Table 5.
Mean prediction performance in METS of pairwise model intersecting genes
Population | EN versus RF | EN versus SVR | EN versus KNN |
---|---|---|---|
AFA | 0.1075 versus 0.1021 (p = 2.8 × 10−3) | 0.1072 versus 0.0857 (p = 2.2 × 10−20) | 0.1111 versus 0.0691 (p = 6.4 × 10−6) |
HIS | 0.0793 versus 0.0960 (p = 2.1 × 10−11) | 0.0797 versus 0.0799 (p = 0.95) | 0.0846 versus 0.0616 (p = 1.8 × 10−13) |
CAU | 0.0555 versus 0.0699 (p = 1.1 × 10−8) | 0.0535 versus 0.0588 (p = 0.024) | 0.0592 versus 0.0450 (p = 3.7 × 10−6) |
AFHI | 0.0991 versus 0.0924 (p = 8.7 × 10−6) | 0.0975 versus 0.0815 (p = 9.9 × 10−19) | 0.1058 versus 0.0661 (p = 1.7 × 10−49) |
ALL | 0.0909 versus 0.0871 (p = 0.017) | 0.0902 versus 0.0774 (p = 2.8 × 10−14) | 0.1041 versus 0.0628 (p = 1.5 × 10−50) |
We performed paired t tests between the prediction performance of EN and each of the other machine learning models with each training population. The t test p values are shown in parentheses. EN, elastic net; RF, random forest; SVR, support vector regression; KNN, K nearest neighbor; AFA, MESA African American; HIS, MESA Hispanic American; CAU, MESA European American; AFHI, MESA African American and Hispanic American; ALL, all MESA.