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Abstract

Poverty, as assessed by several socioeconomic (SES) factors, has been linked to worse cognitive 

performance and reduced cortical brain volumes in children. However, the relative contributions 

of the various SES factors on brain development and the mediating effects between cognition and 

brain morphometry, have not been investigated. Here we used cross-sectional data from the ABCD 

study to evaluate associations among various SES and demographic factors, brain morphometrics, 

and cognition and their reproducibility in two independent subsamples of 3,892 children. Among 

the SES factors, family income (FI) best explained individual differences in cognitive test scores 

(stronger for crystallized than for fluid cognition), cortical volume (CV) and thickness (CT). 

Other SES factors that showed significant associations with cognition and brain morphometrics 

included parental education and neighborhood deprivation, but when controlling for FI their effect 

sizes were negligible and their regional brain patterns were not reproducible. Mediation analyses 

showed that cognitive scores, which we used as surrogate markers of the children’s level of 

cognitive stimulation, partially mediated the association of FI and CT, whereas the mediations of 

brain morphometrics on the association of FI and cognition were not significant. These results 

suggest that lack of supportive/educational stimulation in children from low-income families 

might drive the reduced CV and CT. Thus, strategies to enhance parental supportive stimulation 

and the quality of education for children in low-income families could help counteract the negative 

effects of poverty on children’s brain development.

Introduction

Despite being a high-income country, 16% of children in the US live below the poverty line 

[1], and in low-and middle-income countries up to 43% of children younger than 5 years 

(250 million) might not reach their developmental potential due to poverty [2]. Children 
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living in poverty are exposed to increased risks (including poor health and education, 

malnutrition, and unstimulating home atmospheres that influence brain maturation), perform 

poorly in school, have lower educational attainment [3], and frequently show symptoms of 

psychopathology [4]. Low socioeconomic status (SES) in childhood/adolescence can have 

profound consequences in adult social behaviors, cognitive abilities, and health [5] given the 

plasticity of executive functions during the early years of life. Socioeconomic disadvantage 

has been linked with cognitive deficits [6] and impaired socio-emotional development [7], 

and frequently manifest as disease conditions later in life [8].

Only recently, with the advent of large repositories of magnetic resonance imaging (MRI) 

datasets, researchers have begun to investigate the relatively small effects (η2<0.1) of 

SES on brain structure [9, 10]. For instance, family income (FI) and parental education 

(PED), two traditional measures of childhood SES that correlate with one another, were 

significantly associated with the thickness of the prefrontal cortex (PFC) in children and 

adolescents [11]. The effect of SES on cortical surface area was found to be particularly 

prominent in frontoparietal regions supporting language, spatial skills, and executive 

functions [12]. Beyond PED and FI, risk of lead-exposure (RLE), which is more frequent 

among the poor [13], has been associated with lower intelligence [14], and a recent study 

showed that higher RLE, as estimated from residential data, was linked to lower cognitive 

scores and increasingly smaller cortical surface areas and brain volumes in children from 

low-income but not in those from high-income families [15]. Excess weight (EW) in 

children, which in the US is more prevalent among those with lower SES [16], was also 

associated with lower executive function and lower cortical thickness in PFC areas [17].

Numerous studies have studied the influence of SES on life outcomes, and related their 

effects on mental health and cognition through their influence on the brain [18], and several 

studies have also documented that the distal effects of SES on the brain are mediated 

by environmental factors (i.e. “proximal factors”) such as stress, linguistics, cognitive 

stimulation, parenting practices, prenatal care, toxins, sleep or nutrition [9]. Previous studies 

have also documented the importance of parental support in brain development [19–21]. 

For example, children who were adopted when they were older had smaller prefrontal 

volumes than those who were adopted when they were younger, indicating that the longer 

the duration of childhood deprivation the worse the outcomes [22]. In another study, young 

adults who lived their first years of life (3-41 months) in orphanages under very deprived 

environments and were subsequently adopted, showed smaller total brain volumes (8.6% 

smaller) than non-deprived adoptees despite the intervening stimulation provided by their 

adoptee families [23].

Other relevant factors influenced by SES that affect brain development include recreational 

activities such as time spent on passive or interactive screen media activity (SMA) [24, 25], 

family composition and interactions (e.g., number of siblings, SIB, biological parents, and 

adults living with the child) [26, 27], and neighborhood deprivation [15, 28]. Thus in our 

analyses we included SMA considering that 97% of US children have at least one electronic 

item in their bedrooms [29], SIB considering that the number of only-child families in 

the ABCD study is relatively high (67%) and neighborhood deprivation. The associations 

between factors that are influenced by SES and brain structure in children suggests that there 
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are multiple variables contributing to poverty’s negative effects on cognition and on brain 

development. However, the relative contribution of various SES factors on cognition and 

brain morphometrics has not been comprehensively assessed. While multiple studies have 

reported on the mediation of brain morphometrics in cognition, the mediation of cognition, 

which we used as surrogate for levels of child cognitive stimulation, on the relationship 

between SES and brain morphometrics has not been evaluated. Further, the reproducibility 

of the effects of SES on brain measures in children has not been investigated nor have 

confounds from intra-scan head motion [30, 31] always been properly controlled [32].

The present study aims to quantify the relative contribution of various socioeconomic 

[FI, RLE, PED, and area deprivation index (ADI)], family environment (SIB, SMA) and 

demographic (EW, gender, and age) factors on cognition and brain morphometrics (CV 

and CT), and their reproducibility in 7,784 children from the Adolescent Brain Cognitive 

Development (ABCD) study. We strictly controlled for scanner manufacturer, head motion, 

intracranial volume, and race, using factorial analysis of covariance (ANCOVA) and causal 

mediation analysis. Our working hypothesis was that compared to other SES indicators, 

FI would have the strongest effects on cognition and brain development, and that after 

covarying for FI the effects of the other SES factors on cognition and brain morphometrics 

would be significantly reduced. We also hypothesized that proximal factors such as 

educational achievement, extracurricular activities, sleep, BMI, and/or pubertal hormones 

would mediate the effects of FI on brain morphometrics.

Materials and Methods

Participants.

The ABCD Study is a 10-yr longitudinal study involving 21 data collection sites 

across the United States [33]. Centralized institutional review board (IRB) approval 

was obtained from the University of California, San Diego IRB. Study sites obtained 

approval from their local IRBs. Written, informed consent was provided by each parent. 

Children were fluent in English and provided written assent for their participation. All 

ethical regulations were complied with during data collection and analysis. Recruitment 

closely represented demographic variables (sex, race, ethnicity, parental marital status and 

education, and income) of the general US population [34]. Children were excluded if they 

had contraindications for MRI, intellectual, medical, or neurological issues, or poor English-

language proficiency [35].

The 2019 ABCD 2.0 data release [36] includes baseline data for more than 11800 children. 

To control for intra-scan head motion, in this study we included data (Table S1) from 

10,712 children with available mean framewise displacement (FD) data corresponding to 

resting-state fMRI. A participant’s data were additionally excluded if brain segmentation did 

not pass ABCD quality control (N=384), or demonstrated moderate or severe head motion 

(N=992); miss sex (N=1, defined at birth), age (N=0), race/ethnicity (N=14), weight or 

height (N=21), family income bracket (FI, N=876), PED (N=345), area deprivation index: 

median family income (ADI, N=640), or the cognitive total composite score from the NIH 

Toolbox (N=354); or was an outlier for body mass index (BMI>50; N=6). Thus, a total 

of 2928 children were excluded, 705 of which meet more than one exclusion criterion. 
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For the variables of interest (Supplementary Table 1), there were complete data for 7,784 

children, which were randomly split into Discovery and Validation samples of equal size 

(N=3,892) to assess the reproducibility of the results (Table 1). In addition, an independent 

group of 262 children (Normality sample) with missing PED but otherwise complete data 

was identified among excluded children in the ABCD dataset to perform tests of normality 

on the morphometric data.

Residential history data.

Fifteen additional ADI dimensions (education, household disparity, median home, rent and 

mortgage values, percentages of homeowners, families living in poverty and crowdedness, 

unemployment, singles, homes without car and telephone, and population density) and 3 

uniform crime reports (total crime, DUI, and drug abuse) were extracted from residential 

history derived scores to assess neighborhood deprivation and safety.

Behavioral data.

We used the uncorrected standard fluid, crystallized and total cognition composite scores, 

which were calculated within the NIH Toolbox [37]. The Fluid Composite scores were 

calculated using the following tests: 1) pattern comparison processing speed; 2) list-sorting 

working memory; 3) picture sequence memory; 4) Flanker; and 5) the dimensional change 

card sort. The Crystallized composite scores were calculated using 6) the oral reading 

recognition and 7) the picture vocabulary tests. The fluid and crystallized composites were 

used to calculate the total cognition composite scores.

Morphometric data.

We used measures of CV, and CT, which were estimated from T1-weighted scans. The 

MRI data acquisition procedures and image processing analysis of the ABCD study are 

described in detail elsewhere [38, 39]. In brief, T1w and T2w structural scans with 1-mm 

isotropic resolution were collected using adult-size multi-channel coils, and harmonized 

image acquisition protocols for 3Tesla Siemens, Phillips, and General Electric scanners 

at 21 sites. During MRI, children restfully watched a child-friendly movie in the scanner 

[38]. Structural scans were collected using real-time motion detection and correction [38]. 

Quality control (QC) procedures were based on automated mean and SD of brain values 

[39]. In addition, trained raters inspected T1w-and T2w-images for poor quality, artifacts 

such as motion-related ghosting, blurring, or ringing that prevent brain segmentation [39]. 

T1w and T2w images were corrected for scanner-specific gradient distortions. Intensity 

inhomogeneity was corrected using a B1-bias field, and image intensity was harmonized 

across participants. Cortical and subcortical segmentation of T1w images was computed 

with FreeSurfer [39], which has been validated for use in children [40]. We used 148 

cortical ROIs automatically segmented according to surface-based nonlinear registration 

to an atlas of cortical folding patterns [41]. Trained raters reviewed the accuracy of the 

segmentation and the artifacts of the cortical surface reconstruction, indicating if motion, 

intensity inhomogeneity, white matter underestimation, pial overestimation, and magnetic 

susceptibility artifacts were either absent, mild, moderate, or severe, and gave on overall QC 

score for the cortical surface reconstruction [39].
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Additional data.

The numbers of biological parents and adults living with the child were additionally 

used to assess family composition, and school grades and sleep hours were used to 

assess educational achievement and sleep behavior, for all children (N=7,784). In ABCD 

subsamples with available data we separately assessed children’s access to alcohol 

(N=3,405) and cigarettes (N=1,238), as measures of parental oversight, extracurricular 

activities [sports (N=2,342), arts (N=1,927), reading (N=2,261) and music listening 

(N=2,229)], as measures of enrichment opportunities, and sex hormone levels [estradiol, 

HSE (N=1,177), testosterone, ERT (N=2,707), and dehydroepiandrosterone, DHEA 

(N=2,811)] as measures of pubertal development.

Statistical analyses.

We first tested the normal distributions of total CV and its regression slopes for the 

continuous variables (see text below) using the Shapiro–Wilk normality test [42] and the 

Normality sample (W>0.99; p>0.05). Then, a factorial analysis of covariance (ANCOVA) 

was conducted in R to study main effects of family income [FI; 10 income brackets: 1) 

< $5,000; 2) $5,000–12,000; 3) $12,000–16,000; 4) $16,000–25,000; 5) $25,000–35,000; 

6) $35,000–50,000; 7) $50,000–75,000; 8) $75,000–100,000; 9) $100,000–200,000; 10) > 

$200,000] on the dependent variable Y, which represents either brain morphometrics (CV 

and CT) or the total cognition composite, while controlling for differences in sex, age, 

intracranial volume (ICV) and race [White, African American, Hispanic, Asian, Other], 

which were used as covariates of no interest. Since head motion is also a concern for 

pediatric structural and functional neuroimaging [30, 31, 43], we also controlled for the 

subjects’ tendency to move their head while resting in the scanner, as informed by the 

subjects’ average FD during 5-min resting-state fMRI scans, using FD as an additional 

covariate of no interest. Because the ABCD morphometric measures vary significantly with 

SM [39], when modeling morphometrics we used scanner manufacturer (SM, GE, Philips, 

Siemens) as an additional covariate of no interest.

Socioeconomic (SES) variables [FI, RLE (US census tract [15]), PED (the average 

educational level achieved by the parent; 22 levels), SMA (number of weekly hours the 

child spends watching TV shows, movies or videos, playing video games, texting, video 

chatting, or visiting social network sites), and ADI] were highly correlated with one another 

(0.61>|R|> 0.13; P<2E-16), sharing a significant fraction of the variance.

We used Akaike (AIC) and Bayesian (BIC) information criteria to select the SES variable 

providing the better fit to the data. Specifically, we contrasted AIC and BIC values for 5 

different models summarized by

Y∼Z+EW+SIB+covariates,

where EW (L: underweight or lean, O: overweight or obese) and SIB (N: no siblings, Y: 

one or more siblings) are categorical factors and Z stands for FI (model 1), ADI (model 2), 

PED (model 3), RLE (model 4) or SMA (model 5). Body mass index (BMI) was calculated 

in kg/m2 from the participant’s weight and height, and overweight-obese (underweight-lead) 
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was defined as BMI > (<) 85th percentile for children and teens of the same age and sex. 

Since these comparisons demonstrated that model 1 provided the best fit to morphometrics 

and cognition composites, a full model:

Y∼FI+ADI+PED+RLE+SMA+EW+SIB+covariates,

was additionally tested to assess residual effects of secondary SES variables (ADI, PED, 

RLE, SMA) relative to that of the main SES variable (FI), and to assess regional effects 

of FI, EW, and SIB on brain morphometrics. Partial η2 was used in conjunction with 

ANCOVA to estimate effect sizes of categorical and continuous factors [42]. Tukey’s 

“Honest Significant Difference” method [44] was used in conjunction with ANCOVA to 

compute confidence intervals (CI) on the differences between the means of the levels of a 

categorical factor. Bonferroni corrections for multiple comparisons were based on 148 ROIs.

Principal component analysis (PCA) and hierarchical clustering.

PCA, conducted with the stats v3.6.2 R-package, was used for dimensionality reduction 

and exploratory data analysis. The hierarchy of clusters was visualized as a heatmap with a 

dendrogram.

Causal mediation analysis (CMA).

The “mediation” package [45] and a global model including all factors in Eq 2 were 

used to estimate causal mediation effects with continuous and discrete mediators [46]. 

One thousand bootstrapping samples and a heteroskedasticity-consistent estimator for the 

covariance matrix were used to estimate the average direct (ADE) and causal mediation 

(ACME) effects.

Results

All 36 demographic, cognitive family SES, and health behavior variables had significant 

correlations with FI, CV, and CT (0.03<R<0.60, Fig 1A). Ten principal components (PC) 

accounted for 72% of the variance in SES and cognitive measures (Fig 1B). Poverty 

indicators (ADI) predominated in PC# 1, 2 and 4, which accounted for 44% of the variance; 

cognitive measures predominated in PC# 3, which accounted for 9% of the variance.

Socioeconomic factors and cognition.

Fluid, crystallized and total cognitive test composites were positively correlated with FI 

(Fig 2A), ADI, and PED, factors that were strongly correlated across participants (R>0.42, 

N=7,784, P<2E-16), and worsened with increased RLE and longer SMA (Fig S1), which 

were negatively associated with FI (R<−0.28, N=7,784, P<2E-16). Regression slopes for 

these factors were reproducible and steeper for crystallized than for fluid cognitive scores 

(F1,16>39.0, P<1E-05, ANCOVA; Fig 2A). The effect sizes on cognition were larger for FI 

(0.069<η2<0.156, medium-large effect size) than for SMA (0.010<η2<0.015, small effect 

size) and PED (0.015<η2<0.035, small effect size; for crystallized and total composites, not 

for fluid) and altogether explained ~20% of the variance in cognition (Fig 2B) and were 

reproducible (Fig 2C). The Akaike’s (AIC) information criterion applied to 5 different 
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ANCOVA models to determine which SES factor best fitted the cognition composite 

corroborated that FI had the best fit (ΔAIC=AIC – AICFI>38.5) (Table S2). After accounting 

for FI, the residual effects of ADI, PED, RLE, SMA, and siblings (SIB) on cognition were 

significant and reproducible, but for EW were not reproducible and for RLE and ADI were 

not significant (Table S2 and S3).

Socioeconomic factors and brain morphometry.

Total CV and average CT had positive correlation with FI, PED, and ADI, and negative 

correlation with RLE and SMA (Figs 1D and S1A. and Tables S4 and S5), paralleling 

the effects of FI on cognition, and the regression slopes were steeper for CV than for CT 

(F1,16>80.4, P<1E-07, ANCOVA). As for cognition, we estimated the effects of the SES 

factors on morphometrics using 5 different ANCOVA models (Table S4) and found that 

FI had the best fit (AIC was lower for FI than for other SES factors) (ΔAIC >2.8). The 

stronger correlations between FI and CV were in superior frontal, middle temporal, orbital 

and precentral gyri, and anterior cingulum (Fig 3A), whereas for CT they were in sensory 

cortices, posterior default-mode network regions, and language areas (P<1E-18; Fig 3B). 

The effects of FI on CV and CT were highly reproducible (Figs 3 and S2; Table S6).

The residual effects of PED and SIB on brain morphometrics were reproducible (Table 

S4). FI had large reproducible effects on CV (η2>0.195) and smaller reproducible effects 

in CT (η2=0.024), whereas the other variables showed small but reproducible effects 

(0.010<η2<0.030) on total CV (SIB and PED), and CT (EW). Children with siblings had 

smaller cortical area (F1,7765=153.4, P<2E-16; Fig S1), also resembling the effects of SIB on 

cognition (see Supplementary Results) but had thicker cortex than children without siblings 

[<1.5%; TukeyHSD test; Fig S2]. Overweight/obese children had thinner cortex than lean/

underweight children [F1,16=5.0, P=0.04, ANCOVA; Fig S2].

Mediation analysis.

CMA (Fig 4A-4D and 4F-4G) demonstrated direct effects of FI on all demographic, 

cognitive, family SES, and health behavior variables, except alcohol sips (pADE<2E-16), 

as well as reproducible partial mediation effects of ADI (education, RLE, median home 

values, and homeowners, house occupancy and unemployment rates), sleep hours, BMI, and 

processing speed on the relationship between FI and CV (pACME<0.05), and of inhibitory 

(Flanker), language (picture vocabulary), memory (card sort and list sort) and information 

processing, BMI, and the number of siblings on the relationship between FI and CT 

(pACME<0.05).

Pubertal hormones.

CMA also demonstrated significant mediation effects of pubertal hormones (ERT and 

DHEA) on the relationship between FI and CV (pACME<2E-16; Fig 4E). ERT and DHEA 

had significant negative correlation with FI (p=1E-04).

While CMA demonstrated direct effects of FI on school grades, music listening, and 

children’s access to alcohol and tobacco, it did not show significant mediation effects of 

these variables to CV or CT.
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Discussion

Here, studying the relative contribution of various SES factors on cognition (fluid and 

crystallized) and brain morphometrics in two independent ABCD samples of children, we 

corroborated our hypothesis that FI had the strongest associations with cognition and brain 

morphometrics.

FI had a reproducible contribution to inter-individual variations in cognitive test scores 

(partial η2>0.15), and to total CV (partial η2>0.20) and had a smaller though significant and 

reproducible association with CT (partial η2<0.03). Unique contributions from other factors, 

which correlated with FI (residual effects of parental education, risk of lead exposure, excess 

weight, screen media activity, and area deprivation index) were significant, but their effect 

sizes were much smaller than for FI and accounted for only a small fraction of the variance 

in cognitive scores and in total CV (partial η2<0.03). Similar findings were reported by a 

prior study in 1099 typically developing 3–20 years old, which also showed that among the 

SES factors investigated, FI had the largest influence on brain structure [12].

FI had strong linear associations with the cognitive composites, consistent with prior studies 

[3, 6], which were steeper for crystallized than for fluid scores. This suggests that language 

abilities might be particularly vulnerable to growing up in poverty, presumably from lack 

of access to high-quality education as well as exposure to more complex verbal and written 

language during everyday family life. FI was also reproducibly associated with the fluent 

composite with medium effect size, which suggests that the ability to solve problems, think, 

and reason abstractly might be impaired in children from low-income families, presumably 

due to limited exposure to an environment that can promote the development of such skills. 

In parallel, we observed an association between FI and CV, particularly in superior frontal, 

middle temporal, orbital and precentral gyri, and anterior cingulate, and between FI and CT, 

particularly in sensory regions, precuneus and language areas.

The slope of the association between FI and CT (0.2% per income bracket) was less steep 

than for total CV (1% per income bracket), both in the Discovery and Validation samples, 

suggesting a weaker influence of FI for CT than for CV. Reduced CV in low-income 

family children could result from decreased gyrification during brain maturation [47], and 

the smaller effects on CT could reflect accelerated developmental thinning of the cortex 

[47]. The association of FI with CT was most prominent in sensory, default-mode, and 

language regions, a pattern remarkably similar to the autonomic brain network implicated in 

processing signals from the peripheral nervous system, personality, and emotions [48]. Thus, 

greater reactivity of the autonomic system in poor children might have accelerated pruning 

in these regions [49].

Higher education, better jobs, higher income, and better neighborhoods usually tend to go 

together, and though highly correlated [50] might have unique consequences on children’s 

brain development [51]. We found that higher parental education (degree, or school grade/

level completed by parents) was uniquely associated with better cognition scores and 

increased CV, independent of FI and other covariates in a reproducible way. However, 

the association of parental education with average CT was not significant, consistent with 

Tomasi and Volkow Page 8

Mol Psychiatry. Author manuscript; available in PMC 2022 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior studies [12]. These differences could reflect the fact that CV and CT, capture different 

evolutionary, genetic, and cellular factors [52, 53]. We also found that after accounting for 

FI, the residual effect of ADI was weakly associated with the cognition composites but did 

not show associations with any of the brain morphometrics.

In our study we assumed that cognitive performance is an indirect surrogate of the level 

of stimulation a child is exposed to and hypothesized that it would partially mediate 

effects of FI on brain morphometrics. Our findings corroborated this hypothesis and showed 

that scores on language and executive functions, including inhibitory-control and working 

memory, partially mediated the association of FI with CT, and those of processing speed 

partially mediated the effects of FI on both, CT and CV, consistent with the influence 

of family SES on children’s cognitive abilities [54]. These suggest that income-related 

cognitive stimulation (e.g., childcare quality, school quality, access to tutors and home 

learning environments, etc.) could have influenced the association between FI and children’s 

CV and CT. Prevention studies that have evaluated the effects of training parents on family 

management including problem-solving and support for academic activities were shown to 

prevent the adverse effects of poverty on brain development [55]. Unfortunately, the ABCD 

study has limited information of childcare data during early childhood development, so we 

cannot assess its modulation of FI effects on brain morphometrics. Also, we did not find 

mediation effects on the relationships between FI and brain morphometrics with two other 

surrogate markers of stimulation (children’s school grades and extracurricular activities). 

However, it should be noted that school grades in the ABCD data set are currently not 

normalized to school’s rankings across the country, and the data on extracurricular activities 

is only available for 25% of the ABCD sample.

We found reproducible mediation effects of increased BMI on the association between 

lower FI and smaller CV and CT. The observed negative correlation between BMI and FI 

is consistent with the increase of BMI in children from poor neighborhoods [56]. Since 

higher BMI has been associated with lower brain volumes [57], our findings suggest that 

the associations between FI and CV and CT partially reflect higher BMI in children from 

low-income families. We also found reproducible mediation effects of sleep hours on the 

association between lower FI and smaller CV. Sleep is important for several brain functions 

as well as for the clearance of accumulating toxins from the brain [58]. The negative 

correlation between FI and sleep hours suggests that insufficient sleep may have contributed 

to smaller CV in children from low-income families. Similarly, in a subsample of N>2700 

ABCD children we found an intriguing mediation effect of pubertal hormones (ERT and 

DHEA) on the association between FI and CV. Since gonadal steroids levels increase during 

puberty and adolescence [59], the observed negative correlation between FI and pubertal 

hormones suggests delayed puberty in children from low-income families, which could 

be consistent with delayed neurocognitive maturation in lower-income environments [60]. 

Therefore, the mediation of the hormonal levels suggests that delayed puberty may have 

contributed to smaller CV in children from low-income families. However, note that other 

studies have reported an opposite association; that is accelerated puberty in girls from low 

SES [61]; this conflicting results might reflect characteristics of the ABCD sample such as 

lower representation of children of families with very low SES than prior studies.
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Though the cross-sectional nature of baseline ABCD Study’s data does not allow us to 

confer causality, our findings in the context of the existing literature have public health 

implications that highlight the importance of strategies to minimize the adverse effects of 

poverty in children. Moreover, such preventive strategies have been shown not only to be 

beneficial to the children who were targeted but to have transgenerational effects improving 

cognition and mental health in their children when they become parents [62]. Further, the 

protective effects of prevention interventions against poverty reduced the poverty status of 

children when they reached young adulthood [63].

Additional limitations to our study include the narrow age range of participants, which 

limits the generalizability to other brain development stages. The ABCD sample’s 

representativenes of the US population is only partial. Specifically, while the ABCD sample 

and the general US population have similar parental education at the lower levels (e.g., 

68% of parents in ABCD and 62–67% of adults in US completed at least some college 

studies), a larger fraction completed the Batchelor’s degree in ABCD (55%) than in the US 

population (46%). The ABCD study has also relatively lower representation from families 

of very low incomes and this might have contributed to the discrepant findings we observed 

for the assocation between low FI and puberty. Also the number of only-child families in 

the ABCD study is relatively high (67%), and family environment may be radically different 

for only-child and multi children families in terms of the children’s cognition, personality 

and affect characteristics [26], which is why we assessed the influence of SIB. However the 

association with sibling might have differed in a population that had higher representation 

from families with very low incomes. Finally, the recently reported low reliability of the 

NIH-Toolbox cognitive battery [64], which will require further re-assesement, might limit 

the robustness of findings pertaining to cognition.

Here we show reproducible moderate associations of family income with cognition and 

brain structure. The mediation analyses suggest that lower cognition, insufficient sleep, 

excess weight, and crowded family environments in children raised in economically 

disadvantaged families might contribute to these disparities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: Demographic, cognitive, family SES, and health behavior variables.
A: Scaled heatmap with hierarchical clustering showing the correlations of these variables 

with family income (FI), cortical volume (CV) and thickness (CT). B: Bar plot showing that 

the top 10 principal components captured 75% of the variance (top) and a scaled heatmap 

with hierarchical clustering showing relative contributions of the principal components for 

each of the variables (bottom). Highlighted variable labels correspond to residential history 

derived scores.
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Fig 2: Demographics and morphometrics variables versus socioeconomic factors.
Linear associations of family income (FI) with fluid (FluidComp), crystallized (CrysComp), 

and total (CognComp) cognition composites (A), and with relative measures of total cortical 

volume (CV) and mean cortical thickness (CT) (D), averaged within participants of the same 

FI bracket. Effect size (partial η2) corresponding to 9 ANCOVA factors and two independent 

samples (Discovery and Validation) for 3 cognitive scores (B) and 3 morphometrics (E). 

Scatter plots showing the reproducibility of the effect sizes (C and F). FI brackets: 1) 

< $5,000; 2) $5,000–12,000; 3) $12,000–16,000; 4) $16,000–25,000; 5) $25,000–35,000; 

6) $35,000–50,000; 7) $50,000–50,000; 8) $75,000–100,000; 9) $100,000–200,000; 10) > 

$200,000. Factorial ANCOVA with 9 factors of interest [FI, RLE, excess weight (EW), 

siblings (SIB), SMA, PED, sex, age, and area deprivation index (ADI)], and 4 covariates of 

no interest (race, intracranial volume, scanner manufacturer and intra scan head motion). 

Discovery and Validation samples of equal size (N=3,892), matched by demographic, 

socioeconomic, morphometric and cognitive variables (Table 1).
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Fig 3: Regional effects of family income (FI) on cortical volume and thickness.
Cortical renderings of statistical significance for the effect of FI on brain morphometrics 

showing the pattern of the effect in the Discovery (A and B) and Validation (C and D) 

samples. Factorial ANCOVA with 9 factors of interest (FI, risk of lead exposure, excess 

weight, siblings, screen media activity, parental education, sex, age, and area deprivation 

index), and 4 covariates of no interest (race, intracranial volume, scanner manufacturer and 

intra scan head motion).
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Fig 4: Causal mediation analysis (CMA).
Mediation models (A and C) and unscaled heatmaps with hierarchical clustering (B and D) 

for average direct (ADE) and causal mediation (ACME) effects of cortical volume (CV) 

and thickness (CT) on the relationships between family income (FI) and 36 demographic, 

socioeconomic and health behavior variables (X; A and B) and for those of X on the 

relationships between FI and the morphometrics (C and D) for Discovery (Dis) and 

Validation (Val) sample of 3,892 children each. Separate CMA for selected subsamples 

assessing ADE and ACME of access to alcohol (N=3,405) and cigarettes (N=1,238), 

extracurricular sports (N=2,342), arts (N=1,927), reading (N=2,261), and music listening 

(N=2,229), as well as pubertal estradiol, HSE (N=1,177), testosterone, ERT (N=2,707) and 

dehydroepiandrosterone, DHEA (N=2,811) hormones (X) on the relationships between FI 

and morphometrics, as well as those of CV and CT on the relationships between FI and X 

(E); the reproducibility of these pathways was not tested given the reduced size of these 

subsamples. Schematics highlighting reproducible ADE and ACME for CV (F) and CT 

(G). ADI: Area deprivation index; SIB: siblings; PED parental education; BMI: body mass 
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index; RLE: risk of lead exposure; SMA: screen media activity. Highlighted variable labels 

correspond to residential history derived scores.
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Table 1:

Characteristics of the Discovery and Validation ABCD samples.

Included Excluded

Discovery Validation P-val

Family income 7.2±2.4 7.3±2.3 n.s.
5.1±3.9

#

Average neighborhood income ($) 76641±34369 77416±35181 n.s.
58712±46203

#

Risk of lead exposure 4.9±3.1 4.9±3.1 n.s.
4.4±3.6

#

Excess weight (Lean/Overweight) 2530/1362 2522/1370 n.s.* 1825/1103
#

Siblings (Yes/Non) 1280/2612 1271/2621 n.s.* 1981/947
#

Screen media activity [hours/week] 20.8±16.9 20.4±16.9 n.s.
22.3±18.6

#

Parental education level 16.6±2.6 16.7±2.5 n.s.
14.0±5.8

#

Sex (Male/Female) 2042/1850 2044/1848 n.s.* 1507/1421

Age [months] 118±8 119±8 n.s. 118±7

Intracranial volume [L] 1.52±0.15 1.52±0.15 n.s.
1.49±0.15

#

Race (White/African American/Hispanic/Asian/Other 
§ )

2149/486/788/61/408 2189/503/743/68/389 n.s.* 1311/570/639/91/317
#

Scanner manufacturer (GE/Phillips/Siemens) 792/417/2683 814/450/2628 n.s.* 911/485/1532
#

Mean framewise displacement [mm] 0.26±0.26 0.27±0.27 n.s.
0.36±0.34

#

Mean cortical thickness [mm] 2.80±0.09 2.80±0.09 n.s.
2.75±0.12

#

Total cortical volume [mL] 601±58 601±56 n.s.
589±59

#

Total cortical area [mm2] 187±18 187±18 n.s. 187±20

Fluid composite 96±17 97±17 n.s.
83±34

#

Crystallized composite 106±18 107±18 n.s.
94±36

#

Cognitive total composite 101±17 102±18 n.s.
87±36

#

*
χ2-test;

§
More than one race; P-val: statistical differences between the Discovery and Validation samples;

#
Significant difference between Included and Excluded participants (P<0.05).
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