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Abstract

Medical imaging is the standard-of-care for early detection, diagnosis, treatment planning, 

monitoring, and image-guided interventions of lung cancer patients. Most medical images are 

stored digitally in a standardized Digital Imaging and Communications in Medicine format that 

can be readily accessed and used for qualitative and quantitative analysis. Over the several last 

decades, medical images have been shown to contain complementary and interchangeable data 

orthogonal to other sources such as pathology, hematology, genomics, and/or proteomics. As such, 

‘radiomics’ has emerged as a field of research that involves the process of converting standard-of-

care images into quantitative image-based data that can be merged with other data sources and 

subsequently analyzed using conventional biostatistics or artificial intelligence (AI) methods. As 

radiomic features capture biological and pathophysiological information, these quantitative 

radiomic features have shown to provide rapid and accurate non-invasive biomarkers for lung 

cancer risk prediction, diagnostics, prognosis, treatment response monitoring and tumor biology. 

In this chapter, radiomics and emerging AI methods in lung cancer research are highlighted and 

discussed including advantages, challenges, and pitfalls.
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Introduction

Medical imaging is the standard-of-care for early detection, diagnosis, treatment planning, 

monitoring, and image-guided interventions of lung cancer patients. Most medical images 

are stored digitally in a standardized Digital Imaging and Communications in Medicine 

(DICOM) format that can be readily accessed and used for qualitative and quantitative 
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analysis. Computerized image-based feature extraction from medical images has been an 

area of research over the last several decades to create computer-aided diagnosis (CAD) 

systems (Dhawan et al. 1986; Giger et al. 1988; Kawata et al. 1998; Hardie et al. 2008). 

However, in today’s conventional clinical radiology practice, only a few quantitative metrics 

are used to describe the phenotype of nodules or tumors. This limited list of quantitative 

metrics with respect to pulmonary lesions includes: 1) computed tomography (CT)-based 

largest diameter of nodules detected incidentally or in a screening setting following the 

Fleischner Society (Bueno et al. 2018), or Lung-RADS (ACR) guidelines respectively, 2) 

CT-based largest diameter of tumors following the Response Evaluation Criteria in Solid 

Tumors, RECIST (Eisenhauer et al. 2009), 3) standardized uptake value (SUV) derived 

metrics from positron emission tomography (PET), and 4) percent enhancement of lesions 

on magnetic resonance imaging (MRI).

Over the last decade, there has been emerging evidence that medical images contain 

complementary and interchangeable data orthogonal to other sources such as pathology, 

hematology, genomics, and/or proteomics (Gillies et al. 2016). ‘Radiomics’ is an emerging 

field of research that involves the process of converting standard-of-care images into 

quantitative image-based biomarker that can be merged with these orthogonal clinical and 

other ‘omic-based data and subsequently analyzed using conventional biostatistics or 

artificial intelligence (AI) methods. As radiomic features capture biological and 

pathophysiological information from these region-of-interests (ROIs), these quantitative 

radiomic features have shown to provide rapid and accurate non-invasive biomarkers for 

lung cancer risk prediction, diagnostics, prognosis, treatment response monitoring, and 

tumor biology. In this chapter, radiomics and emerging AI methods in lung cancer research 

are highlighted and discussed including advantages, challenges, and pitfalls.

The Radiomics Pipeline

Medical images can be analyzed by either extracting quantitative features from identified 

and delineated ROIs or by analyzing an entire image or image series. The former is often 

referred to as “conventional” radiomics where quantitative image features are extracted from 

a segmented ROI and analyzed while the latter is often driven by emerging deep learning 

(DL) methods which do not always depend on segmentation of an ROI. With respect to 

conventional radiomics, there are five fundamental steps: (1) Image acquisition and 

digitization, (2) ROI selection and segmentation, (3) Quantitative feature extraction, (4) 

Biomarker discovery/training, and (5) Test and validation (Figure 1a).

The first step involves image-data acquisition using standard-of-care medical images. Since 

imaging is widely utilized in oncology care, radiomics has substantial utility with the readily 

available image-data that exist in every radiology clinical PACS server. However, image 

acquisition protocols vary widely within and across radiology practices. Though it is 

advantageous to have homogeneous image acquisition parameters in an analytical cohort, 

there are downstream image processing steps and analytical methods that can be applied to 

address heterogeneous image acquisitions, often resulting in more robust predictive models 

than those obtained with a single homogeneous acquisition protocol (Mu et al. 2019b). For 

instance, resampling all image voxels on a dataset to a chosen voxel size is a well-known 
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and applied technique in majority of the radiomic studies to increase robustness of features 

that are subsequently extracted (Shafiq-Ul-Hassan et al. 2018). When texture features are 

calculated, a common practice of relative discretization (i.e., clustering of the pixels in the 

image to a fixed number of bins) or absolute discretization (i.e., clustering of the pixels in 

the image to a fixed bin size) have also shown to substantially impact the reproducibility of 

PET (Leijenaar et al. 2015), CT (Larue et al. 2017; Shafiq-Ul-Hassan et al. 2017) and MRI 

(Duron et al. 2019) derived features. Normalization of radiomic features (e.g., by total 

number of ROI voxels, a single voxel volume, etc.) that are sensitive to voxel size and image 

acquisition parameters have also shown to improve the robustness of radiomics across 

different scanners as well of eliminating the dependence on volume (Shafiq-Ul-Hassan et al. 

2017; Shafiq-Ul-Hassan et al. 2018).

The second step involves the ROI selection and segmentation. An ROI may include one or 

more “index” nodules or tumors, metastatic lesions, or whole organs in 3-dimenational 

space. As such, it creates an advantage of radiomics over tissue-based biomarkers due to 

reflection of the entire ROI in 3-dimensional space (e.g., tumor and surrounding 

parenchyma) compare to just a portion of tumor(s) that was captured on a biopsy. Although 

there are clear guidelines for “index” lesion selection (Eisenhauer et al. 2009), a radiologist 

or a very experienced imaging scientist is ideally best suited for ROI selection. Additionally, 

over-reads of 5 to 10% of all images should be considered and conducted by an independent 

radiologist and this can result in changing the identity of the “index” lesions. Segmentation 

of the ROI can be performed using manual, semi-automated, or fully automated approaches. 

Manual segmentation is laborious and although it can be very accurate when conducted by 

an experienced radiologist, inter-reader studies show poor reproducibility with Dice 

coefficients often < 80% (Alilou et al. 2017). Semi-automated (e.g., using an initial 

parameter such as a single click on the center of a lesion) or fully automated segmentation 

approaches are faster and more repeatable (Kalpathy-Cramer et al. 2016b; Tunali et al. 

2019c) but may still require manual verification and corrections if the segmentations 

algorithm fails on difficult cases. As some radiomic features are extremely sensitive to 

segmentation, a segmentation algorithm that produces accurate, reproducible and consistent 

segmentations in an automated manner and requires minimal user input is a critical 

requirement in order to increase stability of image-based features (Kalpathy-Cramer et al. 

2016a; Tunali et al. 2019c).

The third step is feature extraction where image-based features are calculated from the ROI. 

The various classes of features have been described in detail elsewhere (Gillies et al. 2016). 

Briefly, radiomic features are classified into first-, second-, and higher-order features. First-

order features include shape- and size-based features and features that describe the 

distribution of values of individual voxels (i.e., volumetric pixels) without concern for 

spatial relationships. Shape and size-based features consist of the larger-scale form of the 

nodule (or tumor) such as sphericity, compactness, surface area, surface to volume ratio, and 

volume. Nodule/tumor voxel intensities describe the histogram of intensities within the CT 

image through basic metrics such as mean, median, maximum, minimum, uniformity, or 

randomness (entropy) of the intensities in the image, as well as the skewness (asymmetry) 

and kurtosis (flatness) of the histograms of values. Second-order image features are 

described as “texture” features and they describe statistical interrelationships between voxels 
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with similar (or dissimilar) contrast values. Texture features consist of image consistency 

and patterning textures that quantify intra-nodule (or intra-tumor) heterogeneity differences 

observable within the segmented nodule, tumor, or stromal volume. In practice, there are 

dozens of methods and multiple variables that can be used to extract texture features, 

resulting in hundreds of values—far too many to elaborate here. Higher-order features are 

also described as “texture” features and impose filter grids on the image to extract repetitive 

or non-repetitive patterns. These include fractal analyses, Minkowski functionals, wavelets, 

and Laplacian transforms of Gaussian bandpass filters. These generally describe enhanced 

textural information within the tumor/nodule volume through an iterative process of 

decomposing the original image into different frequency ranges/scales and then feature 

extraction occurs from the decomposed images to quantify textural and spatial intensity. In 

order to enable inter-operability of radiomic signatures (i.e., repeatable of signatures), 

differences in terminology, algorithms, software implementations, and other methodological 

facets must be explained distinctly. Recently, an international collaboration initiative called 

the image biomarker standardisation initiative (IBSI) has worked towards standardizing the 

extraction of image biomarkers to address part of this inter-operability problem by providing 

image biomarker nomenclature and definitions, benchmark data sets, and benchmark values 

to verify image processing and image biomarker calculations, as well as reporting guidelines 

(Zwanenburg et al. 2018).

The fourth step is the analytical steps of training or discovery of a model to predict the 

desired dependent variable (e.g., risk, prognosis, treatment response, etc.) or phenotype (e.g., 

gene mutation[s], molecular signature, protein expression, etc.) using conventional 

biostatistics or machine learning (ML) methods (Figure 2). The decision of what analytical 

method(s) to be deployed is dependent on many different factors including sample size (e.g., 

ML approaches may overfit smaller sample sizes), study endpoint (e.g., dichotomous vs. 

continuous or time-dependent), and the statistic or metric of interest (e.g., p-value-driven 

point estimate vs. performance statistics such as area under curve [AUC)]). There are no set 

rules and this aspect of radiomics is an area of intense research and debate. Regardless, it is 

often advantageous that the training model be integrated to include orthogonal information 

including patient data, clinical data, and other ‘omic information such as driver mutations, 

immunohistochemistry (IHC) proteomic data, or circulating biomarkers, when available. 

Image-based features that are non-reproducible can be eliminated (Balagurunathan et al. 

2014a; Balagurunathan et al. 2014c; Kalpathy-Cramer et al. 2016a; Tunali et al. 2019c) and 

principal component analysis or clustering methods could be used to reduce dimensionality 

of the created models to avoid overfitting (Hosny et al. 2018).

The critical final step is the testing and validation of the model with independent data from 

internal and/or external datasets. A successful external validation can demonstrate the 

potential generalizability of the model as it may include different acquisition protocols and 

patient population(s). Defining a successful test and validated model is dependent on the 

statistic or metric of interest. For example, if the model was trained to find an integrated 

model with the highest AUC, then AUC obtained in the test and validation cohorts should 

not be significantly different from the trained model.
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Artificial intelligence in medical imaging

AI is an umbrella term technology that includes ML and DL and enables machines to mimic 

human intelligence and consequently have downstream effect on transforming industries 

such as medicine. DL is a subset of ML, while ML is a subset of AI (Figure 2). AI has 

unprecedented success due to advances in central processing units (CPUs) and graphics 

processing units (GPUs), and the availability of larger data sets due to increased storages and 

digitization. AI methods have made substantial advances on interpreting complex and multi-

dimensional data in various applications from stock trading to computer-vision and natural 

language processing to self-driving cars. This advances got its share within health care on 

various applications such as patient risk management, drug discovery, patient diagnosis and 

prognosis and medical image interpretations. Specifically, DL methods (e.g., convolutional 

neural networks) excel at image pattern recognition thus may quantify image information 

that is subtle to humans in the setting of medical imaging.

Generally, AI in medical image analyses can be applied two ways: i) radiomic features 

extracted from ROIs can be input into ML algorithms to develop classifiers (i.e., 

“conventional radiomics”), or ii) an entire image or image series can be an input into DL 

network to develop classifiers. DL methods are currently being explored in detection, 

characterizing, and monitoring of cancers. Lung cancer is one of the most prominently 

researched cancer type by AI due to its medical importance, an abundance of CT or PET/CT 

images, and the high-contrast high-resolution inherent in CT images (Hosny et al. 2018). 

Although DL and conventional ML radiomic approaches have similar endpoints in terms of 

medical image analysis, they differ substantially in terms of training methods. As previously 

mentioned, “conventional radiomics” requires proper segmentation of the ROI, engineered 

feature extraction and selection for optimized model creation whereas DL methods do not 

require ROI annotation but rather uses a single seed point or bounding box that can be 

identified by an expert human observer or a separately trained AI detection system.

AI methods have already been deployed with great success in radiomics studies. However, to 

successfully utilize AI methods into clinical setting, several challenges remain. First, large 

patient and/or image datasets are crucial to the success of any AI approach. This is 

especially the case with deep learning model, wherein large number of layers are used 

(Figure 1b). Small datasets are prone to being overfitted, ungeneralizable, and non-

reproducible. Since medical imaging is widely deployed in developed countries, access to 

large imaging datasets should be a real-world reality. However, a critical barrier to access is 

the time required to annotate and curate such datasets, which is well recognized (Gillies et 

al. 2016). For DL approaches, data can be “augmented” with a number of approaches (Napel 

et al. 2018). One of the most widely used approaches is “transfer learning”, where a neural 

network model is first trained on a similar problem to identify features such as edges, 

sharpness, etc. and afterwards this network is either reused (partly or completely) or tuned to 

be adapted for the new task. Another approach is using a large public repository such as The 

Cancer Imaging Archive (TCIA), or the National Lung Screening Trial (NLST) with 

annotated medical images to pre-train a neural network and tune it for a specific task. An 

alternative approach to data augmentation is to artificially inflate the training dataset size by 

warping, rotating, or inverting the images, which theoretically can be used to overcome the 

Tunali et al. Page 5

Cold Spring Harb Perspect Med. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lack of high sample numbers. A more recent development is to augment image data using 

Generative Adversarial Networks (GANs) that create new data by generating images with a 

different modality, such as contrast enhanced to non-enhanced CT, or MRI to CT (Sandfort 

et al. 2019). However, even with augmentation, data can be insufficient when rare diseases 

or small data sets are being modelled. An alternative way to tackle this is through a 

centralized databases or using a distributed learning platform where the ‘code’ is shared 

instead of the data (Lambin et al. 2017). One other potential limitation with DL methods is 

that these systems are a “black-box” in that there is a lack of transparency as how the 

networks perform the various tasks. However, Chartrand et al. (Chartrand et al. 2017) argues 

that a highly accurate opaque system is desirable to an inaccurate transparent one, that users 

may never understand how these networks work, and AI will likely identified patterns those 

humans cannot interpret. Another limitation is that DL methods are optimized for binary 

classifications rather than time-dependent endpoints based on a continuous scale, such as 

survival related outcomes.

Radiomics and AI in early detection/lung cancer screening

Worldwide, lung cancer is the most common diagnosed cancer and leading cause of cancer-

related death (Bray et al. 2018). Because of the large number of diagnoses, even incremental 

improvements in patient outcomes would have profound impact. There is a vast difference in 

survival outcomes between early stage versus late stage patients where for a localized lung 

cancer have a 56% 5-year OS and only 5% for distant metastasized diseases (Siegel et al. 

2019). Thus, detecting lung cancers early, when they are manageable, or even curable, is a 

critical need. Asymptomatic lung cancers are detected either incidentally, e.g., when a 

patient receives an imaging study for another indication, or via a screening program that is 

designed for individuals who are at high risk. In 2011, results from the National Lung 

Screening Trial (NLST) demonstrated a 20% relative reduction in lung cancer mortality for 

individuals screened by LDCT compared with standard chest radiography in a high-risk 

population of 53,454 current and former smokers ages 55 to 74 years (National Lung 

Screening Trial Research et al. 2011; Silva et al. 2017; De Koning et al. 2018; Pastorino et 

al. 2019). More recently, in 2018 the initial results of the Nederlands-Leuvens Longkanker 

Screenings ONderzo ek (NELSON) trial also showed significant declines in lung cancer 

mortality (De Koning et al. 2018). Moreover, in 2019 two additional randomized trials 

conducted in Italy called the Multicentric Italian Lung Detection (MILD) trial (Pastorino et 

al. 2019) and in Germany called The German Lung cancer Screening Intervention (LUSI) 

trial (Becker et al. 2019) were published, providing additional validation of lung cancer 

screening value. As such, the cumulative evidence based on the results of three published 

trials and anticipated publication of the NELSON trial has demonstrated substantial 

beneficial mortality reductions associated with LDCT screening.

Despite the mortality benefit associated with lung cancer screening, there are many 

limitations of early detection by LDCT (De Koning et al. 2018) including detection of large 

number of indeterminate pulmonary nodules and overdiagnosis of indolent neoplasms that 

may not otherwise cause clinical symptoms or death (Schabath and Gillies 2015). 

Additionally, though small pulmonary nodules (< 6 mm) are considered to be “negative” in 

lung cancer screening, prior analyses have shown that NLST participants who had baseline 
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negative screens and were diagnosed with incidental lung cancer in follow-up screening had 

poorer survival rates compared to screening participants who had a baseline positive screen 

that developed incidence lung cancer (Schabath et al. 2015; Patz et al. 2016).

Developing biomarkers for diagnostic discrimination between malignant tumors and benign 

nodules is not unique to imaging research and studies have been conducted for decades in 

this space (Brzakovic et al. 1990; Hadjiiski et al. 1999; Wei et al. 2005). With the emergence 

of lung cancer screening, there has been a substantial increase in efforts to develop non-

invasive image-based classifiers. As such, after the NLST was publicly available, many 

studies were utilized from patient medical images on this immense cohort. Following is just 

a small sample of the research that this data set has made possible (Table 1). One of the 

earliest studies conducted by Hawkins et al. (Hawkins et al. 2016) utilized baseline LDCT 

scans from the NLST to predict which baseline indeterminate (4–12 mm) pulmonary 

nodules would subsequently be diagnosed as an incident lung cancer in follow-up screening 

intervals. The authors developed a machine-learning model of 23 features that yielded a 

radiomic signature with an under the curve (AUC) of 0.81 for predicting development of 

cancer in 1 year which was far superior to volume alone (AUC = 0.72) which is the most 

widely used predictive marker in clinic. Peikert et al. (Peikert et al. 2018) created a 

radiomics model to compare malignant and benign screen-detected indeterminate lung 

nodules utilizing the NLST dataset. Using least absolute shrinkage and selection operator 

(LASSO) multivariable analysis, they reported an AUC of 0.939 could be reached with only 

8 non-redundant radiomic features. Huang et al. (Huang et al. 2018) utilizing the NLST to 

perform a matched case-control study and to identify CT image features to increase the 

positive predictive value (PPV) and reduce the false positive (FP) rates compared to thoracic 

radiologist evaluations. Cherezov et al. (Cherezov et al. 2018) utilized images and data from 

the NLST and improved malignancy prediction accuracy from 74.7% to 81.0% by 

implementing nodule size-specific models. In their study they used Synthetic Minority 

Oversampling Technique (SMOTE) to overcome the class imbalances which are inherent in 

these datasets. Chae et al. (Chae et al. 2014) utilized texture features to differentiate pre-

invasive lesions from invasive pulmonary adenocarcinomas that are marked as part-solid 

ground-glass opacities (GGOs) on chest CT scans. Their artificial neural network (ANN) 

model showed an excellent performance using five radiomic features with an AUC of 0.981 

on 86 part-solid GGOs. Liu et al. (Liu et al. 2017) extracted semantic features (i.e., 

radiological traits quantified by radiologists) from baseline nodules in the NLST and 

developed a model that predicted which participants would be diagnosed with lung cancer 1 

to 2 years (AUC = 0.80) after the baseline screen. Ardila et al. (Ardila et al. 2019) conducted 

a DL network to predict the risk of lung cancer utilizing the NLST dataset and their model 

achieved an AUROC of 94.4% which was validated on an independent validation dataset. 

Also utilizing images from cancer patients in the NLST, Morales et al. (Morales et al. 2019) 

identified two radiomic features that stratified patients into three risk-groups (e.g., low, 

intermediate, and high) with an AUC of 0.878. One of the features was found to be 

associated with FOXF2 expression which has been shown to be associated with poor 

prognosis. Dhara et al. (Dhara et al. 2016) utilized 891 nodules from the Lung Image 

Database Consortium and Image Database Resource Initiative database and classified 

malignant versus benign nodules using support vector machine (SVM). Their models 
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reached an AUC of 0.951 which outperformed methods that required manual segmentation 

of a trained radiologist. Other studies have tried addressing the issue of overdiagnosis by 

utilizing quantitative features. Maldonado et al. (Maldonado et al. 2013) developed a 

decision algorithm called CANARY that binned pulmonary nodules as aggressive or 

indolent. Their algorithm had a validation sensitivity of 98.7% and a specificity of 63.6%. 

Finally, Lu et al. (Lu et al. 2019) identified a model that included features that were 

extracted from the tumor and the “difference region” (i.e., the part-solid region of the tumor) 

and yielded an AUC of 0.846 to discriminate aggressive vs. indolent nodules. The summary 

of these studies can be found in Table 1.

Radiomics and AI in Prognostication

Though pathologic staging remains to be the most important prognostic factor for lung 

cancer survival (Mirsadraee et al. 2012)., there is marked variability in patient outcomes and 

survival among patients with the same stage of disease suggesting that other factors 

contribute to lung cancer survival, progression, and recurrence (Birim et al. 2006; Ries 2007; 

Kachroo et al. 2008; Dela Cruz et al. 2011; Pao and Girard 2011; Schabath et al. 2014). 

Accurately classifying the aggressiveness of tumors is critical as it can help physicians under 

the potential prognosis of a patient beyond just stage alone and provide options to choose 

between curative and palliative treatments as well as the aggressiveness of the therapy and 

follow-up. Radiomic studies have shown that image-based classifiers have the potential to 

complement staging and improve prognostication of lung cancer. Aerts et al. (Aerts et al. 

2014) analyzed NSCLC and head and neck patients and validated a CT radiomic signature 

that had better prognostic performance than TNM staging and volume with a concordance 

index of 0.65. They found associations between their signature features and gene-expression 

patterns using gene-set enrichment analysis where the most informative features were 

correlated with cell cycling pathways. Grove et al. (Grove et al. 2015) developed two CT 

features, convexity (hazard ratios [HR] = 0.31) and entropy ratio (HR = 2.36), which were 

significantly associated with OS of patients diagnosed with primary lung adenocarcinoma 

utilizing two independent cohorts. Tunali et al. (Tunali et al. 2017) assessed the same 

cohorts and developed novel radiomic features generated from radial gradient (RG) and 

radial deviation (RD) maps that also predict OS (HR = 0.40). Coroller et al. (Coroller et al. 

2015) built a combined model of CT radiomics and clinical predictors to predict the 

development of distant metastasis (CI = 0.61) and Wu et al. (Wu et al. 2016a) utilized 

fluorine 18 (18F) PET/CT-based radiomic features to also predict the development of distant 

metastasis (CI = 0.71). Huang et al. (Huang et al. 2016) found radiomic signatures that 

correlated with disease-free survival (HR = 1.77). Several other studies (Huynh et al. 2017; 

Li et al. 2017; Oikonomou et al. 2018) investigated the prognostic performance of CT 

radiomic features for distant metastasis and loco-regional recurrence after stereotactic body 

radiation therapy. Win et al. (Win et al. 2013) showed that heterogeneity on both CT and 

PET components of PET/CT were significant predictors of survival. Chae et al. (Chae et al. 

2014) and She et al. (She et al. 2018) found CT radiomic signatures that differentiate 

indolent versus invasive lung adenocarcinoma with an AUROC of 0.98 and 0.95, 

respectively. The summary of these studies can be found in Table 2.
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Radiomics and AI in treatment response

Advances in lung cancer treatments (e.g., checkpoint blockade immunotherapy and tyrosine 

kinase inhibitors [TKIs]) have decreased lung cancer mortality rates and improve patient 

survival outcomes. Early assessment of a therapeutic efficacy and predicting treatment 

outcomes would aid decision support for which treatment has the potential to have optimal 

benefit for the individual patient. This could eliminate unnecessary treatments, reduce 

toxicities and costs, and increasing patient survival. However, biomarkers that are highly 

predictive of both positive and negative responses that can be used prior to initiation of 

therapy are an unmet clinical need. As such, accurate, generalizable, and ideally non-

invasive biomarkers are needed as diagnostic companions for different treatments types 

(Teng et al. 2018).

Immunotherapy that blocks inhibitory checkpoint signals has been shown to yield durable 

responses. However, a substantial subset of patients do not respond to immunotherapy and, 

in some instances, patients experience rapid and lethal immunotherapy-induced hyper-

progressive disease (HPD). Several studies have utilized CT radiomics to address this recent 

clinical unmet need of identifying immunotherapy response. Trebeschi et al. (Trebeschi et al. 

2019) developed models to predict outcomes of both NSCLC and melanoma patients in the 

setting of immunotherapy. Their lesion-level performance in NSCLC patients yielded an 

AUROC of 0.83, whereas the best patient-level prediction models had an AUROC of 0.76. 

Sun et al. (Sun et al. 2018) developed models that assess CD8 cell tumor infiltration and 

utilized this model to predict immunotherapy response of NSCLC patients. Their radiomic 

signature of CD8 cells consisted of 8 radiomic features which yielded an AUC of 0.76 to 

discriminate inflamed tumors from immune-desert tumors. Tunali et al. (Tunali et al. 2019a) 

developed radiomics-clinical models to predict rapid disease progression, including HPD, 

among and NSCLC patients treated with immunotherapy found modest-to-high AUCs of 

0.81–0.85. Following up on this work, Tunali et al. (Tunali et al. 2019c) developed and 

validated a clinical-radiomic risk model that identified a very-high risk group of patients 

associated with extremely rapid and poor survival outcomes (HR for OS = 5.35) compare to 

the low-risk group (HR = 1.00). Lastly, Mu et al. (Mu et al. 2019a) developed a PET/CT 

radiomic signature to predict patients who are likely to achieve durable clinical benefit from 

immunotherapy that yielded an AUC of 0.81 in the validation cohort.

Similar to immunotherapy, only a subset of patients benefit of treatment with TKIs 

(Shepherd et al. 2005). As such, studies have been conducted utilizing radiomics to predict 

patient outcomes and TKI treatment response. Cook et al. (Cook et al. 2015) created models 

using textural features from fluorine 18 (18F) fluorodeoxyglucose (FDG) PET images to 

predict outcomes among patients treated with Erlotinib (an EGFR TKI). Their model 

discriminated patients into high vs. low overall survival (26.6 months vs 13.1 months, P = 

0.006). Ravanelli et al. (Ravanelli et al. 2018) identified CT texture features that predicted 6-

month progression with an AUROC of 0.80 and 1-year progression with 0.76. Park et al. 

(Park et al. 2018) identified texture features from pretreatment FDG-PET/CT to predict early 

EGFR TKI failure. After adjusting for clinical parameters, high GLCM entropy was 

associated with worse survival (HR = 4.86).
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Studies have also investigated the utility of radiomics for treatment responses to 

chemotherapy or radiation therapy. Coroller et al. (Coroller et al. 2017) utilized CT radiomic 

features extracted from primary lung tumors and lymph nodes to predict pathological 

complete response (pCR) and gross residual disease (GRD) after neoadjuvant chemo-

radiation before surgery. They identified a pCR radiomics feature (AUC = 0.75) that 

significantly outperformed total primary tumor and lymph node volume (AUC = 0.58) and a 

GRD radiomic clinical model that had a AUC of 0.73. Yu et al. (Yu et al. 2018) trained and 

validated cohorts a CT radiomic model to predict metastasis (HR = 1.27) among NSCLC 

patients treated with surgery or stereotactic ablative radiation therapy (SABR). Mattonen et 

al. (Mattonen et al. 2016) identified a machine learning based radiomics model to detect 

local recurrence after SABR. Their radiomic signature consisted of 5 features which 

discriminated local recurrence from fibrosis with an AUC of 0.85 and had a significantly 

lower false negative rate compared to an expert physicians assessment (99% vs 23%). 

Khorrami et al. (Khorrami et al. 2019) utilized peri- and intratumoral CT radiomic features 

to predict pemetrexed-based chemotherapy response and showed that peritumoral features 

were predictive for time-to-progression (AUC = 0.77). Fave et al. (Fave et al. 2017) utilized 

delta radiomics (i.e., changes in radiomic features in time) and showed that radiomic feature 

alterations after radiation therapy were associated with tumor response (C-index = 0.558). 

The summary of these studies can be found in Table 3.

Radiomics and AI in Radiogenomics

Radiogenomics is the study of the relationship between imaging features and genomic 

phenotype(s) (e.g., gene-expression, gene mutations, etc) to inform the potential underlying 

cellular pathophysiology of a tumor. It should be noted that in some publications, 

“Radiogenomics” refers to genomic prediction of radiation response patterns, which is not 

reviewed herein. Cancers are heterogeneous across a wide range of spatial and temporal 

scales which results in habitat variations in metabolism, vasculature, oxygenation, and gene 

expression (Gatenby et al. 2013; Yip and Aerts 2016). Genomic heterogeneity, molecular, 

and microenvironmental events reflect tumor aggressiveness and therapy response. Tumors 

with same stage and histology still have unique biological underpinning such as driver 

mutations, proteomic profiling, genomic heterogeneity, and/or microenvironments that 

reflect and can impact aggressiveness and therapy response. Technical advances allow 

extensive molecular characterization of tumor cells in each individual patient that enables 

personalized cancer treatment such as targeted treatments of TKIs. Targeted therapies such 

as Erlotinib and Gefitinib are used to treat patients with positive Epidermal Growth Factor 
Receptor (EGFR) mutations (Riely et al. 2006). However, a single arbitrary sample taken 

from the tumor using needle biopsy can only represent a small sub-region of the tumor 

region, which may result in misleading diagnoses. Meanwhile, many radiogenomic studies 

have shown that radiomic features can capture the link between the cancer genomics and 

tumor phenotype.

CT imaging is routinely used in the management of lung cancer patients. Thus, CT 

radiomics could be used to predict mutational status of clinically actionable mutations using 

non-invasive information. Such an approach would be particularly beneficial as a clinical 

predictor in patients with unresectable lung cancer, among patients in whom biopsy is 
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unable to be performed, or to minimize additional biopsy in a molecular test is 

indeterminate. Additionally, since radiomics can be extracted in immediately and in real-

time, data can be captured longitudinally from an ROI to pinpoint potential phenotypic 

transformations and activation of alternative pathways to recognize potential acquired 

resistance to therapies earlier. Velazquez et al. (Rios Velazquez et al. 2017) developed a 

clinical-radiomics signatures to differentiate between EGFR and KRAS mutations (AUC = 

0.70), the most common somatic mutations in lung adenocarcinomas. Gevaert et al. (Gevaert 

et al. 2017) utilized semantic features to predict EGFR and KRAS mutations; however their 

models were only able to predict for EGFR mutations accurately (AUC = 0.87). Liu et al. 

(Liu et al. 2016) utilized CT radiomics to predict EGFR mutation status (AUC = 0.709) in an 

Asian cohort who had surgically-resected peripheral lung adenocarcinomas. Weiss et al. 

(Weiss et al. 2014) identified CT texture features that discriminated between KRAS mutant 

tumors from pan-wildtype tumors (%89.6 accuracy) and Yamamoto et al. (Yamamoto et al. 

2014) combined clinical covariates and CT based features to characterize tumors with 

anaplastic lymphoma kinase (ALK+) rearranged NSCLC. Yoon et al. (Yoon et al. 2015) 

identified clinical covariates and CT and PET radiomics to predict for ALK/ROS1/RET 
fusion-positive lung adenocarcinoma (Sensitivity = 0.73, Specificity = 0.70) and Zhou et al. 

(Zhou et al. 2018) combined semantic CT features with next-generation RNA sequencing 

data and validated 10 metagenes annotated by functional gene enrichment analysis that were 

significantly associated with semantic features. Wu et al. (Wu et al. 2016b) identified texture 

CT features were associated with NSCLC tumor histology (AUC = 0.72). The summary of 

these studies can be found in Table 4.

Limitations and Recommendations

Radiomics have shown promise for providing non-invasive biomarkers to predict diagnosis, 

prognosis, and treatment response, and for longitudinal monitoring of lung cancer treatment. 

Despite the compelling results from these studies, there are still many limitations that need 

to be addressed that result in few reproducible findings and potentially spurious results.

There are many reasons that can be attributed to generating non-reproducible results 

including heterogeneous image acquisition and segmentation and inappropriate use of 

statistical methods (e.g., overfit models). Standard-of-care image acquisition parameters 

have a wide range of parameters that include inter alia: pixel spacing and slice thickness, 

reconstruction kernel, kVp, washout periods on PET scans, administration of contrast agent, 

echo time and repetition time on MRI scans. Intra- and inter-scanner variabilities affect these 

parameters which cause radiomic feature distributions to change. To overcome this issue, 

constant effort needs to be expended to ensure that acquisition and reconstruction protocols 

are either standardized or correctable. On the other hand, if the radiomic features are 

extracted from heterogeneous image acquisition parameters, features that are less sensitive 

to these parameters should be used and decisions should be made to consider eliminating the 

sensitive features (Shafiq-Ul-Hassan et al. 2017). This does assume that the reproducible 

features contain as much diagnostic information as those that may be considered for 

elimination. Meanwhile, computational radiomic feature calculations involve many critical 

processing steps that include pre-processing, spatial interpolation and intensity 

discretization. The IBSI (Zwanenburg et al. 2018) provides standardized algorithms for 
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radiomic feature calculation and give consensus and benchmarks on the most common 

radiomic features and image processing steps before feature extraction.

Another important factor that affects the reproducibility is the segmentation of the ROI (i.e., 

tumor parenchyma or peritumoral region). Manual segmentations are particularly time 

consuming and often leads to intra-observer variations. To overcome this, segmentation of 

the tumors can be done by semi-automated algorithms which involve minimal user 

variations such as simple initializations (e.g., seed point), followed by a computer-derived 

delineation of the ROI. However, to tackle this issue further, segmentation algorithms across 

institutions have to be standardized to achieve consistent delineations. Nevertheless, many of 

the features are not reproducible even when acquired within couple minutes using same 

image acquisition parameters (Balagurunathan et al. 2014b) or when the same segmentation 

algorithms are being used (Kalpathy-Cramer et al. 2016a). Hence, researchers are 

encouraged to choose reproducible features by utilizing test re-test datasets such as RIDER, 

and stable features by utilizing multiple segmentation datasets such as Moist run (Kalpathy-

Cramer et al. 2016b; Tunali et al. 2019b) or by performing multiple segmentations on subset 

of images from their own dataset of interest.

Another issue is poor study design that can result in false positive findings (Yip and Aerts 

2016). With the potential wide range of hyperparameters such as number of filters, feature 

categories, and other adjustable parameters, theoretically there are unlimited numbers of 

radiomic features available for analysis. Studies often analyze large number of features 

without accounting for multiple testing errors which leads to selection bias and false positive 

results. Chalkidou et al. (Chalkidou et al. 2015) suggests using a minimum of 10–15 

observations (i.e., patients) per predictor variable (i.e., radiomic feature) to realistically 

reduce false discovery rates. Another potential application is to correct significant p-values 

for multiple testing using methods such as the Bonferroni-Holm or Benjamini-Hochberg 

methods (Holm 1979; Benjamini and Hochberg 1995; Bland and Altman 1995). If estimates 

of predictive performance are conducted from a cohort of a single institution, multiple-

folded repeated cross-validation should be considered to minimize the risk of overfitting. 

Utilizing one or more validation cohort is the optimal method to validate findings to avoid 

spurious findings. However, one potential limitation is how to handle differences in 

demographic and clinical covariates across the training and validations cohorts. As such, 

another potential approach is to combine patient datasets from different institutions and 

randomly split all patients into training, test, and validation sets so that the trained model 

includes heterogeneity. Another suggestion is to assess whether the validated model can be 

applied on a distinct patient population (e.g., TKI treated patients only) or reflect a pan-
signature that can be used across multiple patient populations.

Medical image analysis and radiomics have shown to have the ability to characterize 

phenotypic and biological underpinning of ROIs (Aerts et al. 2014). Linking radiomics to 

biology is critical to evolve from mere statistical associations to characterizing tumor 

biology. Moreover, characterizing the biological underpinnings of radiomics will likely 

ensure the clinical uptake of these models. However, the link between radiomics and the 

tumor biology are often unknown due to the lack of availability of datasets that include both 

radiomics and genomic/biological information. Although studies have linked radiomics to 
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biology (Aerts et al. 2014; Grossmann et al. 2017; Morales et al. 2019; Tunali et al. 2019c), 

consistent efforts in this domain are needed to expedite the transition of radiomics into 

clinical practice.

To assess the quality of a radiomics study, a radiomic quality score (RQS) has been proposed 

by Lambin et al. (Lambin et al. 2017) which evaluates radiomic studies by a series of 

questions on internal consistency, reproducibility and clinical applicability. The RQS score 

makes no claims regarding the significance of the study evaluated; rather, the RQS quantifies 

the proper study design and scientific utility. We highly suggest researchers to evaluate their 

studies by RQS and try to maximize their score for more repeatable and quality science in 

the field of radiomics.

Conclusions

Radiomics is a non-invasive tool designed for clinical decision support, for both radiologists 

and oncologists, designed to use routinely available standard-of-care images of lung cancers. 

Radiomics have been shown to have utility across the lung cancer care continuum including 

risk prediction, early detection, diagnosis, prognosis, and treatment response. Despite the 

aforementioned limitations, radiomics and the radiomic community have evolved, in many 

ways, faster than other ‘omics fields because the radiomics field was able to leverage from 

existing disciplines. Though the radiomic community has embraced the rigorous training, 

testing, and validation of radiomic models, such models have yet to impact clinical practice. 

However, with the standardization of medical imaging and image-based features and the 

utilization of emerging technologies such as DL, prospective trials to test the clinical utility 

of radiomics will be emerging in the near future.
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Figure 1: Image-based biomarker model pipelines
a) Conventional radiomics pipeline b) Deep learning pipeline.
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Figure 2: End-points for radiomics modelling.
Radiomics can predict molecular marker and also predict patient outcomes such as overall 

survival.
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Figure 3: 
Artificial intelligence, machine learning, and deep learning.
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