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Abstract

Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids 

necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide 

metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and 

that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. 

As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the 

molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies 

poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these 

technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses 

and why these are relevant to human infections. We highlight opportunities for how studies into 

nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
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INTRODUCTION

In the nearly 100 years since the discovery of penicillin, antibiotics have revolutionized 

medical practice and have become a cornerstone of modern medicine. However, growing 

rates of antimicrobial resistance pose an urgent and looming threat to public health and 

economic stability (1). These are compounded by a diminished antimicrobial discovery 

pipeline (2), creating a critical need to understand mechanisms responsible for antibiotic 

treatment failures and to discover new effective antimicrobials.

Clinical microbiology traditionally relies on general microbiology and molecular biology 

laboratory techniques, such as polymerase chain reaction and gene deletion/over-expression, 

to elucidate molecular mechanisms responsible for clinical phenotypes. However, 

experimental throughput by these methods limits progress toward understanding 

mechanisms of antibiotic treatment failure. In recent years several new experimental and 

digital technologies have emerged with promise to increase clinical microbiology laboratory 

throughput and enhance clinical management of bacterial infections (3-5). Moreover, 

advances in prokaryotic systems biology (6, 7) and interpretable machine learning (8) are for 

the first time accelerating discovery of mechanisms underlying antibiotic efficacy (9, 10).

Here, we review emerging digitalization technologies poised to transform research into 

mechanisms of antibiotic treatment failure in the clinic. We describe several antibiotic 

resistance, tolerance and persistence mechanisms discovered from clinical strains. We 

discuss in detail the recent discovery that nucleotide metabolism actively participates in 

antibiotic lethality and the clinical relevance of these findings (11). We propose new 

opportunities for digitalization technologies to advance clinical practice and to open 

frontiers for basic research into nucleotide metabolism and antibiotic efficacy.

DIGITALIZATION IN CLINICAL AND RESEARCH SETTINGS

The most important goal in clinical microbiology is to identify an infectious pathogen and 

determine its drug susceptibility profile (12). Traditionally, clinical microbiology 

laboratories rely on culture-based methods for pathogen identification and susceptibility 

testing. These approaches require the successful isolation and culture of pathogen cells from 

a clinical sample, followed by in vitro screening with standardized antibiotics.

In vitro studies in research settings have enabled the discovery of antibiotic resistance 

mechanisms. For example, following the initial detection of clinical tetracycline resistance, 

several microbiology studies identified decreased drug transport as the mechanism 

responsible for reduced efficacy (13, 14). Subsequent studies identified multi-drug resistant 

efflux pumps in multiple pathogenic species (e.g., AcrB in Escherichia coli and MexB in 

Pseudomonas aeruginosa) (15). As with their clinical counterparts, these fundamental 

studies rely on culture-based growth and targeted sequencing; however, such experimental 

technologies are resource- and labor-intensive and do not scale well with the plethora of 

pathogen variants, drug mechanisms, and resistance strategies found in the clinic.

In recent years, advances in laboratory evolution, high-throughput sequencing, and 

computational biology have greatly expanded the scope of addressable questions in 
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microbiology and the study of antibiotic resistance (16). For instance, adaptive laboratory 

evolution can simulate natural selection pressures (17), allowing researchers to study the 

emergence of novel antibiotic treatment phenotypes (18), as well as their relationship to 

environmental conditions (19). In many cases, these granular experimental techniques invite 

complementary computational modeling activities, from mechanistically simulating drug-

target binding to predicting complex ecological dynamics, yielding deeper insights into 

clinical resistance phenomena.

Concurrently, whole-genome sequencing has transformed the study of antibiotic resistance, 

enabling the identification of all possible gene variants that can give rise to clinical 

phenotypes (20). Whole-genome sequencing has proven instrumental in revealing 

population- and epidemiological-level insights into pathogen detection and emergence. For 

example, the 2011 outbreak of the Shiga-toxin producing enteroaggregative E. coli O104:H4 

resulted in over 3,000 infections and more than 50 deaths – rapid, open-access whole-

genome sequencing analysis revealed the phylogenetic relationships between this strain and 

40 previously published pathogen genomes (21). These analyses conclusively demonstrated 

that O104:H4’s virulence was attributable to the horizontal acquisition of stx2, along with 

other unexpected traits heretofore unseen in this lineage (22). Indeed, whole-genome 

sequencing enables insights into a pathogen’s plasticity and facilitates real-time 

epidemiological tracing (23).

Whole-genome sequencing has spurred the development of advanced computational 

techniques capable of inferring meaningful biological relationships. Advances in 

mathematical modeling and machine learning are now, for the first time, enabling the direct 

identification of antibiotic resistance determinants from the genomes of clinical isolates in as 

Staphylococcus aureus, P. aeruginosa, and E. coli (24). Moreover, mathematical modeling 

and high-throughput sequencing approaches have revealed that sub-inhibitory selection and 

step-wise adaptation play just as important a role in antibiotic treatment failure as canonical 

antibiotic resistance mechanisms (25). Indeed, clinical isolates from patients with relapsed 

Mycobacterium tuberculosis infection exhibit sub-breakpoint minimum inhibitory 

concentrations (MICs) in comparison to strains from patients durably cured (26). Mutations 

responsible for such subtle cellular phenotypes are readily overlooked using previous 

methods. Additionally, machine learning can complement traditional culture-based methods 

and enable the direct prediction of pathogen MICs (27, 28) and provide experimentally 

testable insights into antibiotic mechanisms of action (9).

ANTIBIOTIC TREATMENT FAILURE MECHANISMS IN CLINICAL 

PATHOGENS

Antibiotic treatment failure is conventionally understood to be fully explained by antibiotic 

resistance, in which a pathogen acquires a genetic mutation either to reduce the ability of an 

antibiotic to inhibit its target or reduce the effective intracellular concentration of an 

antibiotic (15, 29). Indeed, antibiotic resistance mutations from sequenced clinical isolates 

frequently appear in either the target of the antibiotic, modifying the ability of an antibiotic 

to bind, or in the promoter regions of drug efflux pumps, inducing antibiotic export (30). 
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Other antibiotic resistance alleles, such as genes encoding β-lactamases, commonly appear 

in mobile genetic elements and can become exchanged by horizontal gene transfer (31).

However, in recent years there has been a growing recognition that alternative bacterial 

phenotypes, such as antibiotic tolerance (in which isogenic bacteria exhibit slower killing by 

an antibiotic) and antibiotic persistence (in which isogenic bacteria exhibit a shallower 

antibiotic killing plateau), also lead to treatment failure and relapsed infection (32). 

Additionally, there is growing appreciation that the local microenvironment of infection can 

act on several aspects of bacterial physiology to alter antibiotic treatment efficacy (33, 34). 

In fact, the local metabolic microenvironment of an infection is highly dynamic and local 

metabolites induced by either infection or antibiotic treatment itself can inhibit a pathogen’s 

cellular response to antibiotic exposure (35).

It is clear that antibiotic-target interactions alone are insufficient for explaining antibiotic 

treatment failure in human patients. To address these knowledge gaps, interpretable machine 

learning approaches are being developed, which seek to rapidly generate experimentally 

testable hypotheses for biological phenomena. In one of the earliest demonstrations of these, 

a biochemical screen was performed to measure changes in antibiotic efficacy following 

metabolic stimulation, and genome-scale metabolic modeling simulations were performed to 

estimate metabolic reaction activities in each screening condition (Figure 1A). By applying 

machine learning to these data, purine biosynthesis was identified as a prominent player that 

governs antibiotic efficacy (9), highlighting a target-independent aspect of bacterial 

physiology is commonly involved in the lethal process of diverse bactericidal antibiotics. In 

light of the central role that purine metabolites also play in regulating the immune system 

(36), these results are also suggestive of mechanisms by which the patient-specific metabolic 

environment of an infection can promote drug tolerance or antibiotic treatment failure.

In another study, a metabolic model-based machine learning classifier was developed, which 

uses flux balance analysis to estimate the biochemical effects of genetic mutations 

characterized from clinical isolates (Figure 1B). Applying this approach to a large collection 

of genomes from drug-tested M. tuberculosis strains, novel metabolic resistance mechanisms 

to first-line tuberculosis antibiotics were discovered (10). These two examples illustrate how 

network models can serve as quantitative knowledgebases (37) and be combined with 

machine learning analyses to learn molecular mechanisms responsible for antibiotic 

treatment failures directly from clinical isolates (38).

NUCLEOTIDE METABOLISM IN ANTIBIOTIC TREATMENT FAILURE

Bacterial metabolism is now understood to be an important physiological regulator of 

antibiotic efficacy (39). Across living systems, cellular metabolism is governed by the 

synthesis, allocation, and utilization of energy; and a growing number of studies demonstrate 

that metabolic dormancy protects cells from antibiotic treatment by inducing a 

phenotypically tolerant physiological state (29). Moreover, ATP synthesis correlates with the 

lethality of bactericidal antibiotics better than bacterial growth rates (40), suggesting that 

antibiotic-induced lethality is an active process and not merely a passive consequence of the 

loss-of-function of an essential gene product.
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In particular, bactericidal antibiotics have been shown to elevate central carbon metabolism 

activity (41, 42) and trigger the formation of byproduct reactive oxygen species (43, 44), 

which damage DNA and cause bacterial lethality (45-47). These phenomena are not 

restricted to antibiotics, as reactive oxygen species also actively contribute to the lethality of 

bacterial secretase dysfunction (48) and thymine depletion (49). Moreover, defects in central 

carbon metabolism activity are linked to antibiotic tolerance and persistence across many 

bacterial species (50-53) and can be stimulated to enhance antibiotic efficacy (54, 55). 

However, antibiotic treatment perturbs several aspects of bacterial metabolism beyond 

central carbon metabolism (56), highlighting important knowledge gaps in understanding 

how different metabolic pathways may contribute to antibiotic treatment failure.

It may come to no surprise that nucleotide metabolism is actively involved in antibiotic 

efficacy (9). Nucleotides are essential metabolites and are ubiquitous to all living cells; in 

addition to their roles as fundamental building blocks for DNA and RNA molecules, 

constituting more than 20% of cellular biomass (57), nucleobases also form the molecular 

basis of primary energy currencies such as ATP and NADH, and many coenzymes are 

derived from nucleobase monomers. In fact, the thermodynamic properties of nucleobases 

are so special, that these metabolites synchronize cell biochemistry and regulate biochemical 

group transfers across diverse physiological processes (58). Moreover, the concentration of 

intracellular ATP is tightly regulated across the tree of life and heavily buffered across 

environmental conditions (59).

De novo nucleotide biosynthesis from carbohydrates begins with the pentose phosphate 

pathway, which supplies phosphoribosyl pyrophosphate (prpp) as a shared substrate to the 

purine and pyrimidine biosynthesis pathways (Figure 2). These pathways produce nucleotide 

triphosphates which can be incorporated into DNA and RNA or processed into energy 

currencies that can power virtually all other biochemical processes in the cell. Interestingly, 

nucleotide biosynthesis is itself an energetically demanding process, costing a cell 8 ATP 

molecules to synthesize one adenine molecule from one glucose molecule. Indeed, cells 

employ a multitude of strategies to manage these tradeoffs, including prioritized nutrient 

usage, maintenance metabolism, and nucleotide salvage.

Antibiotic treatment imposes additional layers of complexity on these processes; cells must 

expend energy to mount defensive stress responses, and many antibiotics preferentially kill 

metabolically active cells. Specific components of nucleotide metabolism have been shown 

to contribute to antibiotic efficacy and protection both in vitro and in vivo. In many cases, 

defects in nucleotide biosynthesis have been shown to induce antibiotic persistence, 

suggesting these may represent a key metabolic strategy for evading antibiotic efficacy. For 

example, several chemogenomic screens identify nucleotide biosynthesis genes, as well as 

global regulators of nucleotide metabolism, as important regulators of antibiotic tolerance 

(60, 61). Likewise, antibiotic drug screening under nutrient limitation identified several 

compounds that interfere in core or peripheral nucleotide metabolism branching points (62).

Of note, purine biosynthesis frequently emerges as a key pathway responsible for antibiotic 

efficacy. For example, in an antibiotic persistence screen using a S. aureus transposon 

mutant library, 29% of all depleted genes were related to cellular metabolism, and of these, 
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five were involved in purine biosynthesis (63). These ex vivo observations are important for 

understanding clinical antibiotic treatment failure, as methicillin-resistant S. aureus clones 

isolated from patients enduring multi-drug antibiotic treatment were found to possess 

mutations in purR, a transcriptional repressor of purine synthesis, within 1 week of 

treatment. In vitro follow-up experiments confirmed that this mutation reduced the rate of 

vancomycin-induced killing, revealing the evolution of antibiotic tolerance in vivo (64). 

Importantly, this mutation preceded the onset of canonical resistance evolution; these and 

other studies suggest that mutations in nucleotide metabolism may help create a reservoir of 

pathogen cells primed to subsequently evolve target-specific antibiotic resistance alleles.

Recent microbiological studies are beginning to clarify how nucleotide metabolism 

contributes to antibiotic efficacy (Figure 3). Interpretable machine learning analyses reveals 

that several metabolic pathways proximal to purine biosynthesis contribute to the lethality of 

bactericidal antibiotics in E. coli (9). Purine biosynthesis becomes induced by bactericidal 

stress-induced adenine limitation, which can be directly measured by targeted metabolomics 

(56). Consequently, oxidative phosphorylation becomes elevated to meet the increased 

energetic demand of enhanced purine biosynthesis, increasing cellular respiration and 

central carbon metabolism and providing substrates for toxic reactive oxygen species (42, 

43). Indeed, regulation of nucleotide metabolism appears to be a well-conserved mechanism 

that bacteria have evolved to handle diverse stresses (65).

Consistent with these, purine nucleotides such as (p)ppGpp function as universal alarmones 

for transcriptionally activating the stringent response and other bacterial stress responses as 

evolutionally conserved strategies for surviving nutrient limitation and other environmental 

stressors (66, 67). Intracellular accumulation of (p)ppGpp and related purine alarmones can 

induce antibiotic tolerance by promoting growth arrest (68) and entry to antibiotic persister 

states (69). Recent studies demonstrate that in additional to these transcriptionally mediated 

programs, (p)ppGpp can also inhibit nucleotide metabolism directly by binding several 

enzymes involved in purine biosynthesis, including PurF and Gsk (70, 71). These data 

collectively support a central role for nucleotide metabolism in antibiotic treatment efficacy.

It is interesting to note that nucleotide metabolism is also very important for the in vivo 
pathogenesis of diverse bacterial infections, and may be required for a pathogen’s growth 

and survival within the host environment (72). For instance, S. aureus cells with transposon 

insertions in purB fail to establish bone infections in mice (73) and deletion of purine 

biosynthesis genes prevents uropathogenic E. coli from expanding into intracellular bladder 

epithelial cells (74). Likewise, in vivo studies of methicillin-resistant S. aureus showed that 

purine biosynthesis was causally linked to survival during endovascular infection (11). 

Collectively, it is clear that nucleotide metabolism, particularly purine biosynthesis, plays an 

important role in bacterial pathogenesis and in the response to antibiotic stress.

DISCUSSION

The growing challenge of clinical antibiotic failure demands renewed attention into the 

study of antibiotic mechanisms of action and the discovery of new antimicrobial compounds. 

Digital technologies such as whole-genome sequencing, machine learning, mass 
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spectrometry and predictive modeling are likely to transform the clinical management of 

bacterial infections in the coming decades. Exciting developments in machine learning are, 

for the first time, enabling the rapid discovery of novel classes of antimicrobial compounds 

(75) and the rapid identification of bacterial pathogens in the clinic (5). Advances in mass 

spectrometry-based metabolomics are enabling the rapid discovery of antimicrobial 

mechanisms of action (76). Advances in predictive modeling (7) are enabling new 

understanding into the complex ecology of microbial communities (77).

The discovery that nucleotide metabolism is involved in antibiotic efficacy has several 

translational implications. Unlike the Mueller-Hinton or Luria-Bertani media commonly 

used by clinical and academic microbiology laboratories, the metabolic microenvironment 

of a bacterial infection is dynamically enriched for nucleotide metabolites during infection 

(35). In fact, purine metabolites are important regulators of innate immunity (36), playing 

dual roles in regulating the host response to infection and the pathogen response to 

antibiotics. Nucleotide analogs are also commonly used to treat human cancers and viral 

infections and have potential to address antimicrobial resistance in the clinic (78, 79).

Nucleotide metabolism is one of the oldest areas of bacterial physiology to be investigated, 

with early studies into bacterial purine and pyrimidine metabolism predating the discovery 

of the lac operon (80, 81). Interest in nucleotide metabolism is mounting a resurgence, 

spurred by the growing recognition that nucleotides play important roles in both 

immunometabolism (82, 83) and cancer pathogenesis (84). Given that purine and 

pyrimidines exert opposing effects on antibiotic efficacy and carbon metabolism in bacteria 

(9), nucleotide metabolism represents an exciting open frontier for future studies in bacterial 

physiology and antibiotic treatment failure.

Concurrently, new digitalization techniques are becoming increasingly democratized and are 

poised to transform our basic and translational understanding of how nucleotide metabolism 

may contribute to antibiotic efficacy. Advances in predictive modeling (7) and non-targeted 

metabolomics (85) are revealing the diverse systems-level consequences of antibiotic stress. 

Quantitative microscopy advances (86) are enabling detection of antibiotic tolerance and 

resistance at single-cell resolution. Advances in transposon insertion sequencing (87) and 

adaptive lab evolution (88) are revealing new mechanisms for antibiotic resistance. Indeed, it 

would be exciting for future discoveries to reveal how nucleotide metabolism may contribute 

to antibiotic failure mechanisms beyond persistence (11) and potentially rewrite our 

understanding of antimicrobial resistance (29).
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FIGURE 1 ∣. 
Recent innovations in interpretable machine learning for studying antibiotic treatment 

failure. (A) A biochemical screen was combined with metabolic network modeling and 

machine learning regression analyses to elucidate pathway mechanisms of antibiotic 

lethality. This led to the discovery that purine biosynthesis is a critical component of 

bactericidal antibiotic lethality (9). (B) Whole-genome sequencing data from antibiotic 

resistant (R) and susceptible (S) strains from clinical strains were applied as modeling 

constraints to genome-scale metabolic models. Machine learning classification analyses 

were applied (10).
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FIGURE 2 ∣. 
Nucleotide metabolism is energetically expensive. De novo biosynthesis of purines (red) and 

pyrimidines (blue) begins with the pentose phosphate pathway (green), which generates 

phosphoribosyl pyrophosphate (prpp) from glycolysis (black). The energetic demand for 

ATP molecules to power purine and pyrimidine biosynthesis drives activity through the 

tricarboxylic acid (TCA) cycle (black) and oxidative phosphorylation (purple).
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FIGURE 3 ∣. 
Nucleotide metabolism contributes to antibiotic lethality. In addition to their target-specific 

effects, bactericidal antibiotics induce purine biosynthesis, which increases activity in 

central metabolism. Increases in central metabolism stimulate the production of toxic 

reactive oxygen species, which oxidize nucleotides and damage DNA. These insults to DNA 

and the nucleotide pool induce bacterial death and may further potentiate purine 

biosynthesis.
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