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Summary

Transcriptome prediction methods such as PrediXcan and FUSION have become popular in 

complex trait mapping. Most transcriptome prediction models have been trained in European 
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populations using methods that make parametric linear assumptions like the elastic net (EN). To 

potentially further optimize imputation performance of gene expression across global populations, 

we built transcriptome prediction models using both linear and non-linear machine learning (ML) 

algorithms and evaluated their performance in comparison to EN. We trained models using 

genotype and blood monocyte transcriptome data from the Multi-Ethnic Study of Atherosclerosis 

(MESA) comprising individuals of African, Hispanic, and European ancestries and tested them 

using genotype and whole-blood transcriptome data from the Modeling the Epidemiology 

Transition Study (METS) comprising individuals of African ancestries. We show that the 

prediction performance is highest when the training and the testing population share similar 

ancestries regardless of the prediction algorithm used. While EN generally outperformed random 

forest (RF), support vector regression (SVR), and K nearest neighbor (KNN), we found that RF 

outperformed EN for some genes, particularly between disparate ancestries, suggesting potential 

robustness and reduced variability of RF imputation performance across global populations. When 

applied to a high-density lipoprotein (HDL) phenotype, we show including RF prediction models 

in PrediXcan revealed potential gene associations missed by EN models. Therefore, by integrating 

other ML modeling into PrediXcan and diversifying our training populations to include more 

global ancestries, we may uncover new genes associated with complex traits.

Introduction

Advancements in high-throughput genotyping and sequencing technologies have led to an 

explosion in the amount of genetic data publicly available.1 Leveraging these technological 

successes, genome-wide association studies (GWASs) have continued to uncover thousands 

of genetic variants that are associated with different complex traits in humans.2 However, 

most of these variants identified through GWAS are usually found in the noncoding region 

of the genome, thereby complicating identification of their functional importance in 

understanding the biology of complex traits.1–4 Many studies have shown that these regions 

are particularly enriched for gene regulatory variants such as expression quantitative loci 

(eQTLs), and thus genetically regulated gene expression might play a critical role in 

explaining the phenotypic variability in a wide range of complex traits.5–9 More so, given 

that a handful of SNPs have large effect associations that can explain most of the heritable 

component of gene expression traits, mathematical modeling of the relationship between 

genotype and gene expression is achievable using moderate sample sizes.10 Indeed, this has 

led to the development of transcriptome methods such as PrediXcan11 and FUSION,12 

which integrate cis-eQTL genotype and transcriptome datasets in order to predict the 

transcriptome from GWAS data and subsequently test for association between the predicted 

transcriptome and trait of interest. Unlike traditional GWASs, these gene-based approaches 

combine multiple SNPs into one functional unit and point directly to a biological 

mechanism, that is, either increased or decreased expression of a particular gene is 

associated with a trait. Because most GWASs lack corresponding transcriptome data, these 

methods may identify gene regulatory mechanisms underlying complex traits.

More specifically, the mathematical model used in PrediXcan is elastic net (EN),13 while 

FUSION uses Bayesian sparse linear mixed model (BSLMM).14 The EN model used by 

PrediXcan is a combination of L1 (LASSO)15 and L2 (Ridge)16 regularization of the cis-
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eQTL effect sizes, thus assuming a parametric prior for the cis-eQTLs. The same parametric 

assumption is made by FUSION, since BSLMM assumes a normal mixture prior, combining 

Bayesian variable selection regression (BVSR)17 and linear mixed modeling (LMM).18 

Given their parametric and linear assumptions, these tools fail to flexibly model the 

distributions of the genotypes and their relationship with gene expression.19 Some SNP and 

measured gene expression relationships can be best modeled mathematically with non-linear 

and non-parametric assumptions.19,20 Manor and Segal20 showed that by using simple non-

linear modeling with the K nearest neighbor (KNN)21 algorithm, robust gene expression 

prediction can be achieved using just cis-eQTLs. Wang et al.22 found that a mixed model-

based random forest (RF)23 (a non-linear model) has the potential to capture the non-linear 

relationships of cis-eQTLs and thus may improve gene expression imputation performance. 

Most recently, a method called TIGAR,19 which is based on a non-parametric Bayesian 

method called Dirichlet process regression,24 was shown to achieve a better imputation 

coefficient of determination (R2) than PrediXcan on simulation data where at least 1% of the 

cis-eQTLs are causal and true expression heritability is at most 0.2. TIGAR19 was also 

shown to impute expression for more genes than PrediXcan in a real dataset, thus 

corroborating the potential of using non-parametric and non-linear modeling of gene 

expression prediction in order to uncover more gene associations with complex traits.

Although several studies have shown that non-linear modeling of cis-eQTLs and gene 

expression can improve imputation performance,19,20,22 we sought to further explore the 

cross-population portability of both linear and non-linear transcriptome prediction in new 

cohorts. Generally, a large UK Biobank-based study has shown reduced accuracy in genetic 

prediction due to lack of diversity in training cohorts.25 More specifically, the importance of 

genetic ancestry diversity in gene expression prediction has also been corroborated by many 

recent studies, which have demonstrated that similarity in ancestries between the training 

and testing populations improves gene expression prediction.26–29 However, the replicability 

of these observations in new cohorts and how machine learning (ML) models perform across 

populations have not been adequately studied.

In this work, in order to further optimize gene expression imputation performance across 

global populations, we used two non-linear ML models, RF23 and KNN;21 a combination of 

both linear and non-linear ML models, support vector regression (SVR);30 and a linear ML 

model, EN, to predict gene expression from genotypes of SNPs within 1 Mb of each gene. 

We trained prediction models using genotype and blood monocyte transcriptome data from 

the Multi-Ethnic Study of Atherosclerosis (MESA)26,31,32 in self-identified African 

Americans (AFA, n = 233), Hispanic Americans (HIS, n = 352), European Americans 

(CAU, n = 578), as well as the combined cohort (ALL, n = 1,163). We tested MESA model 

performance on new genotype and whole-blood transcriptome data from participants 

enrolled in the Modeling the Epidemiology Transition Study (METS), which includes 

Ghanaians and African Americans (n = 76).33,34 We compared the ML models and showed 

gene prediction models were generally best in EN, with RF having the closest parallel 

performance. We corroborated previous findings that similarity in ancestry improves gene 

expression prediction accuracy. When we applied the ML models to transcriptome-wide 

association studies (TWASs) of lipid traits in MESA, we showed that RF models detect 

associations missed by EN. By integrating other ML modeling into PrediXcan and 
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diversifying training populations to include more global ancestries, we may uncover new 

genes associated with complex traits that have not been previously studied.

Material and methods

This study was approved by the Loyola University Chicago institutional review board (IRB) 

#210260091217 and Project #2014. Appropriate informed consent was obtained from 

human subjects.

Genomic and transcriptomic training data

MESA—The MESA cohort is made up of 6,814 individuals recruited from 6 sites across the 

United States (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; 

northern Manhattan, NY; St. Paul, MN) and consists of 53% female and 47% male 

individuals between the ages of 45 and 84 years31 with the demographics approximately 

distributed as 38% CAU, 23% HIS, 28% AFA, and 11% Chinese American (CHN). From 

the whole cohort, RNA was extracted from CD14+ monocytes from 1,264 individuals across 

the three populations (AFA, HIS, CAU) and quantified on the Illumina Ref-8 BeadChip.32 

Individuals with both genotype (dbGaP: phs000209.v13.p3) and expression data (GEO: 

GSE56045) included 234 AFA, 386 HIS, and 582 CAU. Illumina IDs were converted to 

Ensembl IDs using the RefSeq IDs from MESA and GENCODE35 version 18 (gtf and 

metadata files) to match Illumina IDs to Ensembl IDs. If there were multiple Illumina IDs 

corresponding to an Ensembl ID, the average of those values was used as the expression 

level.

MESA genotype data analysis and quality control—Genotype quality control and 

imputation were performed as previously described.26 To summarize, all MESA population 

genotypes were in genome build GRCh37/hg19. PLINK36 was used for quality control and 

cleaning of the genotype data. We removed SNPs with call rate < 99% or not in Hardy-

Weinberg equilibrium (p < 0.00001), and linkage disequilibrium (LD) pruned the resulting 

SNPs by removing 1 SNP in a 50 SNP window if r2 > 0.3. We conducted identity by descent 

(IBD) analysis on the genotype data and removed one pair of related individuals (IBD > 

0.05). The cleaned genotypes were merged with HapMAP populations (Yoruba in Ibadan, 

Nigeria [YRI]; Utah residents with Northern and Western European descent [CEU]; and East 

Asians from Beijing, China and Tokyo, Japan [ASN]), and principal component analysis was 

done both across and within populations using EIGENSTRAT.37 We used pre-LD-pruned 

variants and the Michigan Imputation Server and 1000 Genomes phase 3 v5 reference panel 

and Eagle v2.3 to impute genotypes in each of the MESA populations. The imputation 

reference populations were EUR for CAU and mixed population for AFA and HIS.38–40 

Imputation results were first filtered by R2 < 0.8 and minor allele frequency (MAF) > 0.01, 

and ambiguous strand SNPs were removed. After filtering, 9,352,383 SNPs in AFA, 

7,201,805 SNPs in HIS, and 5,559,636 SNPs in CAU were remaining for further analysis. 

After quality control, the final sample sizes used for the gene expression prediction model 

training are AFA = 233, HIS = 352, and CAU = 578. The final sample sizes used for 

downstream TWAS analysis are AFA = 1,188, HIS = 952, and CAU = 1,716.
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MESA transcriptome data analysis and quality control—PEER factor (PF) analysis 

was performed on the expression data of each population using the peer R package.41 Mogil 

et al.26 showed that the true positive replication rate was similar for 10, 20, and 30 PEER 

factors. As such, in each of the MESA populations, we used 10 peer factors and 3 genotype 

principal components (Figure S1) to adjust for potential batch effects and experimental 

confounders in the measured gene expression data. Then, we quantile normalized adjusted 

expression levels for use in model building.

Genomic and transcriptomic test data

METS—The METS cohort comprises 2,506 healthy individuals of African origin between 

the ages of 25 to 45 years, with approximately 500 (~50% male) from each of the five sites: 

Ghana; South Africa; Seychelles; Jamaica; and Chicago, IL, USA.42 Out of this cohort, 76 

female individuals (37 Ghana and 39 Chicago, IL, USA) underwent genome-wide 

genotyping on the Illumina Infinium Multi-Ethnic AMR/AFR BeadChip and RNA 

sequencing (RNA-seq) from whole blood using the NuGEN mRNA-Seq with AnyDeplete 

Globin library preparation kit (Loyola IRB #210260091217). Single-end 50 bp RNA-seq 

was performed by the Duke University Sequencing and Genomic Technologies Shared 

Resource.

METS genotype data analysis and quality control—The METS genotype data are in 

genome build GRCh38/hg38. We performed all quality control using PLINK v1.90b4.4.36 

We removed SNPs on non-autosomal chromosomes, below a call rate threshold of 0.01, or 

not in Hardy-Weinberg equilibrium (p < 0.00001). Prior to IBD and principal component 

analysis, we LD-pruned variants using PLINK indep-pairwise option at thresholds 50 5 0.3. 

Due to small sample size, we did not remove individuals based on cryptic relatedness. As 

such, we inferred the relationships of all pairs of individuals in our sample using KING43 

package version 2.2.5. To account for the cryptic relatedness, we used the relationship 

inference from KING43 to calculate principal components (Figure S1) using the PC-Air44 

tool in GENESIS45 package version 2.16.1. We performed METS genotype imputation on 

the Sanger Imputation service40,46 using the African Genome Resources reference panel and 

the pre-LD-pruned set of variants. After imputation, non-ambiguous strand SNPs in Hardy-

Weinberg equilibrium (p > 0.05) with MAF > 0.05 and imputation R2 > 0.8 were retained, 

and the cleaned genotypes were lifted over to genome build GRCh37/hg19 for gene 

expression prediction analyses.

METS transcriptome data analysis and quality control—We used FASTQC47 to 

analyze RNA-seq quality and found 50 high-fidelity bases with no primers or over-

represented sequences. We quantified gene expression using Salmon pseudoalignment,48 

which estimates the transcripts per million (TPM) for each gene using a reference 

transcriptome without performing the time-consuming process of an actual alignment. We 

used only protein-coding genes as defined by GENCODE35 version 28 and removed genes 

with mean TPM < 0.01. The resulting expression data of all samples were quantile and rank 

normalized. We further adjusted for potential batch effects, experimental confounders, and 

population structure on all the sample expression levels with 10 PEER factors41 and 10 
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genotypic principal components (Figure S1). The resulting adjusted expression levels were 

used in downstream analysis.

Prediction models—In each of the MESA populations, we used the adjusted expression 

values for protein-coding genes and genotypes of SNPs within 1 Mb of each gene (i.e., in 

cis) to fit the models. Using nested cross-validation for EN, and 5-fold cross-validation for 

the other ML models, we calculate the R2 for how the model predicts on the held-out fold. 

We report the mean R2 over all 5 folds as our measure of model performance. R2 is defined 

as 1 − ∑ y0 − yp
2/∑ y0 − y0

2, where yo is observed expression, yp is predicted expression, 

and y0 is the mean of observed expression. Note that in this paper, R2 is not the square of the 

Pearson correlation coefficient. Instead, the coefficient of determination, R2 as defined 

above, can be negative and thus indicative of a poorly fit model. We used the fitted model to 

predict expression in METS. Model performance was evaluated by Spearman correlation (ρ) 

of the METS predicted and observed gene expression values defined by GENCODE35 

version 28. Like prior studies, we considered ρ > 0.1 as significant.11,26 In our TWAS 

application of these models, we used the Bonferroni correction for the total number of genes 

tested across all four ML models (0.05/[5,279 + 3,651 + 3,772 + 2,601]) and thus considered 

(p < 3.3 × 10−6) to be significant.

EN—We used the glmnet R package49 to implement EN with the alpha parameter set at 0.5, 

which has previously been shown to perform optimally for predicting gene expression.10 

Alpha is the mixing parameter of EN used to achieve the combination effect of lasso (alpha 

= 1) and ridge (alpha = 0) penalties. For every single gene, we carried out nested cross-

validation of the EN model as follows: first, training data were split into roughly five equal 

parts; second, for each held-out fold, 10-fold cross-validation was performed on the 

remaining four folds to minimize the lambda parameter, and the model with the minimal 

lambda was used to predict on the held-out fold to determine the R2. Lambda is a tuning 

parameter that controls the overall strength of the EN penalty in each gene model. After 

going through each of the five folds, we used the average R2 as our measure of model 

performance. The trained models with minimal lambda were used to predict expression in 

the test data.26

RF—We used the scikit-learn Python package version 0.21.250 (Python version 3.7.3) to 

implement RF regression, and all the hyperparameters in the regressor were set to default 

except for the n_estimators hyperparameter (which is the number of trees in the forest). For 

every single gene, via 5-fold cross-validation, we conducted a grid search of the best 

n_estimators hyperparameter ranging from 50 to 500, inclusive, that yields the highest cross-

validated regression R2. The range of trees used in the grid search was informed by our 

preliminary analysis result as shown in Figure S2. Subsequently, for every gene, we used the 

resulting best n_estimators hyperparameter to fit the RF regressor model and predict 

expression in the test data. See Table S1 for the optimum number of trees for each gene 

across training populations.

KNN—We used the scikit-learn Python package version 0.21.250 (Python version 3.7.3) to 

implement KNN regression. The hyperparameters were set to default except for n_neighbors 
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(which is the number of neighbors [k] to use), weights (which is a weight function used in 

the prediction), and P (which is the power parameter for the Minkowski metric). We used 

two of the weights function parameters, namely “uniform” (wherein all points in each 

neighborhood are weighted equally) and “distance” (wherein all points in each 

neighborhood are weighted by the inverse of their distance). For every gene, via 5-fold 

cross-validation, we conducted a grid search of the best three hyperparameter combinations 

that yield the highest cross-validated regression R2. The three hyperparameter combinations 

were drawn from k (odd numbers between 3 and 31 inclusive), weights (uniform and 

distance), and P (1, 2, 3). Subsequently, for every gene, we used the resulting best 

hyperparameter combination to fit the KNN regressor model and predict expression in test 

data. See Table S2 for the optimum hyperparameter combinations for each gene across 

training populations.

SVR—We used the scikit-learn Python package version 0.21.250 (Python version 3.7.3) to 

implement SVR. We set all parameters to default except for the followings: gamma (controls 

the bias-variance trade-off of each gene model, where small values mean far-reaching radius 

of influence while large values mean close radius of influence. We set it to “scale” because 

we want the gamma value to be determined by the variance and number of predictors in each 

gene model), kernel (which is the type of mathematical function used to transform data in 

the model), degree (which is specifically for the degree of the polynomial kernel function), 

and C (which is the penalty for error term). For every gene, via 5-fold cross-validation, we 

conducted a grid search of the best three hyperparameter combinations that yield the highest 

cross-validated regression R2. The three hyperparameter combinations were drawn from 

kernel (“linear,” “poly,” “rbf,” “sigmoid”), degree (2, 3, 4, 5, 6, 7), and C (0.0001, 0.0005, 

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0). Specifically, the kernels are divided into two 

groups: linear kernels, which includes only “linear,” and non-linear kernels which include 

“poly,” “rbf,” and “sigmoid.” Thus, the kernel used determines if the SVR model is a linear 

or non-linear model. Subsequently, for every gene, we used the resulting best 

hyperparameter combination to fit the SVR regressor model and predict expression in test 

data. The number of gene models with R2 > 0.01 built with different kernels is distributed as 

follows: AFA = 340, 1,243, 501, 564; CAU = 1,065, 1,269, 577, 476; HIS = 595, 1,210, 608, 

643; ALL = 1,600, 1,288, 653, 231; for “linear,” “poly,” “rbf,” and “sigmoid” kernels, 

respectively. See Table S3 for the optimum hyperparameter combinations for each gene 

across training populations.

Model standardization—In addition to our user-defined grid searches described above, 

we also compared predictive performance among all the four ML models by implementing 

them in the same package with standardized hyperparameter tuning. We implemented all the 

tested ML models (EN, RF, SVR, and KNN) with scikit-learn Python package version 

0.21.250 (Python version 3.7.3) and used Hyperopt51 version 0.2.4 to standardize the 

hyperparameter tuning across the ML methods. Specifically, we fixed the maximum number 

of evaluations (max_evals = 30) for the ML models. The choice of setting the maximum 

evaluations to thirty is to reduce computational time, especially for RF, which takes a longer 

time to run. Thus, for EN versus KNN, and EN versus SVR, like in grid search above, we 
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built models for all protein-coding genes in chromosomes 1–22, while for EN versus RF, we 

focused only on chromosome 22. See Figure S3 for the model comparisons.

Results

EN outperforms ML models for cross-validated gene expression prediction

We sought to determine if untested ML models could improve SNP-based imputation of the 

transcriptome across populations compared to the parametric EN models currently used in 

PrediXcan.11 We trained each of the ML algorithms—RF, SVR, and KNN—using genotype 

and blood monocyte transcriptome data from each population in the MESA. The training 

samples in the MESA populations are distributed as AFA (n = 233), CAU (n = 578), and 

HIS (n = 352). To have a larger sample size, we also combined the genotype and 

transcriptome of the MESA populations (AFA, HIS, CAU) into the ALL cohort (n = 1,163). 

Standard quality control analysis was done on the genotype and expression data to adjust for 

population structure and potential experimental confounders (see Material and methods). 

Using each of the MESA populations and ALL, we then performed model training through 

5-fold cross validation of RF, SVR, and KNN and nested cross-validation of EN by using 

SNPs within 1 Mb of each gene to predict its expression level. We used the R2 between 

predicted and observed expression as our measure of model performance (see Material and 

methods). We found that across all the populations and prediction algorithms, ERAP2 
(MIM: 609497), HLA-C (MIM: 142840), HLA-DRB1 (MIM: 142857), CHURC1 (MIM: 

608577), RAD51 (MIM: 179617), and SNAP29 (MIM: 604202) have R2 > 0.5. We also 

found that EN usually outperformed the ML models, but RF outperformed EN on some gene 

models, especially those trained in HIS and CAU (Figures 1 and S4). This suggests that 

different prediction algorithms may be potentially more robust for different training 

populations.

To better ensure our comparison of the four ML models was not affected by our chosen 

software packages and grid search spaces, we also compared standardized models using 

Hyperopt51 (see Material and methods). Hyperopt is a Python library that standardizes 

model selection and hyperparameter optimization.51 Gene expression prediction model 

performance obtained from our implementation of the Hyperopt51 standardization approach 

maintained the same trend of EN outperforming the other three tested ML models (Figure 

S3). Thus, we use our grid search optimization approach in the ML model results described 

in the rest of this paper.

Focusing only on the model training built in the ALL cohort, the model building converged 

and completed for 9,623 genes in RF, SVR, and KNN and 9,622 in EN. The 9,622 genes in 

EN models are also in SVR and KNN, while 9,621 are in RF. The average R2 for each of the 

prediction algorithms is EN = 0.0733, SVR = 0.0476, RF = 0.0409, and KNN = 0.0103. 

TACSTD2, RNF150, HLA-DRB5, HLA-DRB1, and CHURC1 genes have R2 > 0.8 across 

EN, RF, and SVR models, while all genes in the KNN model have R2 < 0.8. Overall, EN 

significantly outperformed all ML models, as shown in Figure 1 and Table 1. Focusing on 

the overlapping genes with R2 > 0.01 (EN versus SVR = 3,736, EN versus RF = 3,635, EN 

versus KNN = 2,598), EN performed better on approximately 99%, 97%, and 93% of the 

overlapping genes than KNN, SVR, and RF, respectively. Table 2 shows the number of 
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genes that have models in each of the prediction algorithms at different R2 thresholds. EN 

had the most gene models compared to the other ML methods across all thresholds. 

However, at R2 > 0.5, RF has almost same number of gene models as EN (RF = 194, EN = 

222), distantly followed by SVR, while KNN has just 28 genes. This clearly shows that EN, 

RF, and SVR models have generally good performance for most of the highly predictable 

genes. The same comparison trend is generally observed in the models trained with AFA, 

CAU, and HIS (Tables S4–S6). However, while mean predictive performance was higher for 

EN across populations (Table 1), we observed that RF outperformed EN for some genes, 

especially in HIS- and CAU-trained data (Figure 1). This suggests integrating both EN and 

RF models into transcriptome prediction may be useful. Next, we sought to determine how 

our models performed in an independent test cohort.

Similarity in ancestry improves prediction performance across prediction models

Recent studies using EN have observed that similarity in training and testing population 

improves prediction performance.26–29 In order to see if the same observation replicated 

with additional ML algorithms, we used new genotype and whole-blood transcriptome data 

from 76 African American individuals in Chicago, Illinois (USA) and Africans in Ghana 

enrolled in METS as a replication cohort.34,42 We performed standard quality control and 

adjusted for potential confounders in the METS genotype and transcriptome data (see 

Material and methods). We predicted gene expression in the METS cohort using only gene 

models with cross-validated R2 > 0.01 in each of the prediction algorithms trained with the 

MESA cohort. Specifically, we tested models trained in each of the MESA populations 

(AFA = 233, HIS = 352, CAU = 578) and the combined population (ALL = 1,163). To 

accommodate for any effect sample size may have in our study, we also used the 

combination of AFA and HIS populations (AFHI = 585), which is a similar sample size as 

CAU, to train the prediction algorithms. Both AFA and HIS contain recent African 

admixture and thus share more genetic ancestries with our test cohort (METS) than CAU 

(Figure S5). To determine how accurate the prediction algorithms trained in MESA are in 

METS, we computed the Spearman correlation (ρ) between the METS predicted expression 

values and METS measured expression values.

To evaluate the prediction performance of the training MESA population in METS, for each 

of the prediction algorithm methods, we calculated the mean ρ for genes predicted in all 5 of 

the populations (Table 3). Across the training populations, the mean ρ in METS is highest 

when using AFHI-trained models for all the prediction algorithms. As shown in Table 3, 

across all the tested prediction algorithms, the training populations comprising individuals of 

recent African ancestries (AFA, HIS, AFHI, ALL) significantly outperformed the training 

population comprising only individuals of European descent (CAU) (Welch’s t test, all 

algorithm p values < 0.0210, except for KNN, where HIS versus CAU p value = 0.1226). 

This shows that prediction performance is highest when the genetic distance between the 

training population and testing population are closest, regardless of the prediction algorithm 

used. Also, larger sample size improves prediction performance but not as much as when 

majority of the individuals in the training set share similar ancestries with those in the test 

set (i.e., AFHI-trained models perform the same as ALL-trained models) (Welch’s t test, all 

algorithm p values > 0.6360) (Table 3). If larger sample size were the main factor to improve 
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prediction performance, we would expect the average ρ to be significantly higher in ALL. 

However, we see that average ρ in the ALL is less than in the AFHI, even though AFHI has 

lower sample size. More so, the ALL-trained models’ average ρ were not significantly better 

than AFA-trained models (Welch’s t test p values, EN = 0.5053, RF = 0.3782, SVR = 

0.0424, KNN = 0.5391). AFA has the lowest sample size and closest ancestry similarity to 

METS across the training MESA populations. Thus, this highlights the importance of 

similarity in ancestry at improving prediction performance.

When we examine all prediction results in METS, the number of genes we were able to 

predict gene expression values for varied across algorithms and populations (Figure 2). The 

gene models trained with the ALL cohort predicted gene expression values for more genes 

than the other training populations across all prediction algorithms. This is probably because 

the ALL cohort had the largest sample size. In fact, the number of genes captured decreases 

from ALL to AFA as the sample size decreases, with the exception of EN trained on HIS. 

Interestingly though, when we filter by ρ > 0.1, EN trained on AFA captures more genes 

(1,622) than HIS (1,238) and CAU (1,238), while RF trained on HIS (1,219) and AFA 

(1,190) each capture more genes than CAU (1,078), despite CAU having a larger sample 

size than AFA and HIS. This again shows the importance of similarity in ancestry between 

training and testing population for gene expression prediction. The models trained with 

AFHI and ALL cohorts capture more genes than AFA, most probably because of their larger 

sample size and the fact that they also contain the AFA cohort. Therefore, although larger 

sample size is important in prediction performance, it is paramount that individuals in the 

training population have similar ancestry with the testing population.

EN-trained models outperform ML models in test cohort

EN predicts gene expression values in METS for more genes than RF, SVR, and KNN 

(Figure 2). When all genes predicted in METS by all 4 of the prediction algorithms for each 

training population are compared, mean prediction performance (ρ) is significantly highest 

for RF-trained models in the HIS and CAU populations, while mean prediction performance 

is highest for EN-trained models in the AFA, AFHI, and ALL populations (Figure 3; Table 

4). Furthermore, when we compare test prediction performance of each of the ML 

algorithms against EN on the genes they both can predict (intersection) for each training 

population, EN performs best regardless of training population except in HIS and CAU, 

where mean prediction performance was again better in RF than EN (Figures 4 and S6; 

Table 5). Focusing only on ALL-trained models, the number of overlapping genes between 

EN and the other algorithms are RF = 1,198, SVR = 1,141, and KNN = 676.

Although generally EN outperforms the other algorithms, we observe that all the genes in 

each of the algorithms did not overlap with those in EN even though they captured fewer 

genes than EN (Table 6). That is, these algorithms have significant performance (ρ > 0.1) on 

some genes that EN does not, and vice versa. To probe further into the algorithm pairs, we 

counted the genes unique to each algorithm (Table 6). Expectedly, EN captures 778 unique 

genes; however, the few unique genes (<310) captured by each of RF, SVR, and KNN 

suggest that prediction performance in test cohorts may be improved by combining gene 

models from EN and these other algorithms. Focusing only on the RF and EN sets of unique 
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genes, we found that the average normalized expression levels were slightly higher in the RF 

group (mean = 0.0318) than the EN group (mean = 0.0291) (Welch’s t test p value = 

0.0014). Additionally, the average variance in the normalized expression levels was slightly 

higher in the RF group (0.678) than the EN group (0.639) (Welch’s t test p value = 0.019). 

Since the magnitude of these differences is not large, it is unlikely variation in the expression 

levels is the reason these genes are captured only by the RF algorithm. Moreover, model 

performance and, by extension, ability to capture unique genes is not driven by or correlated 

with expression levels (Figures S7 and S8). In addition, upon performing principal 

component analysis of expression levels, we found that the genes did not cluster by 

prediction algorithm (Figure S9).

EN and ML models identify the same gene in lipid TWASs

To evaluate the biological importance of the prediction algorithms in identifying significant 

genes associated with traits, we carried out TWASs on high-density lipoprotein (HDL) 

levels. In our analysis, we used a genotype dataset from the MESA cohort (n = 3,856), 

comprising individuals from the populations that were not used in building any of the 

imputation models and in which we have corresponding lipid phenotype data (AFA = 1,188, 

HIS = 952, and CAU = 1,716). The genotype data were cleaned using standard quality-

control procedures (see Material and methods). We used the ALL-trained imputation gene 

models (genes with cross-validated R2 > 0.01) from each algorithm to impute transcriptome 

levels from the MESA genotypes. We adjusted the predicted transcriptome levels for 

population structure using the first 3 genotype principal components (Figure S1) and rank 

normalized the HDL levels. Using the adjusted predicted transcriptome levels and 

normalized HDL data, we conducted association tests using linear regression. Interestingly, 

all tested prediction algorithms except KNN identified a significant association (p < 3.3 × 

10−6) for the cholesteryl ester transfer protein, plasma gene (CETP [MIM: 118470]) 

(Figures 5 and S10). The lack of association with HDL for all gene-expression values 

predicted from KNN-trained models is consistent with our earlier results in this paper that 

KNN is worse at imputing transcriptome levels compared to the other algorithms. The 

directions of effect of CETP transcriptome levels as predicted by EN, RF, and SVR are the 

same (Figure 6). An increase in predicted CETP expression is associated with decreased 

HDL levels across EN, RF, and SVR. The ability of the three algorithms to identify the same 

significant hit underscores their effectiveness at imputing gene expression (CETP R2: EN = 

0.0917, RF = 0.0772, SVR = 0.0539). Consequently, wecompared EN and RF t-statistic 

values from the association tests between HDL and predicted gene expression. We found 

that both EN and RF t-statistic values were almost parallel for the genes they have in 

common, thus corroborating the observed similar performance on their common genes from 

our previous results (Figures 1 and 3). In the EN TWAS, 5,279 genes were tested for 

association with HDL. In the RF TWAS, 16 unique genes that were not present in the EN 

TWAS were tested for association with HDL (Figure 7). Among the RF unique genes, we 

found a potential gene, ST8SIA4 (MIM: 602547), that may be associated with normalized 

HDL (p = 3.192 × 10−3) but was missed by EN (ST8SIA4 R2: EN = −0.0005, RF = 0.0100) 

(Figure 7). Although the association did not pass the Bonferroni correction to be genome-

wide significant, this discovery is consistent with our previous results, wherein we found 

that although EN has many genes in common with RF in their imputation models, the RF 
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algorithm generated some unique gene models (Table 6). Thus, by combining EN and RF 

models in gene expression imputation and subsequent TWAS analysis, we may uncover 

more and new significant gene-trait associations. Note, however, that by combining EN and 

RF models, we are not significantly changing the number of tests performed. Depending on 

predictive performance inclusion threshold, adding RF expression prediction models may 

increase the number of tests by up to 16% (Table 6), which does not dramatically change the 

Bonferroni correction threshold.

Discussion

In this paper, we explored the potential of using RF, SVR, and KNN to further improve gene 

expression prediction performance across global populations in comparison to EN modeling, 

which is currently used in PrediXcan.11 To accomplish this, we trained each of the 

prediction models with genotype and transcriptome data from the MESA cohort on 9,623 

protein-coding genes and compared their cross-validated imputation performance (R2). 

Although almost paralleled by RF and SVR, we found EN generally outperformed the other 

tested ML models. This is consistent with a recent study where it was shown that the 

genome-wide polygenic risk score method based on simple linear additive effects of genetic 

factors outperformed ML models in genetic prediction of cardiovascular disease risk.52 

However, in our study, we found that when the prediction models are trained within each of 

the MESA populations, RF sometimes outperformed EN, specifically on HIS and CAU data 

(Figures 1 and 3; Tables 1 and 4). This suggests potential robustness and reduced variability 

of RF imputation performance across global populations.

We further tested the MESA-trained models on genotype and transcriptome data from 

African-origin individuals in the METS cohort. We show that models trained with the 

cohorts (AFA, HIS, AFHI, ALL) comprising individuals similar in ancestries with METS 

have better prediction performance than the models trained with individuals (CAU) of no 

recent African ancestries (Table 3; Figure 3). Thus, as demonstrated in several recent 

studies,26–29 here we also show similarity in ancestries between training and testing 

populations improves prediction performance. Notably, we found that the improvement in 

prediction due to ancestry similarity is consistent within all tested prediction algorithms, 

further underscoring the huge importance of diverse ancestries in genetic studies.

In the application of the MESA-trained models to the METS cohort, we further compared 

the prediction performance of EN against the other ML models. Although EN consistently 

outperformed the other tested models (which further corroborates the cross-validated 

performance results), we found gene models that are unique to each prediction algorithm 

(Table 6). Further analysis suggests there is nothing strikingly unusual in the expression 

levels of these groups of genes (Figures S7–S9). Therefore, it is unlikely variation in the 

expression levels is the reason these genes are captured only by one algorithm over another.

We applied the trained models on out-of-sample MESA genotype data with corresponding 

HDL phenotype values. All tested prediction models except for KNN identified the gene 

CETP to be significantly associated with HDL. As seen in a recent study on lipid traits,53 we 

show that increased CETP expression is significantly associated with lower HDL levels, and 
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the direction of effect is the same for EN, RF, and SVR models. Thus, we computationally 

corroborate the biological importance of CETP gene in HDL-associated diseases. In many 

studies, the CETP gene has been experimentally associated with HDL levels in humans, and 

it currently stands as a potential drug target for the treatment of atherosclerosis.54–58 Thus, 

our analysis in a relatively small TWAS (n = 3,856) identified a known drug target that has 

been studied extensively in the context of preventing cardiovascular disease.

Nonetheless, there are some limitations to the practical application of the non-linear ML 

models like RF in comparison to linear models like EN. One of the major flaws of ensemble 

tree regressions such as RF is that they cannot extrapolate to data points (or ranges) they 

have not seen, thus restricting predictive performance of each RF model to the boundaries of 

the training dataset. Unlike RF, linear models such as EN and SVR with linear kernel can 

generate prediction values for data points beyond the boundaries of the training data because 

they can extrapolate well. Additionally, EN models typically expose the predictors and their 

corresponding effect sizes such that they are easily accessible and extractable, while RF 

models do not. Access and utilization of these predictors and effect sizes can make 

application on test datasets much easier and relatively faster. Another practical consideration 

is the ability of the prediction models to utilize GWAS summary statistics as input data 

instead of the actual genotype dataset. This is important because of the data-sharing 

limitations often associated with human genetic information. EN as implemented in S-

PrediXcan59 is able to predict gene expression with only the GWAS summary statistics, 

while the applicability of non-linear models like RF in TWASs is limited to only GWASs 

with genotype and phenotype data available. As such, EN has more practical advantage than 

RF for genes that both algorithms can predict.

We also note that improvements in expression prediction performance beyond EN have 

recently been demonstrated by integrating adaptive shrinkage methods like MASHR, which 

improves effect size estimates across multiple experiments.60 Applying MASHR worked 

well in the context of using GTEx Project data to build gene expression prediction models 

because of similar eQTL effect sizes across the 54 tissues of GTEx.61 There might be a role 

for a MASHR-like framework to build cross-population models in either the same or 

multiple tissues, and this is a promising avenue for future research when more diverse 

population transcriptome data are available.

In conclusion, although linear modeling of SNPs and gene expression is generally good at 

imputing expression for new data, linear models may fail to accurately predict expression for 

some genes. Interestingly, our study shows the imputation performances for some genes are 

comparatively better with non-linear ML models like RF (Figure 4) than linear models like 

EN, especially between diverse populations. Therefore, by increasing ancestry diversity and 

sample sizes of study populations, optimizing prediction performance on these genes with 

RF modeling may be warranted. While incorporating RF models into the existing PrediXcan 

tool has practical limitations, doing so may be justified when genotypes are available to 

increase the probability of uncovering new gene-trait associations in downstream 

transcriptome-phenotype analyses.
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Figure 1. Comparison of the cross-validated gene expression prediction performance in the 
MESA cohort
Gene expression prediction R2 between elastic net (EN) and other machine learning (ML) 

models across MESA populations. The linear regression fit is shown by the red line, and the 

identity line (slope = 1) is blue in each plot. In the ALL cohort (combination of AFA, HIS, 

and CAU populations), the RF model has 9,621 genes, while the SVR and KNN models 

have 9,622 genes in common with EN. Pearson correlations (R) between EN performance 

and random forest (RF), support vector regression (SVR), and K nearest neighbor (KNN) 

are shown in each plot. All correlations are significant (p < 2.2e−16). In the AFA cohort, the 

overlapping genes between models are RF versus EN = 9,608, SVR and KNN versus EN = 

9,609. In the HIS cohort, the other ML models each have 9,499 genes in common with EN. 

In the CAU cohort, ML models have 9,499 genes in common with EN. EN generally 
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outperformed RF, SVR, and KNN, except for some genes where RF outperforms EN, 

particularly in the HIS and CAU populations.
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Figure 2. Number of predicted genes in METS after filtering by ρ
The MESA population used to train each set of models is shown on the x axis, and the 

number of genes with predicted expression values in METS is shown on the y axis. ρ is the 

Spearman correlation between predicted and observed gene expression in METS.
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Figure 3. Prediction performance of models trained in MESA populations and tested in METS
We predicted expression in METS using only gene models with R2 > 0.01. The MESA 

population used to train each set of models is shown on the x axis, and the Spearman 

correlation between predicted and observed gene expression in METS is shown on the y 

axis. For each training population, only gene intersects of all prediction algorithms are 

shown in the plot. For example, in AFA, all gene intersects of EN, RF, SVR, and KNN are 

plotted.
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Figure 4. Comparison of algorithm test prediction performance in METS from models trained in 
MESA
Prediction performance ρ (Spearman correlation between predicted and observed gene 

expression in METS) for each gene in each other ML model versus EN is shown. The linear 

regression fit is shown by the red line, and identity line (slope = 1) is blue in each plot. 

Pearson correlations (R) between performance are shown in each plot (all p < 2.2e-16). In 

the ALL cohort, the number of genes that overlap are EN versus RF = 3,378, EN versus 

SVR = 3,477, and EN versus KNN = 2,414. In the AFHI cohort, the number of genes that 

overlap are EN versus RF = 3,269, EN versus SVR = 3,166, and EN versus KNN = 2,482. In 

the AFA cohort, the number of genes that overlap are EN versus RF = 2,414, EN versus 

SVR = 2,125, and EN versus KNN = 1,894. In the HIS cohort, the number of genes that 

overlap are EN versus RF = 2,374, EN versus SVR = 2,342, and EN versus KNN = 1,995. In 
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the CAU cohort, the number of genes that overlap are EN versus RF = 2,686, EN versus 

SVR = 2,855, and EN versus KNN = 2,255.
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Figure 5. High-density lipoprotein (HDL) transcriptome-wide association study (TWAS) results
Manhattan plot of the gene p values from the TWAS between HDL values and predicted 

gene expression. Using models trained in MESA ALL cohort, we predicted gene expression 

in MESA (n = 3,856) genotype data comprising individuals not used in the model training 

with HDL phenotype data and then carried out in TWAS. Genome-wide significance (p < 

3.3 × 10−6) is shown by the red line in the plots. The x axis is ordered from chromosomes 1 

to 22 (left to right).
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Figure 6. Increased HDL levels correlate with decreased CETP predicted expression
Direction of effect of the CETP gene on HDL levels. Using models trained in the MESA 

ALL cohort, we predicted gene expression in MESA (n = 3,856) genotype data comprising 

individuals not used in the model training with HDL phenotype data. Each point in the plot 

represents an individual. The linear regression fit is shown by the red line in each plot. The 

blue contour lines from two-dimensional kernel density estimation help visualize where the 

points are concentrated. Although KNN is shown here, the CETP gene HDL TWAS with 

KNN was not genome-wide significant (p = 0.016). The EN (p = 4.1 × 10−11), RF (p = 2.1 × 

10−13), and SVR (3.9 × 10−8) models were genome-wide significant.
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Figure 7. Comparison of the HDL association t-statistics from RF and EN models trained in the 
MESA ALL cohort
Comparison of RF and EN t-statistics from the TWAS of HDL and predicted transcriptome 

in MESA individuals not used for imputation model building. Each dot in plot represents the 

t-statistic value of a gene from the HDL TWAS, while the identity line (slope = 1) is shown 

in blue. We see that the t-statistic values are similar between RF and EN except for genes 

that are unique in each algorithm shown as red dots in the plot. CETP is strongly associated 

with HDL levels using both EN- and RF-trained models. RF-trained models revealed the 

unique gene ST8SIA4 (no prediction model in EN) may be potentially associated with HDL 

levels (p = 4.3 × 10−3).
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