cells. Broad APs.
L6IT 2 L6. Often stellate or Inverted [66].
L61T Cart — [Using Gnb4-Cre mouse line, we did not find any labeled cells in MOp. but only near the claustrum
[46]. Those all mapped to this type.]
ET subclass
L5ET 1 : . . . . . .
I5ET 2 Large big-tufted cells with the apical dendrite often bifurcating close to the soma, suggesting
I5ET 3 that these were corticospinal cells [67, 68], They had | bigger hyperpolarization sag, lower Input
L5FT 4 resistance, and smaller AP width, compared to the L5 IT neurons (we confirmed these differences
- in follow-up experiments at 34 °C, Extended Data Fig. E6). We did not observe consistent morpho-
electrlc differences between the four ET types, apart from L5 £7_1 being located deeper than the rest
(Fig. 1b; consistent with Ref. [34]), but they may have different projection targets [4][69].
NP subclass
L5/6NP_1
L5/6 NP 2
L5/6 NP_3
L56 NP CT NP neurons proved very difficult to obtain without a specialized Cre driver line. The few neurons In
our dataset were all untufted, with sparse basal dendrites, in agreement with prior literature [24].
CT subclass
L6 CT Gpr139
L6 CT Cpab
L6CT Grp
L6 CT Pousf2 CT types were located in L6 and lower L5 and had mostly untufted apical dendrites [66]. In line
with previous literature [70], they could be distinguished from L6 IT neurons by a lower Inter-spike
interval adaptation Index (Supplementary File 2). The most abundant type was L6 CT Cpaé.
L6CTKU 1 -
L6CTKH 2 -
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L6b Coléa 1 }
L6b Shisa6_1
L6b Shisa6_2

L6b Rorl1 . . . .
L6b Kenipl L6b types, transcriptomically related to the CT subclass (Fig. 1e), were all stellate, inverted, or

horizontal, located preferentially in the bottom of L6. The L6b RorI type stood out, having horizontal
dendritic morphology and showing strong rebound firing.

References82=70 are cited in this table.
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Fig. 1 |. Transcriptomic coverage.
a, Number of Patch-seq cells assigned to each of the neural transcriptomic types (t-types)20.

Colours and the order of types are taken from the original publication20. The filled part of
each bar shows the number of morphologically reconstructed neurons. Grey labels, t-types
with no cells. Total number of neurons, 1,227. b, Normalized soma depths of all neurons

of each t-type. For t-types with at least three cells, horizontal lines show medians. Soma
depths were normalized by the cortical thickness in each slice (0, pia; 1, white matter). Grey
horizontal lines, approximate layer boundaries identified by Nissl staining (L1, 0.07; L2/3,
0.29; L5, 0.73). Total number of neurons, 1,187 (for some cells soma depth could not be
measured owing to failed staining). c, t-SNE representation of CGE-derived interneurons
from the single-cell 10x v2 reference data set (/7= 15,511; perplexity, 30). t-Type names are
shortened by omitting the first word; some are abbreviated. Patch-seq cells from the Vip,
Sncg, and Lamp5 subclasses were positioned on this t-SNE atlas?® (black symbols). d, As in
¢ but for MGE-derived interneurons (n=12,083; perplexity, 30). e, As in ¢ but for excitatory
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neurons (7= 93,829; perplexity, 100). f, Example morphologies coloured by t-type. For
interneurons, dendrites are shown in darker colours. For excitatory neurons, only dendrites
are shown. Black dots mark soma locations. Three voltage traces are shown below for some
exemplary cells: the hyperpolarization trace obtained with the smallest current stimulation,
the first depolarization trace that elicited at least one action potential, and the depolarization
trace showing maximal firing rate. Stimulation length, 600 ms.
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Fig. 2 |. Sparse reduced-rank regression.
a, b, A sparse reduced-rank regression (RRR) model32 to predict combined

electrophysiological features from gene expression. Transcriptomic data are linearly
projected to a low-dimensional space that allows reconstruction of electrophysiological data;
components 1 and 2 (a) and 1 and 3 (b) of rank-5 model are shown. 7= 1,219. Colour
corresponds to t-type. The model selected 25 genes (left). Each panel is a biplot, showing
correlations of original features with both components; the circle corresponds to correlation
1. Only features with average correlation above 0.4 are shown. Labels were automatically
positioned to reduce overlap. Al, adaptation index; AP, action potential; CV, coefficient of
variation; IS, interspike interval; R_input, input resistance; V/ rest, resting potential; UDR,
upstroke-to-downstroke ratio.
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Fig. 3 |. Morpho-electric t-SNE embeddings.
a, t-SNE embedding constructed using electrophysiological features. Colour corresponds to

t-type. 7= 1,320 cells used to construct the embedding, 1,219 cells with t-type labels shown.
Perplexity, 30. b, t-SNE embedding constructed using combined morphometric features and
z-profiles. n= 636 cells. Perplexity, 30. ¢, t-SNE embedding constructed using combined
electrophysiological and morphological features. 7= 628 cells. Perplexity, 30. Ellipses show
80% coverage ellipses for the most prominent t-types (shaded) and for some groups of
related t-types and some layer-restricted families (unshaded). We chose these groups to
reduce the overlap between ellipses. d, Confusion matrices for classifying cells into seven
transcriptomic families using kNN classifier (A= 10) and three feature sets. Each row shows
what fraction of cells from a given family is classified in each of the seven families. The
values in each row sum to 100% but only values above 5% are shown.
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Fig. 4 |. Phenotypic variability within transcriptomic families.
a, Vipneurons mapped to the reference t-SNE embedding from Fig. 1c, coloured by

membrane time constant (z). Insets, example firing traces. b, Sstneurons from layer

5 (excluding Sst Chodlt-type) mapped to the reference t-SNE embedding from Fig.

1d, coloured by rebound value. ¢, Correlation between transcriptomic distances and
electrophysiological distances across all 200 pairs of t-types from the same family (for

50 t-types with at least 5 cells), pooled across all families. Transcriptomic distance was
computed using the reference 10x data as the correlation between average log-expression
across most variable genes. Electrophysiological distance is Euclidean distance between the
average feature vectors. d, IT neurons mapped to the reference t-SNE embedding from

Fig. le, coloured by normalized soma depth. Inset, examples of IT neurons at different
depths, coloured by t-type. Scatter plot used eight t-types with at least five cells and

shows correlation between transcriptomic distances and cortical depth distances. Cortical
depth distance is Euclidean distance between the average normalized soma depths. e, Pvalb
neurons from layer 5 mapped to the reference t-SNE embedding from Fig. 1d, coloured by
axonal width/height log-ratio. Circle area corresponds to the width x height product. Insets,
example morphologies.
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Fig. 5 |. Phenotypic variability of individual t-types.
a, Confusion matrix for classifying cells from each t-type into seven transcriptomic families

using electrophysiological features. Only t-types with at least ten cells are shown. Values

in each column sum to 1. Arrows mark t-types that are classified into wrong families more
than 25% of the time. We used a kNN-based classifier with &= 10. b, Normalized total
variance of features in each t-type. Higher values correspond to t-types with more variable
phenotypes. Horizontal grey band, minimum to maximum normalized variances of A&~means
clusters. ¢, Three exemplary traces from Vip Mybpcl 2 cells (all with confidence = 95%)
and t-SNE overlay coloured by rebound. Inset, the same t-SNE embedding as in Fig. 1. Main
plot, magnification. d, Three exemplary traces from Sst Pvalb Calb2 cells (confidence =
95%) and t-SNE overlay coloured by maximum firing rate.
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