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Abstract

Nitrogen heterocycles (azacycles) are common structural motifs in numerous pharmaceuticals, 

agrochemicals, and natural products. Many powerful methods have been developed and continue 

to be advanced for the selective installation and modification of nitrogen heterocycles through C–

H functionalization and C–C cleavage approaches, revealing new strategies for the synthesis of 

targets containing these structural entities. Here, we report the first total syntheses of the lycodine-

type Lycopodium alkaloids casuarinine H, lycoplatyrine B, lycoplatyrine A, and lycopladine F as 

well as the total synthesis of 8,15-dihydrohuperzine A through bioinspired late-stage 

diversification of a readily accessible common precursor, N-desmethyl-β-obscurine. Key steps in 

the syntheses include oxidative C–C bond cleavage of a piperidine ring in the core structure of the 

obscurine intermediate and site-selective C–H borylation of a pyridine nucleus to enable cross-

coupling reactions.

Graphical Abstract

*Corresponding Author: Richmond Sarpong − Department of Chemistry, University of California, Berkeley, California 94720, 
United States; rsarpong@berkeley.edu.
†Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Europe;
§Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland, Europe.
#Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany, Europe.
+Institute of Technical Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany, Europe.
‡These authors contributed equally.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website.
Experimental procedures, additional experimental results, and compound characterization (PDF)

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2021 April 16.

Published in final edited form as:
J Am Chem Soc. 2021 March 31; 143(12): 4732–4740. doi:10.1021/jacs.1c00457.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Lycodine alkaloids; Lycopodium alkaloids; heterocycle functionalization; C–C cleavage; total 
synthesis

INTRODUCTION

The Lycopodium alkaloids are a diverse group of natural products found in plants of the 

widely distributed Lycopodium genus, commonly known as clubmosses.1,2 Since the 

isolation of the first of these alkaloids, lycopodine, in 1881,3 a wealth of biosynthetically 

related alkaloids have also been isolated and characterized. These natural products are 

organized into four main classes (lycodine, lycopodine, fawcettimine, and a miscellaneous 

class) on the basis of their distinct carbon backbones, which arise as a consequence of C–C 

bond formation and rearrangement events during their putative biosyntheses.2 Many 

Lycopodium alkaloids possess intriguing and complex molecular architectures, and also 

display promising bioactivity profiles. The archetypical lycodine alkaloid huperzine A (1, 

Figure 1a), for example, is a potent and selective acetylcholinesterase (AChE) inhibitor and 

also demonstrates non-cholinergic neuroprotective effects.4–6 This bioactivity is of interest 

for the symptomatic treatment of Alzheimer’s disease and other neurodegenerative 

disorders.2,4–6 The combination of interesting structural features and note-worthy bioactivity 

continue to drive synthetic studies toward Lycopodium alkaloids and their analogues.7–12

Synthetic strategies that enable late-stage structural modification and diversification of a 

common advanced intermediate can provide versatility that facilitates efficient access to a 

range of products that might otherwise each require significant synthetic investment. A 

rapidly growing catalog of C–H bond functionalization technologies has powerfully 

expanded the processes available for such structural alterations, typically elaborating around 

the periphery of a molecule.13 Alternatively, C–C bond cleavage and functionalization 

strategies represent a key complementary approach which can be applied to remodel not 

only the periphery but also the core carbon skeleton of organic compounds.14 Although C–C 

cleavage tactics typically result in a decrease in molecular complexity -- in contrast to 

Corey’s retrosynthetic paradigm15 -- they can lead to the identification of new retrosynthetic 

disconnections. In turn, such methods could enable rapid access to a diverse range of natural 

products or bioactive agents from a single compound, which, albeit more structurally 

complex, is easily obtained through chemical synthesis, biosynthesis, or synthetic biology.

The ubiquity of nitrogen heterocycles in pharmaceuticals,16 agrochemicals, and alkaloids17 

render them attractive structural motifs for diversification to efficiently access underexplored 

chemical space.18 Therefore, a variety of methods for both the introduction and selective 

functionalization of azacycles continue to be reported.19–21 Inspired by these contributions, 

we envisioned nitrogen heterocycles as versatile synthetic handles that would enable the 

expedient preparation of a collection of lycodine-type alkaloids (2–4, 8, 9, Figure 1a) from a 

common, readily prepared, precursor through a series of programmed oxidation and C–C 

bond cleavage events in analogy to their biosynthesis.2,22
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Although the complete biosynthetic pathways to the Lycopodium alkaloids remain to be 

fully elucidated,23 biochemical studies have suggested that these compounds derive from 

phlegmarine (13), which arises from the coupling of pelletierine (11) and 4-(2-piperidyl) 

acetoacetate (12), both of which originate from L-lysine (10, Figure 1b).2

Subsequent closure of ring B through bond formation between C13 and C4 furnishes the 

characteristic [3.3.1]-bicyclic scaffold of the lycodine class. A series of oxidative 

modifications, which include oxidation of the A-ring to the corresponding pyridone (e.g., in 

N-desmethyl-β-obscurine, 6) or pyridine (e.g., in lycodine, 7), C-ring cleavage, and excision 

of C9 further diversifies the parent scaffold, yielding a range of alkaloids including 1–6 
(Figure 1b, blue arrows).

On the basis of these presumed biosynthetic events, we envisioned a retrosynthesis (Figure 

1c) in which 8,15-dihydrohuperzine A (3)24 could arise from casuarinine H (2)25 through 

olefin isomerization, whereas lycoplatyrine B (4)26 could be accessed from 2 through semi-

reduction of the pyridone. Casuarinine H (2) was traced back to functionalized tricyclic 

intermediate A through decarboxyolefination. In turn, A could be formed from the readily 

accessible key precursor N-desmethyl-β-obscurine (6) through oxidative functionalization 

and cleavage of the C9–N bond.

Another small set of structurally unique lycodine alkaloids bearing substitution at the C2 

position of the pyridine A-ring (e.g., lycoplatyrine A,26 8, and lycopladine F,27 9) is 

proposed to arise biosynthetically through electrophilic substitution on lycodine (7) or the 

corresponding dihydropyridine by a Δ1-piperidinium or Δ1-pyrrolinium cation (or the 

corresponding imines; Figure 1b, green arrows).26,27 Subsequent oxidative cleavage of the 

pyrrolidine ring in 14 is suggested to provide lycopladine F (9), analogous to the oxidative 

ring cleavage pathway that leads to metabolic products of nicotine.28 Overall, we envisioned 

lycoplatyrine A (8) and lycopladine F (9) could be accessed through cross-coupling of 

appropriate C(sp3) nucleophiles with a functionalized lycodine analog (B), which again 

would be prepared from the key obscurine scaffold 6. The required deoxygenation of 

precursor 6 and site-selective functionalization at C2 would rely upon precedent 

demonstrated by our laboratories in the total synthesis of the dimeric lycodine alkaloids 

complanadine A and B.29,30

RESULTS AND DISCUSSION

Preparation of the Key Diversifiable Precursor.

Our investigations commenced with the development of a robust synthesis of N-desmethyl-

β-obscurine (6), the late-stage common intermediate for the synthesis of all of the alkaloids 

described here. A convergent route featuring a diastereoselective formal (3+3)-cycloaddition 

to form the three contiguous stereocenters and two C–C bonds in ring B of 631 was adapted 

from literature protocols by Schuster,32 Caine,33 Dake34 and Jung35 as well as our own 

previous studies.29

The coupling partner that would lead to ring A, dihydropyridone 17, was prepared from β-

ketoester 15 through a Michael addition into acrylonitrile followed by decarboxylation to 
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give nitrile 16. Subsequent nitrile hydration and cyclization in vacuo delivered 17 in 18% 

overall yield (Scheme 1a).29,31

The C/D ring cycloaddition partner 22 was prepared from (+)-pulegone (18) in six steps and 

28% overall yield (Scheme 1b).32,33 The sequence was initiated by Weitz–Scheffer-type 

epoxidation of the exocyclic olefin group of 18, which provided a 1:2 mixture of epoxide 

isomers (19).38,39 Subsequent nucleophilic opening of the epoxide with sodium 

thiophenolate and concomitant retro-aldol reaction delivered the phenylthioether,33 which 

was selectively oxidized to sulfoxide 20 with sodium perborate.34 α-Alkylation of 20 with 

acrylonitrile, followed by thermal syn-elimination of phenylsulfenic acid gave enone 21,35,36 

which was protected as the ethylene glycol ketal and reduced with LiAlH4 to deliver primary 

amine 22.32 The two building blocks (17 and 22) were ultimately coupled upon heating with 

perchloric acid (Scheme 1c). Under these conditions, oxygen-sensitive α,β-unsaturated 

iminium ion 22a and the open-chain enolamide 17a are presumably formed in situ and 

undergo the desired formal cycloaddition to furnish N-desmethyl-α-obscurine (5).29,31,37 

Boc-protection of the piperidine nitrogen in 5 and dehydrogenation of the dihydropyridone 

ring using lead(IV) acetate provided N-Boc-β-obscurine (23) in 49% yield over three steps.

As an alternative to the oxidation of Boc-protected 5 using stoichiometric lead(IV) acetate, 

we investigated a photocatalytic dehydrogenation protocol.40,41 Our preliminary results 

demonstrated that N-Boc-5 was readily oxidized to 23 (57% yield) in the presence of an 

iridium(III) photoredox catalyst (Ir[dF(CF3)ppy]2(dtbbpy)PF6) with potassium persulfate as 

the terminal oxidant upon irradiation with blue light (λ = 450 nm) under anoxic conditions. 

In the absence of light or the photoredox catalyst, only traces of product (6%) were formed 

in the best case, whereas under aerobic conditions complete decomposition of the substrate 

was noted (see Section 3.1 in the Supporting Information). Despite attempts to optimize this 

reaction, we were unable to obtain yields comparable with those achieved with lead(IV) 

acetate (90%). Therefore, the latter conditions were employed for the preparation of large 

quantities of material. Finally, pyridone O-triflation of 23 delivered fully protected β-

obscurine scaffold 24 in 78% yield.29

Synthesis of (−)-Casuarinine H, (−)-8,15Dihydrohuperzine A, and (+)-Lycoplatyrine B.

Our envisioned route toward the lycodine alkaloids casuarinine H (2), 8,15-

dihydrohuperzine A (3), and lycoplatyrine B (4) required the identification of suitable 

conditions to effect the bioinspired oxidative cleavage of the C9–N bond in protected 

tetracycle 24 or a related obscurine congener. To this end, we pursued several conditions for 

C–N cleavage and functionalization that included biocatalytic and transition metal-mediated 

approaches.

Biocatalytic methods were explored as a means to achieve a protecting group-free oxidation 

of the C9–N bond, reminiscent of the proposed biosynthetic tailoring process. Although the 

requisite biosynthetic enzymes have not been identified, we posited that other established 

biocatalysts capable of oxidizing C–heteroatom bonds could accept the bicyclo[3.3.1]nonane 

scaffold of 5 as a substrate while retaining site-selectivity. A screening set comprised of 14 

commercial and in-house heterologously expressed copper-42,43 and flavin-dependent 
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oxidases,44–46 a pyrroloquinoline (PQQ) dependent dehydrogenase,47 a horseradish 

peroxidase (HRP),48 and a laccase/TEMPO redox mediator system49 was assembled. 

However, overview screenings under representative conditions did not identify any oxidation 

activity with unprotected substrate 5 (see Section 3.2 in the Supporting Information for 

details).

We therefore sought to examine other established chemical conditions for the oxidation of 

carbamate-protected saturated nitrogen heterocycles. While methods employing iron50 and 

copper51 redox mediators in combination with peroxides failed to generate the anticipated 

enamine or enamide products, we observed that sub-stoichiometric quantities of RuO2 with 

sodium periodate as stoichiometric oxidant in a mixture of tBuOH and water resulted in 

piperidine oxidation to yield 25 (Scheme 2a).48,53 Although oxidation under these 

conditions by the presumed in situ generated RuO4 catalyst was expected to give the 

corresponding amino acid (i.e., following hydrolysis of an intermediate C-ring iminium ion 

and oxidation of the resulting aldehyde), cyclic imide 25 was obtained in 86% yield. 

Additional experiments demonstrated that the electronically deactivating triflyl group on the 

pyridone oxygen was critical to the success of the piperidine oxidation-- oxidation of 

derivatives of 25 bearing methyl-, benzyl-, or SEM- groups instead of the triflyl moiety 

proved unsuccessful under identical conditions.

We envisioned that hydrolysis of imide 25 followed by decarboxyolefination of the resulting 

carboxylic acid could offer an attractive strategy to excise C9 and install the required 

unsaturation at C10–C11. Treatment of 25 with aqueous LiOH at the elevated temperatures 

required for imide hydrolysis resulted in undesired concomitant triflate cleavage. Therefore, 

a methyl ether was introduced in place of the triflate prior to imide hydrolysis to yield 

carboxylic acid 26. Unfortunately, subjecting 26 to classic Kochi oxidative decarboxylation 

conditions54 failed to deliver alkene 27. Additionally, an attempted Hunsdiecker-type 

decarboxyhalogenation55 resulted in the C-ring contracted pyrrolidine 28 (Scheme 2b), 

presumably the result of an SN2 displacement of the intermediate alkyl halide. While more 

recently developed decarboxyolefination conditions using metallo-organo-56 or organo-

photocatalysts57 in combination with cobalt-based dehydrogenation catalysts furnished 

olefin 27 in 50% yield, a competing protodemetalation pathway leading to ethyl derivative 

29 hindered further optimization of this process. Alternatively, desired terminal olefin 27 
was obtained in higher yield (65%) through a Pd(0)-catalyzed decarbonylative elimination of 

an in situ-generated mixed anhydride of 26.58 Deprotection of 27 using TMSI12 completed 

the first total synthesis of the neuroprotective compound (−)-casuarinine H (2, Scheme 2c).25 

Semireduction of the pyridone moiety in 2 with samarium metal in aqueous HCl59 cleanly 

yielded (+)-lycoplatyrine B (4)26 in 84% yield, also constituting the first total synthesis of 

this Lycopodium alkaloid. Furthermore, treatment of terminal olefin 27 with an in situ-

generated palladium hydride catalyst effected isomerization to the internal (E)-alkene in 

81% yield.60 A subsequent TMSI-mediated deprotection delivered (−)-8,15-

dihydrohuperzine A (3).24,61

The spectroscopic data for synthetic (−)-casuarinine H (2), (+)-lycoplatyrine B (4), and 

(−)-8,15dihydrohuperzine A (3) were in full agreement with those reported upon isolation of 

these natural products from the producing organisms.24–26 Taking advantage of this late-
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stage diversification approach, the target alkaloids 2–4 were prepared in 16 to 17 steps 

(longest linear sequence, LLS) and 1.7–4.5% overall yield from (+)-pulegone.

Synthesis of Lycoplatyrine A and Lycopladine F.

For the synthesis of Lycopodium alkaloids bearing substituents at C2 (i.e., 8–9), we 

envisioned a cross-coupling approach in which the key β-obscurine intermediate 24 would 

be elaborated to a selectively C2-functionalized lycodine derivative to serve as a common 

coupling partner. Accordingly, protected β-obscurine 24 was deoxygenated in the presence 

of a palladium catalyst and ammonium formate as reductant to deliver N-Boc lycodine (30). 

Subsequent iridium-catalyzed meta-selective C–H borylation29,62 of the pyridine A-ring and 

bromodeborylation63 furnished 2-bromolycodine (31) (Scheme 3a).

Lycoplatyrine A (8) features a C2 piperidine substituent as an epimeric mixture of 

undetermined absolute configuration,26 which we anticipated could be installed through the 

coupling of 31 with an α-functionalized piperidine derivative (Scheme 3b). We specifically 

envisioned the application of a method recently disclosed by our laboratory in which α-

hydroxy-β-lactams such as 32 serve as surrogates for α-metallated N-heterocycles in a 

palladium-catalyzed coupling with aryl halides.20 This method was particularly attractive 

due to the mild and stereospecific nature of the cross-coupling, although the use of pyridyl 

bromides had not been previously demonstrated. As proposed, the coupling of 31 with 

racemic lactam 32, prepared from the corresponding piperidine-derived 2-

oxophenylacetamide through a Norrish-Yang reaction,20 delivered 33 as a mixture of 

epimers at C2’. Cleavage of the 2-oxophenylacetamide and Boc-protecting groups under 

sequential basic and acidic conditions yielded lycoplatyrine A (8) as a 1:1.5 mixture of the 

anticipated C2’ epimers.

According to the previously proposed mechanism for this coupling, the hydroxy group of the 

lactam coordinates to the palladium center before irreversible C–C bond cleavage (β-carbon 

elimination) driven by the release of ring strain in 32 delivers a C2’-palladated species in a 

stereoretentive manner (Scheme 3b, grey box).20,64 We therefore anticipated that the use of 

enantiomerically pure lactams (2’S)- and (2’R)-32 would enable the stereospecific 

piperidinylation of the lycodine scaffold at C2, and thus allow the assignment of absolute 

configurations at C2’ in naturally occurring alkaloid 8.

To obtain α-hydroxy-β-lactam 32 in enantioenriched form, we first investigated enzymatic 

resolution methods. Despite extensive reaction engineering, selectivity for an enzymatic 

hydrolytic kinetic resolution65,66 of acetylated tertiary alcohol 32 with pig liver esterase 

(PLE) and lipase A from C. antarctica (CalA) was poor and therefore not synthetically 

useful (E ≤ 7) (see Section 3.5 in the Supporting Information). Alternatively, 

enantiomerically resolved lactams (2’S)- and (2’R)-32 were obtained from preparative chiral 

supercritical fluid chromatography (SFC).20 Coupling of lactams (2’S)- and (2’R)-32 with 

lycodine bromide 31 gave single epimers of 33 in 65% yield, which were deprotected to 

provide single epimers of lycoplatyrine A (8) in 4.7% overall yield over 16 steps from (+)-

pulegone (LLS). Comparison of the spectral data of single epimers of synthetic 8 with data 

for naturally-derived 8 revealed a slight excess of the (2’S)-8 epimer in material isolated 
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from natural sources (d.r. 1.3:1).26 The cross-coupling product obtained using racemic 32 
was also enriched in the same epimer (d.r. 1.5:1, vide supra), suggesting that the chiral 

lycodine scaffold exerts a low level of enantiodiscrimination and enantiotopic face 

discrimination in both the synthetic and natural coupling processes.

Indeed, our success in preparing single epimers of lycoplatyrine A (8) rested on the 

stereospecific coupling of α-hydroxy-β-lactams as surrogates for α-metallated piperidines, 

which otherwise typically suffer from low yields and poor stereoselectivities in the 

metalation step.67,68 Although an analogous β-lactam-based cross-coupling for five-

membered nitrogen heterocycles is precluded due to the inaccessibility of the five-membered 

analogues of 32 with established photochemical methods,69 α-metallated pyrrolidines are 

excellent stereoselective coupling partners. These reagents set the stage for the preparation 

of the pyrrolidine analog of lycoplatyrine A (“pyrrolo-lycoplatyrine A”, 14), which is 

hypothesized to be an intermediate in the biosynthesis of other lycodine-derived congeners 

including lycopladine F (9).27 For the synthesis of N-Boc pyrrolo-lycoplatyrine A (36), we 

turned to a method by Campos and coworkers70 for the stereoselective α-arylation of N-

Boc-pyrrolidine (34) (Scheme 3c). Enantioselective ortho-lithiation of 34 in the presence of 

either (+)- or (−)-sparteine,71 transmetallation to form the corresponding organozinc species 

(35), and subsequent palladium-catalyzed coupling to lycodine bromide (31) delivered 

single C2’-epimers of the desired product (36) in high yield (88%). Subsequent deprotection 

provided each of the two C2’-epimers of pyrrolo-lycoplatyrine A (14) in 15 steps from (+)-

pulegone (7% overall, LLS).

We sought to similarly access lycopladine F (9) via a direct coupling approach where the 

necessary amino acid moiety is appended at C2 of lycodine bromide (31, Scheme 3d). To 

this end, iridium-catalyzed photoredox conditions effected activation of bis-protected 

glutamic acid 37 through single-electron oxidation of the cesium carboxylate, followed by 

decarboxylative C–C bond scission and nickel-catalyzed C(sp3)–C(sp2) coupling with aryl 

bromide 31 to deliver protected lycopladine F (38) in 84% yield.72 A low nickel loading (1 

mol%) was necessary to attenuate consumption of bromide 31 in a non-productive 

protodehalogenation pathway and achieve good yields of 38. Removal of both Boc 

protecting groups followed by hydrogenolytic cleavage of the benzyl ester in the presence of 

trifluoroacetic acid yielded lycopladine F (9) in 71% yield as a 1:1 mixture of epimers (4.8% 

yield over 16 steps LLS). The analytical data obtained for the synthetic material matched 

those reported for the natural material, which was isolated from Lycopodium complanatum 
as a 3.5:1 mixture of (2’S):(2’R)-epimers.27 We expect access to pyrrolo-lycoplatyrine A 

(14) and lycopladine F (9) to set the stage for studies into the biosynthesis of the latter 

natural product.27

CONCLUSION

In summary, we have developed the first total syntheses of lycodine alkaloids casuarinine H 

(2), lycoplatyrine B (4), lycoplatyrine A (8), and lycopladine F (9) and a total synthesis of 

8,15-dihydrohuperzine A (3) employing the readily accessible tetracycle N-desmethyl-β-

obscurine (6) as a common intermediate. A series of bioinspired modifications of the 

piperidine C-ring in 6, including oxidative ring cleavage, C–C bond scission with carbon 
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atom excision, and olefin isomerization delivered tricyclic congeners 2–4. Conversion of the 

pyridone A-ring in 6 to the corresponding pyridine (7) and site-selective C–H 

functionalization to ultimately afford bromopyridine 31 enabled direct cross-couplings with 

saturated azacycles or an amino acid to complete the syntheses of C2-derivatized lycodine 

alkaloids lycoplatyrine A (8) and lycopladine F (9). The general late-stage peripheral 

derivatization and C–C functionalization strategies outlined herein may provide a basis for 

synthetic access to an even wider range of Lycopodium alkaloids. Our synthetic studies 

toward these compounds should also set the stage for a broader, more systematic assessment 

of their biosynthesis and bioactivity.25,26,61 Biological activities exerted by these natural 

products include a range of neuroprotective effects such as those observed for huperzine A,
4,5 for example the attenuation of both glutamate-induced neurotoxicity and free radical-

mediated oxidative stress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bioinspired plans for the synthesis of lycodine alkaloids.
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Scheme 1. Synthesis of the bicyclo[3.3.1]nonane core in N-desmethyl-α-obscurine through formal 
(3+3)-cycloadditiona

aReagents and conditions: (a) NaOEt, EtOH, 21 °C, then acrylonitrile, 0 to 21 °C, then 

TsOH, 145 °C (38%, >13 g scale); (b) Zn(NO3)2 • 6 H2O, acetone oxime, H2O, 90 °C, then 

vacuum, 120 °C (46%, >2 g scale); (c) aq. H2O2, LiOH• H2O, MeOH, H2O, 21 °C (90%, 30 

g scale); (d) PhSH, Na, THF, 21 °C, then 19, 85 °C; (e) NaBO3• H2O, AcOH, 40 °C (65%, 2 

steps, >17 g scale); (f) DBU, iPrOH, 0 °C, then acrylonitrile, 0 to 40 °C (60%, >7 g scale); 

(g) ethylene glycol, p-TsOH, HC(OEt)3, 75 °C (97%); (h) LiAlH4, Et2O, 0 °C (84%, >2 g 

scale); (i) aq. HClO4, 1,4-dioxane, 105 °C; (j) Boc2O, Et3N, THF, 60 °C (54%, 2 steps); (k) 

Pb(OAc)4, CHCl3, 21 °C (90%); (l) Tf2O, pyridine, CH2Cl2, −78 to 21 °C (78%).
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Scheme 2. Synthesis of C-ring cleaved lycodine alkaloids from protected β-obscurine.a
aReagents and conditions: (a) RuO2• H2O, NaIO4, H2O, 21 °C, then 24, tBuOH, 60 °C 

(86%); (b) aq. 1 M LiOH, THF, 30 °C; (c) MeI, Ag2CO3, CHCl3, 75 °C (86%, 2 steps) (d) 

aq. 1 M LiOH, THF, 65 °C (97%); (e) PdBr2, DPE-Phos, Piv2O, Et3N, DMPU, 130 °C 

(65%) (f) TMSI, CHCl3, 65 °C (89%) (g) Sm, aq. 3 M HCl, 0 to 21 °C (84%) (h) Pd(dba)2, 

P(tBu)3, iPrCOCl, toluene, 90 °C (81%) (i) TMSI, CHCl3, 65 °C (41%).
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Scheme 3. Couplings of a site-selectively functionalized lycodine congener in the syntheses of C2-
substituted alkaloids.a

aReagents and Conditions: (a) HCO2NH4, Pd(OAc)2, dppf, Et3N, DMF, 60 °C (99%); (b) 

B2pin2, [Ir(COD)(OMe)]2, dtbbpy, THF, 80 °C; (c) CuBr2, MeOH, H2O, 80 °C (74%, 2 

steps); (d) RuPhos Pd G4, Cs2CO3, toluene, 70 °C [(2’S)-33: 65%, (2’R)-33: 65%, 33 as 

epimeric mixture at C2’ with rac-32: 72%]; (e) NaOH, MeOH, 1,4-dioxane, 70 °C (f) aq. 6 

M HCl, 70 °C [(2’S)-8: 90%, (2’R)-8: 68%; 2 steps]; (g) sBuLi, (+)- or (−)-sparteine, 

MTBE, −78 °C, then ZnCl2, THF, −78 to 21 °C, then 31, Pd(OAc)2, tBu3PHBF4, MTBE, 60 

°C [(2’S)-36: 55%, (2’R)-36:88%]; (h) aq. 6 M HCl, 21 °C [(2’S)-14: quantitative, (2’R)-14: 

70%]; (i) 31, NiCl2-glyme, dtbbpy, Ir[dF(CF3)ppy]2(dtbbpy)PF6, Cs2CO3, DMF, 450 nm 

LED, 21 °C (84%); (j) PhOH, TMSCl, CH2Cl2, 21 °C; (k) 500 psi H2, Pd/C, CF3CO2H, 

MeOH, 21 °C (71%, 2 steps).
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