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Abstract

Introduction: MAPT H1 haplotype is implicated as a risk factor for neurodegenerative diseases 

including Alzheimer’s disease (AD).

Methods: Using Alzheimer’s Disease Genetics Consortium (ADGC) genome-wide association 

study (GWAS) data (n = 18,841), we conducted a MAPT H1/H2 haplotype–stratified association 

to discover MAPT haplotype–specific AD risk loci.

Results: We identified 11 loci—5 in H2-non-carriers and 6 in H2-carriers—although none of the 

MAPT haplotype–specific associations achieved genome-wide significance. The most significant 

H2 non-carrier–specific association was with a NECTIN2 intronic (P = 1.33E-07) variant, and that 

for H2 carriers was near NKX6–1 (P = 1.99E-06). The GABRG2 locus had the strongest epistasis 

with MAPT H1/H2 variant rs8070723 (P = 3.91E-06). Eight of the 12 genes at these loci had 

transcriptome-wide significant differential expression in AD versus control temporal cortex (q < 

0.05). Six genes were members of the brain transcriptional co-expression network implicated in 
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“synaptic transmission” (P = 9.85E-59), which is also enriched for neuronal genes (P = 1.0E-164), 

including MAPT.

Discussion: This stratified GWAS identified loci that may confer AD risk in a MAPT 
haplotype–specific manner. This approach may preferentially enrich for neuronal genes implicated 

in synaptic transmission.
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1 | INTRODUCTION

Tauopathies, a class of neurodegenerative disorders, are characterized by neurofibrillary 

tangles (NFTs) in the brain due to pathological aggregation of hyperphosphorylated 

microtubule-associated protein tau (MAPT), encoded by the MAPT gene on chromosome 

17q21.3. Tau tangles are present in the brains of patients with progressive supranuclear palsy 

(PSP), corticobasal degeneration (CBD), Pick disease, dementia pugilistica, frontotemporal 

dementia, and parkinsonism linked to chromosome-17 (FTDP-17 or frontotemporal lobar 

degeneration with tau pathology (FTLD-tau)), and other neurodegenerative diseases, 

including Alzheimer’s disease (AD), the most prevalent tauopathy and cause of dementia.1 

In addition to senile plaques composed primarily of extracellular amyloid beta (Aβ), the 

presence of NFTs is a hallmark of AD pathology.

MAPT variants have been implicated in the etiology and pathogenesis of multiple 

neurodegenerative diseases. The discovery of multiple MAPT mutations in FTDP-17 

provided some of the first evidence that changes in tau alone could cause neurodegenerative 

disease. The FTDP-17 splice-site mutations within MAPT demonstrated that an imbalance 

in the ratio of 3R and 4R tau isoforms is sufficient to cause disease.2–4 Further association 

studies revealed that the locus can be divided into two major haplotypes: H1 and H2. MAPT 
falls within the largest known block of linkage disequilibrium (LD) in the human genome, 

spanning ≈1.8 Mb. There is a 900 kb inversion of the H2 haplotype with respect to the H1 

haplotype, covering a region encompassing several genes, including MAPT, IMP5, CRHR1, 

and NSF. The inversion results in a reduced recombination between the inverted H2 and 

non-inverted H1 haplotypes.

The common MAPT haplotype H1 shows robust association with risk for the primary 

tauopathies PSP5 and CBD,6 as well as Parkinson disease (PD), which is not considered as a 

tauopathy.7MAPT H1 haplotype–tagging single-nucleotide polymorphisms (SNPs) were 

identified among the top PSP8 and PD genome-wide association study (GWAS)9 signals. In 

addition, MAPT H1 haplotype shows considerable variation10,11 and leads to H1-

subhaplotypes, where H1c, has been implicated in the risk of PSP, CBD, AD, and PD.
12,13MAPT H2 haplotype has been associated with reduced risk for several 

neurodegenerative disorders.14,15
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Although MAPT is a compelling candidate for neurodegenerative disease susceptibility, 

evidence of association of AD with the MAPT H1 and H2 haplotypes have produced 

equivocal results.12,16,17 This may in part be due to limited sample sizes, and therefore 

limited power for most MAPT haplotype association studies in AD. In a large study from 

Genetic and Environmental Risk for Alzheimer’s Disease (GERAD1) consortium,18 the 

MAPT H2 haplotype–tagging variant was found to have association with reduced AD risk. 

In a study of >20,000 individuals from Mayo Clinic and the Alzheimer’s Disease Genetics 

Consortium (ADGC), we identified associations with both reduced AD risk and reduced 

brain MAPT levels with the H2 haplotype.14 In addition, a recent meta-analysis pooling 39 

studies in AD again demonstrated association of reduced AD risk with the MAPT H2 

haplotype.15

In the current study, we sought to further elucidate the role of MAPT H1 and H2 haplotypes 

in AD susceptibility by leveraging the genome-wide genotype data available from the 

sizable ADGC case-control series. Using haplotype-stratified analyses, we tested the 

hypothesis that AD risk variants exhibit MAPT haplotype–dependent association and may 

therefore potentially identify novel AD risk variants with implications for functional 

pathways. Analysis of a stratum with a more homogeneous AD risk profile with respect to 

MAPT H1/H2 haplotype may help uncover loci that have differential influence on AD risk 

in a MAPT context-specific manner. For example, given the association of MAPT H2 with 

lower brain MAPT levels, it is plausible that those loci with MAPT H2–specific associations 

harbor genes that influence neurodegeneration via pathways that are not dependent on 

elevated tau. In contrast, AD risk associations in H2 non-carriers may enrich for loci that 

confer risk in a tau level-dependent fashion.

Our approach herein is akin to pursuing GWAS in an apolipoprotein E gene (APOE)–

stratified fashion.19 Although MAPT haplotypes tested to date in the literature clearly have 

smaller effect sizes than that of APOE genotypes for AD risk, it is nonetheless worthwhile to 

pursue this MAPT haplotype–stratified analysis not only because of its potential to identify 

novel loci but also because of the plethora of data implicating tau in AD in functional 

studies.20 In this study, we evaluated known International Genomics of Alzheimer’s Project 

(IGAP) AD21 risk loci in a MAPT haplotype–stratified analysis, which did not reveal 

evidence of MAPT haplotype–specific associations. We also identified novel AD risk loci 

with association only in MAPT H2 carriers (six loci) or H2-non-carriers (five loci). We 

characterize genes near both the known and the new loci for their expression levels and co-

expression networks in a brain transcriptome data set of AD and control temporal cortex.
22,23 Our findings, which require replication in larger cohorts, suggest that MAPT 
haplotype–stratified GWAS may identify novel loci, and that genes at these loci are 

expressed predominantly within neuron-enriched networks implicated in synaptic 

transmission.

2 | METHODS

2.1 | Study populations

The ADGC data were used for this study. Subjects available through the ADGC have been 

described previously and are available through ftps from the UPENN server 
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(alois.med.upenn.edu).24–27 The data set included all the covariates required for the analysis 

and all actual and imputed genotypes. Post–quality control (post-QC) data for both the 

actual and imputed genotypes and designations for all the sub-cohorts included in the ADGC 

data were obtained. The demographics detailing each cohort and stratified group are 

described in Table S1. The cohort for the expression analysis was the Mayo Clinic RNAseq 

data set.22 Detailed methods are provided in Supplementary Methods.

2.2 | AD risk association analysis

Variants were evaluated for association with AD using multivariable logistic regression 

implemented in PLINK.28 Both joint (full data set of 21 cohorts analyzed jointly, adjusting 

for cohort) and meta-(separate cohorts) analyses were performed. For the meta-analysis, a 

random effects method was adopted due to presence of heterogeneity, I2 > 25.29 An additive 

model for the minor alleles determined in the unstratified data set was applied with the 

covariates age, sex, and PC1–3 (principal components 1–3) used throughout all models. A 

second model using the additional APOE covariate in the joint and meta-analyses was also 

evaluated. Two IGAP loci variants rs4147929 and rs9331896 were filtered out of the original 

data set due to the QC procedures described previously.27 They were evaluated separately 

for the joint analyses using the same method above. Meta analyses could not be performed 

for rs4147929 and rs9331896 due to their absence from the original data set. To generate 

forest plots for the variants of interest, meta-analysis was performed in R30 with the Metafor 

package31 using the random effects method with DerSimonian Laird estimator for the 

variance between studies/cohorts. To determine the joint effect of the tested SNPs and 

MAPT haplotypes on AD risk, we also performed a bivariate analysis, described in 

Supplementary Methods.

2.3 | Epistasis analysis

SNP–SNP interactions of epistasis between each of the 3,067,502 SNPs and the H2 tagging 

variant rs8070723-G were conducted. Two models were evaluated for the H2 tagging 

variant, a carrier model (H1H1 and H1H2+H2H2) and a dosage model (H1H1, H1H2, and 

H2H2). The analysis was performed by creating a distance matrix in PLINK between each 

SNP and rs8070723-G. Two general linear models (with SNPx rs8070723-G interaction and 

without interaction) were executed using age, sex, ADGC cohort, and PC1–3 as covariates 

followed by an analysis of variance (ANOVA) to assess the significance between the models 

using the chi-square method as implemented in R.

2.4 | Gene expression analyses

Differential gene expression and co-expression network analyses were conducted as 

previously published.23,32 For each gene, multiple linear regression was performed in which 

normalized gene expression was the dependent variable, diagnosis (AD vs control) was the 

independent variable of primary interest and sex, flowcell, age at death, RNA integrity 

number (RIN), and center from which the samples were obtained were the covariates. 

Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to identify brain 

co-expression networks and test their associations with AD as we reported previously.23
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2.5 | Visuals

The figures were generated using the lattice33 and metafor packages in R and Inkscape 

(www.inkscape.org).

3 | RESULTS

3.1 | MAPT haplotype–specific association analysis at known AD risk loci

Using genome-wide genotype data from 21 cohorts within ADGC, we tested the hypothesis 

that AD risk variants exhibit MAPT haplotype–specific association. Following QC 

measures, approximately 3 million variants with a minor allele frequency (MAF) ≥0.02, and 

all index variants identified by the IGAP consortium21 were retained for analysis and 

evaluated for MAPT haplotype–specific association. MAPT H2 haplotype tagging allele 

rs8070723-G was used to stratify study participants into H2 carriers (H1H2+H2H2: 3631 

cases, 3729 controls) and H2 non-carriers (H1H1: 5958 cases, 5523 controls). The 

demographics of the cohorts of the H2 carriers and non-carriers are described in Table S1.

GWAS analyses with AD were performed using joint and meta-analyses. There was no 

evidence of population stratification based on the quantile-quantile plots (QQ plots) (Figure 

S1) and the genomic inflation factors of 1.04, 1.04, and 1.01 for the unstratified, H2 non-

carrier, and H2 carrier joint analyses, respectively. The joint and meta-analyses yielded 

similar results with respect to genomic inflation. Likewise, the addition of APOE as a 

covariate did not significantly alter the results. We adopted the joint analysis approach 

without APOE covariate as the primary model.

We first evaluated the previously reported IGAP21 AD risk variants to determine if they 

exhibit MAPT haplotype–specific association. As expected, the unstratified analysis results 

were similar to those reported in the IGAP study, albeit with reduced significance due to the 

smaller cohort size (Figure S2, Table 1). IGAP index variants had similar direction of AD 

risk in both the H2 non-carrier and H2 carrier analyses. To determine whether any of these 

variants had a significantly different effect on AD risk based on the MAPT haplotype, we 

performed epistasis analysis with the MAPT H1/H2 haplotype tagging variant. Only two 

IGAP variants, rs10948363 (CD2AP) and rs1476679 (ZCWPW1/PILRB), showed a trend of 

epistasis (uncorrected P < 0.05) with the MAPT H1/H2 haplotype–tagging variant (Table 1); 

however, the odds ratios (ORs) for both variants were in the same direction with overlapping 

95% confidence intervals (CIs). In summary, we found no strong evidence of MAPT 
haplotype–specific association for the reported IGAP AD risk SNPs.

3.2 | Genome-wide MAPT haplotype–specific AD risk association analysis

To identify any additional AD risk variants with MAPT haplotype–specific association, we 

evaluated the genome-wide results for the unstratified, H2 non-carrier and H2 carrier groups 

(Figure 1). We tested for significance of MAPT haplotype–specific associations by genome-

wide epistasis analysis with rs8070723 (Table 2). We defined loci with MAPT haplotype–

specific AD risk associations as being discordant. To be classified as discordant, the 

following criteria had to be met: Discordant locus (1) has AD risk association P value of < 
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1E-05 in one of the stratified analysis, but statistically insignificant in the other one (P > 

5E-02); (2) has nominally significant epistasis interaction with rs8070723 (P < 0.05).

We identified five loci in the H2 non-carriers and six in the H2 carriers with discordant 

MAPT haplotype–specific AD risk associations (Figure 1, Table 2). These loci (nearest 

genes at loci) are as follows: In the H2 non-carriers: chr4 (TBC1D9), chr4 (GALNTL6), 

chr8 (MMP16;LOC101929709), chr15 (ADAMTSL3), and chr19 

(NECTIN2;TOMM40;APOE); and in the H2 carriers: chr3 (CADM2;LINC02070), chr4 

(STK32B), chr 4 (LOC101928978;NKX6–1), chr5 (GABRG2), chr11 (C11orf21), chr11 

(PICALM;EED). None of these loci reached genome-wide significance, although they had a 

stronger association in their relevant MAPT haplotype–stratified groups than in the 

combined unstratified group, despite the smaller sample size of the former. Forest plots of 

the discordant loci and their meta-analysis results are shown in Figure S3.

We checked the regional association plots of the discordant loci to determine whether any of 

them represented known IGAP AD risk loci (Figure 2). All but two of the discordant loci are 

novel, which is not surprising because the most significant associations detected by IGAP 

are likely to be enriched for concordant loci. The two discordant loci that are also known AD 

risk loci are NECTIN2;TOMM40;APOE and PICALM;EED, which have differentially 

greater significance in the MAPT H2 non-carriers and H2 carriers, respectively. We further 

evaluated these two loci to determine the extent to which the discordant associations are 

influenced by the known index variants.

For the NECTIN2;TOMM40;APOE locus, we determined that the minor T allele of 

rs11665676 is more enriched in APOE ε4–negative than in APOE ε4–positive participants, 

with allele frequencies of 0.06 versus 0.03, respectively. The frequency of rs11665676-T in 

participants with the APOE ε2/ε2; ε2/ε3; ε2/ε4; ε3/ε3; ε3/ε4; and ε4/ε4 backgrounds is 0; 

0.037; 0.006; 0.065; 0.035; and 0.006, respectively, which demonstrates the enrichment of 

this allele, particularly in APOE ε3. When we repeated the analysis adjusting for APOE ε4 

dosage, the AD risk association of rs11665676 in MAPT H2 non-carriers was abolished 

(APOE-unadjusted OR = 0.7 and P = 1.33E-07; APOE-adjusted OR = 0.93 and P = 0.28), 

which is not surprising given the strong linkage disequilibrium (LD) of this variant with 

those that define APOE ε2/ε3/ε4 (rs429358 and rs7412). APOE ε4 dosage association with 

AD risk did not reveal differences between the MAPT H2 non-carriers (OR = 1.35, P = 

3.28E-264) and H2 carriers (OR = 1.42, P = 2.80E-190). The 95% CI for APOE ε4 AD risk 

ORs were overlapping between these two stratified groups, and there was no evidence of 

epistasis interaction between APOE ε4 dose and MAPT H1/H2 haplotype. Collectively, our 

findings suggest that although there are no discordant associations for APOE ε4 dose per se 

based on MAPT H1/H2 status, rs11665676-T may be tagging a subtype of APOE, which 

confers greater protection in MAPT H2 non-carriers.

The PICALM locus index IGAP SNP rs10792832 did not have any evidence of differential 

MAPT haplotype–stratified association (Table 1, epistasis P value > 0.05). In contrast, the 

discordant variant rs140869727 that resides in an intron of PICALM has epistasis (P = 

4.51E-03) with AD risk association in the MAPT H2 carriers (OR = 1.22, P = 3.0E-06, 

Table 2). The linkage disequilibrium r2 value for these SNPs is 0.15 in the unstratified and 
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both stratified cohorts, with D’ = 0.99. These results support a model where the rarer and 

discordant rs140869727-A may be tagging a PICALM variant, which confers a greater risk 

of AD in MAPT H2 carriers.

Of the discordant loci with significance in the H2 non-carriers, the four novel ones had 

essentially no overlap in their 95% CIs with the H2-carrier results (Table 2). The level of 

significance for joint analyses in the H2 non-carriers ranged between P = 2.04E-7 

(ADAMTSL3) and P = 9.49E-6 (MMP16;LOC101929709). For these discordant variants 

that are significant in the H2 non-carriers, there was no evidence of association in the H2 

carriers (ORs ≈1 and P = 0.5–1.0). Similarly, the five discordant novel loci with significance 

in the H2 carriers had P = 1.99E-6 (LOC101928978;NKX6–1) to P = 9.78E-6 (C11orf21), 

whereas in the H2 non-carriers, these variants had ORs at ≈1 with essentially non-

overlapping 95% CIs and P = 0.054 to 0.4.

By definition, all discordant loci had nominally significant epistasis P values, although none 

reached genome-wide significance (Table 2). Considering the 21 IGAP and 11 discordant 

loci evaluated, and applying a study-wide epistasis P-value of 1.52E-3 (Bonferroni P = 

0.05/33), there was one discordant SNP with MAPT H2 non-carrier–specific association and 

two discordant SNPs in the MAPT H2-carrier group. The SNP with the smallest epistasis P 
value and MAPT H2 non-carrier–specific association is rs4354897 on chromosome 15 

(Table 2), an intronic variant within ADAMTSL3 (Figure 2). Among the discordant loci, this 

is the second most significant variant (P = 2.04E-07) after the chromosome 19 APOE locus 

variant. The minor allele of ADAMTSL3 rs4354897 is associated with a lower risk of AD 

(OR = 0.84) in MAPT H2 non-carriers.

The two MAPT H2 carrier–specific variants with study-wide significant epistasis were 

rs55712126 on chromosome 5, an intronic variant in GABRG2; and rs77007065 on 

chromosome 11, which is intronic for C11orf21 and also 2 kb upstream of TSPAN32 
(Figure 2). GABRG2 rs55712126-G and C11orf21 rs77007065-A are associated with higher 

(OR = 1.62, P = 2.88E-06) and lower AD risk (OR = 0.68, P = 9.78E-06), respectively, in 

MAPT H2 carriers (Table 2).

To determine the joint effect of the discordant SNPs and MAPT haplotypes on AD risk, we 

performed a bivariate analysis (Table S2). The MAPT H2 non-carriers with the SNP major 

homozygote genotypes were designated as the reference. We tested the AD risk association 

of each SNP genotype in the MAPT H2-carrier or H2 non-carrier background against this 

reference. The bivariate analysis results are consistent with their corresponding MAPT 
haplotype–specific associations and depict the joint effect of each SNP genotype and the 

MAPT haplotype on AD risk.

3.3 | Brain expression analyses of MAPT-stratified AD risk association loci genes

We characterized the brain expression patterns of the genes at the discordant MAPT-

stratified association loci (Table 2) using the temporal cortex (TCX) RNAseq transcriptome 

data from Mayo Clinic.22,23,32 Of the 17 genes at the 11 discordant loci, 12 were present in 

this data set (Table S3). We evaluated these genes for differential expression (DE) between 

neuropathologic AD and control TCX RNAseq data. In addition, we determined the brain 
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gene co-expression networks,34 which harbor these genes and annotated these networks for 

their enriched gene ontology (GO) biological processes35 and brain cell types, as described 

previously.23,32 Eight of the 12 genes evaluated had significantly different expression in AD 

versus control TCX (Table S3). The genes with transcriptome-wide significant differential 

expression (q<0.05) were GALNTL6, TBC1D9, TOMM40, APOE, PVRL2, ADAMTSL3, 
GABRG2, and PICALM, with q values ranging between 1.99E-02 and 3.29E-06.

Of interest, six of these genes reside in a co-expression network module (TCX1) that is 

enriched for both neuronal cell types and “synaptic transmission” GO process 

(GO:0007268). The “synaptic transmission” module itself is also associated with AD (P = 

4.70E-03). Four of the (GALNTL6, TOMM40, TBC1D9, MMP16) “synaptic transmission” 

module genes had MAPT H2 non-carrier, and the other two (CADM2, GABRG2) had H2 

carrier–specific AD risk association (Table 2). The “synaptic transmission” module and all 

but one discordant gene in this module were lower in AD TCX, as would be expected from 

neuronal loss observed in AD brains in this region. The discordant loci genes GALNTL6, 
TBC1D9, and GABRG2 had high module membership levels >0.80, suggesting strong 

correlations with the rest of the network. Notably, MAPT also resides in the ``synaptic 

transmission” module: TCX1. Of the IGAP loci genes, PTK2B, EPDR1, and CELF1 also 

reside within TCX1.

Of the other differentially expressed genes, two were from modules that had cell type 

enrichment: NECTIN2 (PVRL2) belonged to the module enriched for “defense response” 

(GO:0006952) and microglia. Both the NECTIN2 (PVRL2) gene (differential expression = 

DE q = 9.93E-04) and its module (DE P = 4.19E-06) had significant differential expression 

in the AD versus control brains (Table S3). The other was APOE (DE q = 9.42E-04), which 

resided in the module (DE P = 1.12E-04) enriched for “carboxylic acid catabolic process” 

(GO:0046395), and both astrocytes and endothelia. These genes reside at the same 

chromosome 19 locus. Both of these modules and genes were higher in the AD TCX, which 

may again be expected based on microglial and astrocytic population increases observed in 

brain regions affected with AD neuropathology. Finally, two genes, ADAMTSL3 (DE q = 

1.53E-03) and PICALM (DE q = 7.72E-03), which reside at MAPT H2 non-carrier and H2 

carrier–specific loci, respectively, are both significantly higher in AD TCX and belong to 

modules enriched for “regulation of transcription, DNA-templated” (GO:0006355) (DE P = 

3.71E-02).

We performed the same analyses also for the known AD risk loci genes (Table S3). Eight of 

the 17 IGAP loci genes with brain expression data had significant differential expression, 

both at the gene (q < 0.05) and module levels (P < 0.05). Two modules enriched for 

“immune response” (GO:0006955) and “synaptic transmission” (GO:0007268) genes had 

the highest number of IGAP risk loci genes. Three genes (HLA-DRB1, INPP5D, MS4A6A) 

were in the microglial gene–enriched “immune response” module, as we have shown 

previously36; and three others (CELF1, EPDR1, PTK2B) were in the neuronal gene enriched 

“synaptic transmission” module. We noted that there were IGAP risk loci genes within 

oligodendrocyte (BIN1, ZCWPW1), astrocyte/endothelia (CLU, FERMT2), and endothelia 

gene–enriched modules (CASS4). In summary, half of the discordant MAPT-stratified loci 

genes were from neuronal modules, whereas the IGAP AD risk loci genes had similar 
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representation across network modules that were enriched for any of the five brain cell 

types.

To determine whether any of the MAPT haplotype-specific AD risk SNPs influenced brain 

expression levels of MAPT or the “synaptic transmission” co-expression module TCX1, 

which also harbors MAPT, we performed expression quantitative trait loci (eQTL) and 

module QTL (modQTL) analyses, respectively, as described previously.14,32,37,38 None of 

the MAPT haplotype–specific AD risk SNPs had significant associations with temporal 

cortex MAPT levels or the “synaptic transmission” module eigengene (data not shown). We 

conclude that these MAPT haplotype-specific loci are not likely to confer AD risk through 

their influence on brain gene expression of MAPT or synaptic transmission network genes.

4 | DISCUSSION

Despite significant progress in identifying genetic risk factors and the increased 

understanding in Alzheimer’s disease (AD) etiology, the ability to develop effective 

preventions or cures continues to remain elusive. Novel approaches to analyzing available 

multiscale genomic and phenotypic data will provide further insights into the complexity of 

AD and provide mechanisms to foster the development of precision medicine.

In this study we sought to evaluate available genome data by performing a stratified analytic 

approach. Stratified methods based on sex39–41 and APOE19 have been reported previously 

and have shown background-dependent associations with AD. Due to the implication of 

MAPT in both AD neuropathology1,7,20 and risk,14,15,18 we performed MAPT haplotype–

stratified association analyses in the genotype data from the ADGC to test the hypothesis 

that AD risk variants may exhibit MAPT haplotype-dependent association. We tested 

previously identified AD risk loci21 to determine whether they have differential associations 

in a MAPT haplotype context–dependent manner. We also extended this analysis genome-

wide to determine if this approach may identify novel AD risk variants.

We found that the index AD risk variants reported previously had similar directions of 

associations in both the MAPT H2 non-carrier and H2 carrier analyses. Epistasis analysis 

with these and the MAPT H1/H2 haplotype tagging variants revealed no evidence of 

differential association (P > 0.05) for all but two AD risk loci. Even though CD2AP-

rs10948363 and ZCWPW1/PILRB-rs1476679 had nominally significant epistasis (P = 0.035 

and 0.022, respectively), the estimated effects of these variants were largely overlapping in 

the MAPT H2 carriers and non-carriers. These findings are not surprising given that the loci 

that rise to significance in the overall GWAS are likely to have a more consistent effect 

across stratified groups.

In contrast, stratified analysis may uncover novel loci with groupspecific associations that 

may be missed in the combined cohort. Although we did not identify any MAPT haplotype–

specific associations at genome-wide significance in this study, we uncovered 11 discordant 

loci that had association at P < 1E–05 in one stratum (five in MAPT H2 non-carriers and six 

in MAPT H2-carriers), no association (P > 0.05) in the other stratum and evidence of 

epistasis (P < 0.05) with the MAPT H1/H2 tagging variant rs8070723. The most significant 
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MAPT–haplotype–specific association was observed for chromosome 19 variant 

rs11665676 at the NECTIN2;TOMM40;APOE locus. The minor T allele of this variant was 

associated with a lower AD risk (OR = 0.7, P = 1.33E-07) only in the MAPT H2 non-

carriers (ie, those with MAPT H1/H1 haplotype). It is important to note that although there 

was no evidence of MAPT haplotype–specific associations for APOE ε4 dose in our study 

per se, rs11665676-T is enriched in APOE ε3 carriers.

These findings suggest the following model: In the presence of the strong effect conferred by 

APOE ε4, the presence of MAPT H1 versus H2 haplotype does not make a significant 

difference with respect to AD risk. Consequently, there is no MAPT haplotype–specific 

associations for APOE ε4 dose. However, rs11665676-T, which is enriched in APOE ε3 

carriers, may be marking a variant of APOE that confers greater protection in those who are 

MAPT H2 non-carriers. We and others previously showed that MAPT H2 haplotype is 

associated with a lower risk of AD.14,15,18 The preferential protection of rs11665676-T in 

MAPT H2 non-carriers may be due to the fact that in the presence of the protective MAPT 
H2 haplotype, any further protection conferred by this variant may be negligible. This may 

explain the lack of association of rs11665676-T with lower AD risk in MAPT H2-carriers.

The discordant rs11665676 variant resides within an intron of NECTIN2 (aka PVRL2), 

which is within a LD region with BCAM and in proximity to the TOMM40-APOE-APOC1 
locus.42 It has been shown previously that the LD structure of the polymorphisms across 

these five genes displayed heterogeneity between AD and control individuals, suggesting 

that the genes within this region in addition to APOE may play a role in AD risk.42,43 

Indeed, a highly polymorphic variant of TOMM40 (poly-T variant) was found to associate 

with AD risk and its endophenotypes independent of APOE in some studies.44 Given the 

complexity of this region on chromosome 19, including LD across multiple genes, plentiful 

polymorphisms, and the strong APOE ε2/ε3/ε4 effect on AD risk, alternative approaches 

focused on haplotype analysis of this region are proposed to uncover novel variants that 

influence AD independent of APOE.45 Our analysis of stratifying samples according to 

specific genotypic/haplotypic backgrounds provides another approach in the discovery of 

polymorphisms that may influence AD risk under a specific genomic context. Our approach 

identified a polymorphism in NECTIN2 (PVRL2), which is enriched in APOE ε3 carriers 

and which has differential protective association in MAPT H2 non-carriers. This finding 

suggests a biological link between NECTIN2 and/or APOE with MAPT.

In a previous APOE-stratified analysis,19 a variant in the MAPT region, rs2732703-G, which 

is more common in H2 carriers, was found to confer greater protection from AD in APOE 
ε4 negative individuals. This finding is different and independent of our report, and suggests 

that variability at the MAPT locus influences APOE association with AD risk, whereas our 

results indicate that variability at the APOE locus has distinct AD risk association on 

different MAPT haplotype backgrounds. Both findings support the notion of heterogeneity 

at both APOE and MAPT haplotypic regions, which may modify AD risk associations 

depending on the combinations of variants harbored. Understanding the full set of functional 

variants at these important loci, their genetic/biological interactions, and their collective 

effects on AD risk and its endophenotypes is necessary to successfully practice precision 

medicine in the future.
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Whether the NECTIN2 (aka PVRL2) rs11665676 variant signifies association with this gene 

per se or marks another variant within APOE remains to be established. NECTIN2 (nectin, 

cell adhesion molecule 2), also known as poliovirus receptor-related 2 (and formerly as 

herpesvirus entry mediator B, HVEB), encodes a plasma membrane glycoprotein that has 

been implicated in a multitude of central nervous system (CNS) functions.43 NECTIN2 is 

involved in adherens junction, which is important to maintain blood-brain barrier and to 

prevent the spread of viral infections. In our brain expression data22,23,32 analyzed herein, 

we determined NECTIN2 to be significantly elevated in AD TCX, and to reside in a co-

expression module enriched for “defense response” GO biological process and microglia-

enriched genes. These findings support a role for this gene in innate immune pathways. Our 

findings along with prior association of another NECTIN2 variant (rs6859) with AD risk in 

African Americans independent of APOE,46 merit further evaluation of this gene as a 

plausible AD gene.

In addition to the NECTIN2 variant at the APOE locus, MAPT-stratified analysis revealed 

one other discordant association in a known AD risk locus, which was PICALM intronic 

SNP rs140869727 that revealed increased risk in MAPT H2-carriers. The minor A allele of 

rs140869727 has frequency (MAF) of 0.17 and is rarer than the PICALM locus index IGAP 

SNP rs10792832, which has a MAF of 0.36. The latter did not have differential MAPT 
haplotype–stratified association, whereas rs140869727 had epistasis (P = 4.51E-03). We 

concluded that the discordant rarer SNP may be tagging a PICALM variant, which confers 

greater risk of AD in MAPT H2 carriers. PICALM was found to associate with both 3R and 

4R tau inclusions in AD and primary tauopathies, and soluble PICALM levels were 

inversely correlated with phosphotau,47 suggesting a biological link between this protein 

involved in clathrin-mediated endocytosis and tau.

We identified nine discordant loci that were not previously identified in AD risk GWAS, 

including the largest recent studies.48,49 The four novel H2 non-carrier–specific associations 

were near TBC1D9 (chr4), GALNTL6 (chr 4), MMP16;LOC101929709 (chr8), and 

ADAMTSL3 (chr15). Of these, ADAMTSL3 locus had the strongest AD risk association (P 
= 2.04E-7), where the minor allele of intronic SNP rs4354897 conferred protection (OR = 

0.84, CI = 0.79 to 0.9), only in MAPT H2 non-carriers, but not in H2 carriers (epistasis P = 

1.22E–04). ADAMTSL3 encodes a glycoprotein that localizes to the extracellular matrix, 

belongs to a family of metalloproteases, and is proposed to be a candidate gene for 

schizophrenia, with proposed function in synaptogenesis.50 Of interest, another H2 non-

carrier–specific association locus resides near a different matrix metalloproteinase encoding 

gene, MMP16. Matrix metalloproteases have been implicated in AD and other 

neurodegenerative diseases through their roles in Aß degradation, inflammatory processes, 

and processing of neurodegenerative proteins including tau.51 Given this, metalloproteases 

have been proposed as potential therapeutic targets in AD and other neurodegenerative 

diseases. The other two genes at MAPT H2 non-carrier–specific AD risk loci have been 

identified previously in vascular and/or neuropsychiatric genetic studies. GALNTL6 has 

been associated with lipid metabolism,52 body mass index,53 and hypertension. In addition, 

a separate SNP in GALNTL6 was associated with AD at age of onset, although it lost its 

significance after correcting for the APOE.54TBC1D9 is a brain-expressed gene encoding a 

protein with Rab3A-GAP activity. There are no reports linking this gene to AD to date. 
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Recently, a de novo and potentially pathogenic TBC1D9 missense variant was identified in 

sporadic Attention-Deficit/Hyperactivity Disorder (ADHD).55

Five novel loci showed AD risk association only in the H2 carriers, namely, 

CADM2;LINC02070 on chromosome 3, STK32B on chromosome 4, 

LOC101928978;NKX6–1 on chromosome 4, GABRG2 on chromosome 5, and C11orf21 on 

chromosome 11. Of these, GABRG2 locus has the strongest AD risk association (P = 

2.88E-06) and evidence of epistasis with MAPT H1/H2 locus (3.91E-06). GABRG2 encodes 

the γ2 subunit of the pentameric γ-aminobutyric acid receptor A (GABAA) ligand-gated ion 

channels that bind the major inhibitory neurotransmitter in mammalian brains, GABA. 

Previously, missense, nonsense, frameshift, splice-site, and deletion mutations within 

GABRG2 were associated with simple febrile seizures and genetic epilepsy syndromes 

through different mechanisms leading to reduced channel levels and/or function.56GABRG2 
levels were found to be reduced in iPSC-derived neurons and brains from MAPT p.R406W 

carriers, mouse models of tauopathy,57 and in the Mayo Clinic brain RNAseq data22 from 

patients with the primary tauopathy PSP compared with controls, in both TCX and 

cerebellum. In our study, we also evaluated the Mayo Clinic brain RNAseq data and 

determined lower levels of GABRG2 in TCX (q = 1.99E-02), but not in the cerebellum (data 

not shown) in AD compared with controls. Collectively, these findings suggest that 

tauopathies could lead to lower expression of the inhibitory channel proteins, including 

GABRG2, possibly through loss of these neurons in affected brain areas. This could in turn 

lead to excitatory/inhibitory imbalance, culminating in enhanced Aß production and 

ultimately further neuronal loss.58 Our findings suggest that GABRG2 variants increase AD 

risk preferentially in MAPT H2 carriers, who are expected to have lower brain MAPT levels 

and greater protection against AD.14 Hence, risk conferred by other pathways, such as 

disruption of GABAergic signaling, may be more important for and detectable in this lower 
MAPT risk group.

The intronic variant rs7356060 that discordantly confers risk in MAPT H2 carriers (OR = 

1.29, CI = 1.16 to 1.43, P = 3.99E-06) marks another interesting candidate CADM2, which 

was also identified as a candidate gene in a GWAS of cognitive function, specifically 

executive function and processing speed.59CADM2 encodes cell adhesion molecule 2 and is 

also known as synaptic cell adhesion molecule 2 (SYNCAM2) and nectin-like protein 3 

(NECL3). That the MAPT-stratified analysis led to the discovery of a nectin (NECTIN2 on 

chromosome 19) and a nectin-like protein (CADM2 = NECL3 = SYNACM2) as candidates 

is noteworthy. CADM2 was also identified as a locus for habitual physical activity, along 

with APOE,60 and was also suggested as a gene that may link obesity with psychiatric traits.
61

The three other candidate genes at the AD risk loci identified in MAPT H2-carriers—

C11orf21, STK32B, and NKX6–1—were also implicated in CNS diseases or function. 

C11orf21 has an intronic variant rs77007065-A, which confers AD protection in MAPT H2 

carriers (0.68, CI = 0.58 to 0.81, P = 9.78E-06) and is one of the most discordant SNPs 

(epistasis P = 5.62E-06). This variant is also upstream of TSPAN32, which together with 

C11orf21 resides in a region of differential methylation in autistic brain samples.62STK32B 
is a serine/threonine kinase and resides at a locus previously identified in a GWAS for 
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essential tremor.63 The promoter region of this gene is differentially methylated in blood 

samples from adolescents with generalized anxiety disorder.64 Finally, NKX6–1, which is a 

transcription factor, was found to be involved in midbrain dopaminergic neuron 

differentiation,65 in addition to its role in the differentiation of pancreatic ß islet cells.66 

Whether these are the genes that harbor functional variants that influence AD risk in a 

MAPT haplotype–dependent manner and their biological interaction with tau-related 

pathways remains to be established.

In our study, we also performed a systematic evaluation of all of the candidate genes at the 

discordant AD risk loci for their expression in AD versus control temporal cortex (TCX),
22,23,32 their membership in brain gene co-expression networks identified in these samples, 

and annotation of these networks for their enriched biological processes and CNS cell types. 

For these analyses, we utilized the Mayo Clinic Brain RNAseq data generated by our group, 

and implemented approaches as previously described.22,23,32 We also analyzed the candidate 

genes at the known IGAP AD risk loci21 in the same fashion. Eight of 12 discordant loci 

genes and eight of 17 IGAP loci genes were differentially expressed in AD versus control 

TCX with transcriptome-wide significance (q < 0.05). Half of the discordant loci genes 

(GALNTL6, TOMM40, TBC1D9, GABRG2, MMP16, CADM2) were members of the co-

expression network that was enriched in “synaptic transmission” GO biological process. 

This network had also a significantly higher representation of neuron-enriched genes. In 

comparison to the discordant loci genes, the known IGAP AD risk loci genes had a lower 

representation of “synaptic transmission” membership, with 3 (PTK2B, EPDR1, CELF1) of 

17 genes that were assessed in the transcriptome data. The published IGAP loci genes had 

membership within a variety of networks with broader enrichment of GO processes and cell 

types. These included “axon ensheathment”/oligodendrocyte (BIN1, ZCWPW1); “immune 

response”/microglia (HLA-DRB1, INPP5D, MS4A6A); “carboxylic acid catabolic process”/

astrocyte and endothelia (CLU; FERMT2); and “vasculature development”/endothelia 

(CASS4). Neither GWAS associations nor co-expression network and differential gene 

expression analyses per se definitively identifies the disease risk genes. Nevertheless, the 

concurrent presence of GWAS candidate genes within networks that are enriched in 

processes known to be perturbed in the disease process (such as “immune response,” 

“synaptic transmission,” “axon ensheathment”) provides further strength for the candidacy 

of these genes and information about the pathways with which they are likely to be involved. 

The presence of half of the discordant loci in “synaptic transmission” networks suggests that 

the MAPT haplotype stratified approach may be preferentially identifying neuronal genes 

that are involved in this crucial process in a MAPT haplotype–dependent manner. This 

finding is congruent with known and proposed roles of tau in synaptic transmission or its 

disruption in AD.67 In comparison, the un-stratified GWAS appears to uncover genes that 

pertain to a wider spectrum of pathways and cellular processes that may be due to the lack of 

the dependency on MAPT haplotype context.

Because the transcriptome data was obtained in bulk brain tissue in a region affected with 

AD neuropathology, the observed transcriptional differences between AD and controls may 

reflect cell population changes.22 Despite this caveat, we and others have successfully 

utilized bulk brain transcriptome data to identify transcriptional networks that associate with 

neurodegenerative diseases and their endophenotypes.23,32,42,43,45 Many of these networks 
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are enriched in pathways and genes that have been implicated previously in these diseases 

through independent data including genetic associations.32,36,42 This suggests that 

integrative analysis of transcriptional networks and disease association data can provide 

cross-validation for the genes. This approach also provides transcriptional context for the 

candidate genes discovered from disease GWAS as demonstrated here.

In summary, we performed a MAPT H1/H2 haplotype–stratified association in the ADGC 

GWAS data and identified 11 loci with evidence of association in one stratum (P < 1.0E-05), 

no association in the other stratum (P > 0.05), and epistasis (P < 0.05) with the MAPT 
H1/H2 haplotype–tagging variant rs8070723. With the exception of a NECTIN2 variant at 

the NECTIN2;TOMM40;APOE locus and a rare variant in PICALM, these are novel loci 

that have not been reported previously. Half of the candidate genes at these loci reside within 

a co-expression network enriched in neuronal genes and implicated in “synaptic 

transmission.” These findings contrast with those from the known IGAP loci, where we did 

not find evidence of MAPT H1/H2 haplotype–stratified association and where the candidate 

genes are members of co-expression networks that represent a broader range of cellular and 

biological process enrichment.

There are several limitations to our study. Notwithstanding their novelty, the MAPT H1/H2 

haplotype–stratified association results should be interpreted with caution due to falling 

short of genome-wide significance (P < 5.0E-08), as they may represent false-positive 

findings. It will be important to apply this approach in larger available GWAS data and seek 

confirmation. Given that MAPT H2 haplotype is rarer, our MAPT H2 carriers were smaller 

in size (n = 7360) than MAPT H2 non-carriers (n = 11,481). This may explain the presence 

of two loci that approached genome-wide significance in the MAPT H2 non-carriers, 

whereas the strongest association remained at P = 1.99E-06 in the MAPT H2 carriers. We 

also acknowledge that our MAPT H1/H2 haplotype definition was based on the tagging 

variant rs8070723 and that the H1 haplotype, which has considerable variation,10,11 can be 

divided into additional sub-haplotypes. Future studies utilizing whole genome sequencing 

(WGS) can enable more accurate assignment of haplotypes, although sub-haplotypic 

stratification would require even greater sample sizes. We discovered that many of the 

candidate genes at the discordant AD risk loci are differentially expressed in AD TCX and 

reside in the “synaptic transmission” co-expression network, which also harbors MAPT. 

Despite their intriguing biological implications, it is possible that these congruent genomic 

and transcriptomic findings are coincidental. Definitive determination of biological 

interactions between the discordant loci genes with MAPT requires detailed studies in model 

systems, which is beyond the scope of this work. Our findings provide testable hypotheses 

for such functional studies. Finally, our brain transcriptome data are driven from bulk tissue, 

where the gene expression findings may simply reflect cell population changes and where 

biologically important differential expression results in rarer cell types may be obscured. It 

will be important to evaluate brain cell–type specific expression patterns of the genes 

nominated in this study in the single-nucleus and single-cell transcriptome data from AD 

and control brains, once sizable data sets become available.

Our study represents an alternative approach in leveraging available GWAS data for 

discovery of loci and genes that may confer AD risk in a MAPT context–dependent manner. 
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Integrative utilization of independent genomic and transcriptomic data provide cross-

validation for our findings. The candidate genes that emerge from this study should be 

evaluated for the presence of functional variants that may influence tau-related outcomes in 

model systems or human cohorts. Emerging larger cohorts with multi-omics data and 

generation of more complex model systems should enable these future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Microtubule-associated protein tau gene (MAPT) H1 and H2 carriers have 

discordant Alzheimer’s disease (AD) risk loci, most of which are novel.

• Many of the genes at these loci are differentially expressed in AD brains.

• The MAPT haplotype–stratified approach identified genes in synaptic 

transmission networks.
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RESEARCH IN CONTEXT

1. Systemic review: Comprehensive review of the literature shows that the 

microtubule-associated protein tau gene (MAPT) is a strong candidate for 

neurodegenerative disease susceptibility. The MAPT H2 haplotype is 

associated with lower Alzheimer’s disease (AD) risk in large cohorts and 

lower brain MAPT levels.

2. Interpretation: We hypothesized that AD risk variants exhibit MAPT 
haplotype–dependent association. Through haplotype-stratified association 

analyses using data from the Alzheimer’s Disease Genetics Consortium 

(ADGC) on 18,841 participants, we identified 11 loci with MAPT H1– or 

H2–specific AD risk association. Eight genes at these loci had significant 

differential expression in AD versus control brains. Six genes were members 

of the neuronalenriched brain transcriptional co-expression network 

implicated in synaptic transmission.

3. Future directions: Replication of MAPT haplotype–stratified associations 

should be sought in larger cohorts. Candidate genes from this study should be 

evaluated for the presence of functional variants that may influence tau-

related outcomes. Emerging larger cohorts with multiomics data and 

generation of more complex model systems will enable these studies.
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FIGURE 1. 
Miami plot of MAPT haplotype–stratified association results: P values from the joint 

association analyses are shown. APOE was not included as a covariate in these analyses. 

Top: H2 non-carriers. Bottom: H2 carriers. The threshold for genome-wide significance (P < 

5E10–8) is indicated by the red line and the threshold for trending significance (p < 1E-5) is 

indicated by the blue line. Loci with P < 1E-05 are annotated as follows: dark green, 

concordant (P < 1E-05 in both data sets with epistatic P > 0.05); dark purple, discordant (P < 

1E-05 in one data set only, with epistatic P < 0.05); black, intermediate (P < 1E-05 in one 

data set only with epistatic P > 0.05)
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FIGURE 2. 
Regional association plots of discordant MAPT haplotype–stratified association results: The 

figures are shown for the 11 loci depicted in Table 2 and reflect the results of haplotype-

stratified joint association analyses without the APOE covariate. Discordant loci results with 

significance in the (A) H2 non-carriers or (B) H2 carriers.
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