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Abstract

Cancer cachexia (CC) is a devastating syndrome characterized by weight loss, reduced fat mass 

and muscle mass that affects approximately 80% of cancer patients and is responsible for 22%–

30% of cancer-associated deaths. Understanding underlying mechanisms for the development of 

CC are crucial to advance therapies to treat CC and improve cancer outcomes. CC is a multi-organ 

syndrome that results in extensive skeletal muscle and adipose tissue wasting; however, CC can 

impair other organs such as the liver, heart, brain, and bone as well. A considerable amount of 

CC research focuses on changes that occur within the muscle, but cancer-related impairments in 

other organ systems are understudied. Furthermore, metabolic changes in organ systems other than 

muscle may contribute to CC. Therefore, the purpose of this review is to address degenerative 

mechanisms which occur during CC from a whole-body perspective. Outlining the information 

known about metabolic changes that occur in response to cancer is necessary to develop and 

enhance therapies to treat CC. As much of the current evidences in CC are from pre-clinical 

models we should note the majority of the data reviewed here are from preclinical models.
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Introduction

Cancer is one of the leading causes of death worldwide with the World Health Organization 

reporting 9.6 million deaths and 18.1 million new cases in 2018.1,2 Cancer-cachexia (CC) 

is a wasting syndrome that occurs in up to 80% of cancer patients.3,4 CC is the primary 

cause of death for 22%–30% of cancer patients,3,4 with incidence predicted to grow in 

years to come.5 Despite CC’s widespread implications, it is often poorly diagnosed and 

often missed completely. Typically, there is an examination of weight loss, body mass index 

(BMI), and skeletal muscle, and clinically requires greater than 5% loss of body weight 

over a 6-month period, BMI less than 20 kg/m2, and low muscle mass (sarcopenia) to be 

diagnosed.6,7 However, CC is often irreversible once weight loss begins to occur; therefore, 

using weight loss as diagnostic criteria is therapeutically inadequate and outlines the need 

to identify a pre-cachectic signature both for diagnostic and treatment purposes. Therefore, 

the purpose of this review is to examine the development of CC from bench to bedside 

in multiple organ systems. To begin we will describe demographics in cancer patients and 

degenerative mechanisms in the skeletal muscle during CC. Additionally, we will address 

molecular alterations in other organs in CC. Notably, as much of the existing evidence in 

CC is from pre-clinical models the bulk of our discussion on mechanisms of CC comes from 

pre-clinical models and needs further validation in clinical studies.

Cancer cachexia patient demographics and clinical progression

As previously stated, CC can affect as much as 80% of cancer patients depending on the 

type of cancer.3,4 However, CC outcomes following cancer diagnosis and treatment are 

influenced by factors such as age, body composition, biological sex, type of cancer and 

activity level.8–10 Herein, we will examine CC occurrence as a function of age, biological 

sex and type of cancer.

CC is of particular importance in the elderly demographic, since sarcopenia, age-related loss 

of muscle mass and function, commonly occurs alongside CC.11 In fact, among patients in a 

specialized geriatric oncology clinic, up to 65% presented with CC.12 Despite the prevalence 

of CC in aged populations, older subjects continue to be poorly represented in pre-clinical 

models of CC and randomized phase II and III CC clinical trials.13–15 Understanding the 

development of CC in the aged population is crucial for developing effective therapies as 

especially when considering other common comorbidities in this population CC onset and 

progression may differ in young patients when compared to aged patients.

In addition, biological sex has been recently reported as an important factor in terms of 

cancer incidence and mortality.16 Although both male and female subjects exhibit CC, the 

development of CC may differ between sexes.17 A recent study shows cancer incidence is 

20% higher in males between sexes and the male-to-female incidence ratio was distinctly 
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different in many primary malignant tumor developments such as liver, bladder, oral cavity, 

esophageal, and thyroid cancer in the US.18 Moreover, the mortality rate in malignant 

cancers is nearly 30% higher in males compared to females in various age groups.19,20 

Moreover, cancer-induced cachexia generally occurs in 40%–50% of female patients and 

40%–60% of male patients over 60 years of age21,22 and overall prevalence of severe muscle 

loss criteria among cancer patients was much higher in males (61%) than females (31%).23 

These distinct underlying differences between sexes in cancer incidence and mortality are 

complicated to delineate, but this phenomenon can be attributed by both external (lifestyle, 

alcohol consumption, smoking, and delayed diagnosis) and internal factors (hormone levels, 

and biological sex-based molecular changes).16,17 We will discuss more detailed biological 

sex-based molecular changes in the skeletal muscle later in this review.

All cancers can present with cachexia and common cancers such as those of the 

pancreas, lung, and liver are responsible for approximately half of all cancer-related 

deaths worldwide.24 Cancers that are more commonly associated with cachexia are often 

diagnosed at an advanced stage and have direct effects on digestion.25 Furthermore, tumor 

characteristics such as tumor proliferation rates and inflammatory profiles contribute to 

CC.3,26 Baseline assessments of pre-cachexia (early stage of CC without marked weight 

loss; i.e., ≤5%)6 or mass loss history are critical for predicting CC trajectory at later stages 

of cancer progression.27 To predict if CC will occur in patients, there is a need for a defined 

pre-cachectic signature, which would allow for the development and implementation of 

preventative treatments to decrease the severity of CC or even prevent CC.

Recently, many clinical studies have taken place to identify characteristics of CC across 

several different types of cancers in humans. Surprisingly, results of clinical studies often 

show different outcomes than pre-clinical animal models. For example, in pre-clinical 

animal models there is consistent data showing that muscle proteolysis is occurring with 

CC; however, the results from clinical studies are much more variable.28 Our group 

recently reviewed common pre-clinical models of CC,29 notably current efforts are ongoing 

to develop pre-clinical models of CC to more accurately recapitulate human CC. One 

excellent example of these efforts is the recent development of the KPP mouse model 

of pancreatic ductal adenocarcinoma (PDA).30 Notably, the KPP mouse exhibits similar 

gene ontology to human patients and a more protracted time course of development than 

common allografted tumor models.30 One source of variation could be that in pre-clinical 

animal models’ experimental conditions such as tumor size are tightly controlled for, while 

in clinical studies the progression of cancer is often not controlled for. More data from 

clinical models is needed in order to fully understand the development of CC in humans. For 

example, mitochondrial dysfunction is a common finding in pre-clinical animal models that 

is understudied in clinical models. Dolly et al. recently published a more in-depth review of 

recent clinical studies.28 Below are some common findings detailing the progression of CC 

in pre-clinical animal models.

Considering the varying impacts of CC across age groups, biological sex, types of cancer 

and others, there is a strong need to identify novel biomarkers associated with the 

progression of CC that could be useful for diagnostic purposes prior to marked weight 

loss.31 In fact, identification of biomarkers is among a series of identified priorities in 
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cancer cachexia and critical initiatives in this effort have been recently established.32 

Recent studies have identified different types of potential bloodborne biomarkers in various 

cancer models.32 For instance, Talbert and coworkers33 found elevated circulating levels 

of monocyte chemoattractant protein-1 (MCP-1) in cachectic pancreatic cancer patients 

which was absent in their weight stable counterparts, providing a potential biomarker 

for CC. A similar finding has been reported that higher plasma C18-ceramide to C24

ceramide (C18:C24) levels were found in cachectic pancreatic cancer patients compared to 

non-cachectic patients.34 In addition, bloodborne biomarkers to identify pre-cachexia could 

include inflammatory cytokines,35 microRNA’s,36 and lipolysis markers.31 Specifically, 

interleukin (IL)-6 is elevated in blood in pre-clinical models of CC.37 Downstream of 

IL-6, signaling transducer and activator of transcription (STAT) 3 signaling is linked to 

phenotypes of cancer-cachexia including skeletal muscle wasting, cardiac dysfunction and 

hypothalamic inflammation.38–41 Mitogen-activated protein kinase (MAPK/ERK) is another 

downstream target of IL-6 that contributes to increased mitochondrial fission factors in 

tumor-bearing mice.42,43 Intriguingly, the induction of cancer-cachexia is IL-6 independent 

in female mice.44 Furthermore, our recent data show plasma-derived proteins such as Serum 

Amyloid A1 (SAA1) content was exclusively higher in mice with LLC-induced cachexia 

even when compared to models of disuse-induced muscle atrophy.45 However, it should be 

noted that biomarkers may differ depending on the type of cancer.46 More recently, clinical 

trials have been conducted to identify novel biomarkers for CC in humans. Some common 

biomarkers observed in clinical trials include c-reactive protein, albumin, insulin-like growth 

factor-1 (IGF-1), free fatty acids, IL-6, and IL-1028. One issue with looking at biomarkers 

in humans is that the biomarkers are screened for in all stages of cancer, which makes it 

difficult to identify a potential biomarker for early detection of CC. Hence, studies using 

pre-clinical models that are looking for these bloodborne biomarkers during different stages 

and types of cancer are needed to identify novel biomarkers that can be utilized to effectively 

diagnose and prevent it.

Role of chemotherapy and radiation therapy in cancer cachexia 

development

Common classes of chemotherapeutics such as taxanes (e.g., paclitaxel or taxol) or vinka 

alkaloids (e.g., vinblastine) are used to treat multiple cancers including breast cancer, lung 

cancer, pancreatic cancer, and gastrointestinal cancer.47,48 Chemo- or radiation therapy 

reduces the physical fitness of cancer patients,49 which has negative impacts on CC 

outcomes. Early muscle loss during chemotherapy is associated with poor treatment 

response and reduced survival.50 Pre-clinical models and clinical studies show that 

chemotherapies such as taxanes or vinka alkaloids induce severe muscle weakness, impaired 

neuronal activities, and mitochondrial dysfunctions.51–54 While some data suggest common 

mechanisms may exist between cancer-induced and chemotherapy-induced cachexia,55 

unfortunately to date few pre-clinical studies have attempted to investigate the combinatory 

effects of cancer and cancer treatment on cachexia outcomes. This is largely impacted by 

the confounding effects of cancer treatment on tumor volume. Many preclinical models, 

especially allograft models, rely on tumor mass as a cue for CC, with cancer treatments 

tumor volume is often restricted or reversed creating difficulty in studying CC in an 
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appropriately matched study. Further investigation of these combinatory effects are required 

to advance our understanding of CC in more clinically apt conditions.

Clinical trials

The National Institute of Health’s definition of a clinical trial is a research study in which 

one or more human subjects are prospectively assigned to one or more interventions (which 

may include placebo or other control) to evaluate the effects of those interventions on 

health-related biomedical or behavioral outcomes. Despite the clear need to treat CC, there 

have not been many clinical trials with the goal of treating CC. Clinical trials that have taken 

place have been largely unsuccessful. Recently, both anamorelin and enobosarm were tested 

in clinical trials, but failed to reach primary endpoint measurements.56 Exercise has been 

successfully used as a preventative intervention for CC.57 This said, an accompanying article 

by Halle et al. more specifically addresses the potential therapeutic impacts of exercise on 

CC.58 One explanation for why these trials were unsuccessful is that mechanisms that lead 

to the initial development of CC are understudied.

Changes in skeletal muscle during the development of CC

A summary of alterations to the skeletal muscle during pre- and cachectic states can be 

found in Table 1.

Protein turnover during the development and progression of CC

The major feature of CC is the net loss of skeletal muscle protein, which occurs when 

protein degradation exceeds protein synthesis.59 Prior evidence shows pre-clinical models of 

CC have elevated protein degradation while protein synthesis is suppressed.60–63 Two major 

protein degradation processes, the ubiquitin proteasome system (UPS) and the autophagy

lysosomal pathway (ALP) are often activated during muscle wasting conditions including 

CC.64 In the UPS, ubiquitin is conjugated to target proteins that are tagged and recognized 

through E3-E2 ubiquitin ligases, which are then degraded via the ATP-dependent 26S 

proteasome.65 Two major atrophy-related genes are commonly accepted, atrogin-1 (also 

known as MAFbx)66,67 and MuRF1 (muscle RING finger protein 1)66 and both atrogenes 

encode E3 ligases, which initiate ubiquitination of target protein substrates,68–70 thereby 

upregulating muscle atrophy. It should be noted that other related atrogenes have been 

recently described.71 These markers are elevated in various models of atrophy including CC, 

disuse, and denervation-induced muscle wasting.62,72,73 Recent evidence from our group 

also showed that elevated mRNA content of atrogin-1 and MuRF1 and protein content 

of ubiquitin were found in the skeletal muscle of Lewis Lung Carcinoma (LLC)-induced 

tumor-bearing mice 4 weeks following tumor implantation (cachectic state).62 Furthermore, 

a nearly 40% lowered fractional synthesis rate (FSR) of mixed proteins was observed 

in muscle tissues in LLC tumor-bearing mice at this point.62 Similar findings using the 

ApcMin/+ mouse (colon cancer model) have been previously reported by the Carson 

group.74

Moreover, muscle protein synthesis is one of the two major components when it comes 

to net protein balance while its role in CC has not been clearly understood. While our 
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data62,63 and other works60,61 clearly demonstrate reduced protein anabolism in pre-clinical 

animal models of CC, understanding of the suppression of anabolic signaling remains 

incomplete.60,75 The primary cellular signaling pathway of muscle growth known as Akt/

mTOR signaling is an essential part of muscle protein synthesis.76,77 Downstream signaling 

of the mammalian target of rapamycin (mTOR) promotes mRNA translation initiation, 

thereby leading to generation of newly synthesized protein and increasing muscle mass,78 

and mTOR activation can be directly suppressed via its own inhibitors, DEP domain

containing mTOR-interacting protein (DEPTOR)79 and regulated in development and DNA 

damage response 1 (REDD1).80 Our recent work also found elevated Deptor protein content 

concomitant with reduced FSR of muscle protein in LLC-induced cachectic mice, indicating 

mTOR inhibition via Deptor as an essential hub for regulation of muscle protein synthesis in 

CC.62

Skeletal muscle regeneration during the development and progression of CC

An alternative factor that may contribute to muscle wasting in CC is altered skeletal muscle 

regeneration,81 a more detailed review on muscle regeneration during cancer cachexia 

has been published.82 Skeletal muscle has an efficient homeostatic capacity to regenerate 

itself in response to injury and it can be hypothesized that skeletal muscle undergoes the 

regeneration process in response to muscle wasting during CC. Accordingly, it is plausible 

that cancer-induced muscle wasting is in part due to impaired muscle regeneration capacity 

dependently or independently of cellular signaling of protein synthesis. Interestingly, our 

group has observed reduced myogenic and cell cycle-associated markers including Cyclin 

D1, Pax7, MyoD, and Myogenin at the early stages of cancer in tumor-bearing mice before 

marked weight loss,62 indicating muscle atrophy might be initiated via impairment of the 

muscle regeneration processes during the early stages of cancer. Other work has shown 

that skeletal muscle regeneration is impaired in tumor-bearing mice.83 However, only few 

pre-clinical and clinical studies have observed the role of the muscle regeneration process 

in cancer-associated muscle wasting, making it difficult to advance the development of 

therapeutics to prevent CC. Collectively, prior studies suggest both protein degradation and 

synthesis contribute to protein turnover during CC although its individual contribution has 

not been well understood. Therefore, further investigations on regulation of muscle protein 

turnover including regeneration mechanisms during pre-cachexia are needed to prevent 

muscle wasting in CC.

Mitochondrial alterations during the development and progression of CC

Mitochondrial health and function have long been implicated with various human diseases 

including CC.84–86 Degeneration in muscle from cachectic mice has been shown in multiple 

accounts; however, mitochondrial changes that occur during the development of CC are 

underexplored. Previous studies have reported that both in vivo and in vitro models of CC 

can lead to impaired mitochondrial function including reduced respiratory capacity, ATP 

production, and elevated reactive oxygen species (ROS) emission.43,63,87,88 However, our 

recent findings reveal mitochondrial ROS generation and mitochondrial oxidative stress 

precedes the development of CC in LLC tumor-bearing mice.84 Elevated ROS emission 

is associated with impaired mitochondrial quality control (MQC) mechanisms including 

mitochondrial dynamics (fusion and fission) and autophagy (mitophagy).89,90 Our recent 

Lim et al. Page 6

Sports Med Health Sci. Author manuscript; available in PMC 2021 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



study shows elevated ROS occurs concomitantly with reduced content of mitochondrial 

fusion regulatory proteins during the pre-cachectic stage in tumor-bearing mice. In addition, 

markers for mitophagy and mitochondrial fission were upregulated, and mitochondrial 

respiration were impaired during the cachectic phase.84 Similar results were reported by 

others of reduced mitochondrial fusion, biogenesis, elevated mitochondrial fission, ROS 

emission, and protein markers associated with autophagosome formation in both cachectic 

mice43 and cachectic cancer patients.91 Chronic elevation of mitochondrial ROS generation 

can increase rates of protein degradation via activation of the ubiquitin proteasome-mediated 

protein breakdown process, leading to muscle wasting.92 To our knowledge, this was the 

first data that shows alterations in mitochondrial health and function during pre-cachexia, 

and currently it is unknown if early targeting of H2O2 and mitochondrial fusion may prevent 

mitochondrial degeneration observed during CC. Hence, additional supportive investigations 

on targeting on H2O2 and mitochondrial fusion are needed to elucidate mitochondrial 

regulations during the development and progression of CC.

Skeletal muscle contractile function during the development and progression of CC

In addition to a loss of muscle mass, reduced muscle strength is another indicator of 

the survival rate among patients and rodents with advanced cancer.93–95 CC is associated 

with impaired muscle contractility and accelerated muscle fatigue in both tumor-bearing 

mice,95,96 and advanced cancer patients.93 Previous evidence revealed that cachectic mice 

showed impaired contractility in both force production and fatigability and, notably, 

increased muscle fatigability was present in weight stable ApcMin/+ mice,95 suggesting 

increased muscle fatigability in pre-cachexia may serve as an early functional marker for 

CC. Muscle fatigue is the decline in ability of muscles to generate force. Force production 

is controlled by contractile properties such as fiber type, motor unit, ATPase activity, 

and neuromuscular connection.97,98 In addition, altered calcium homeostasis is a hallmark 

of cancer cells and prior studies have shown that altered calcium homeostasis including 

mitochondrial calcium retention capacity, voltage-gated calcium channels, and SR stress 

levels are observed in the skeletal muscle of cancer patients.85,99 Since calcium is an 

essential molecule that enables the cross-bridge muscle contraction cycle100 and is involved 

in signaling for mitochondrial ATP production,101 it is suggested that altered calcium 

homeostasis in CC may play an important role in inducing impaired muscle contractile 

function.

Muscle force is strongly associated with the integrity of the extracellular matrix (ECM) 

in that muscle force generated by the actomyosin cross-bridge mechanism transmits force 

to external tendons via ECM.102,103 ECM structure in ApcMin/+ mice is disrupted by the 

accumulation of non-contractile tissue.104 The matrix metalloproteinase (MMP) are a family 

of zinc-dependent endopeptidases, which plays an important role in regulating the integrity 

of ECM via degrading essential ECM components such as collagens.105 MMP contents 

are elevated during the development of CC, which may promote ECM remodeling.106 In 

addition, disrupted ECM integrity can be partially explained via the accumulation of fibrotic 

tissues in CC.107 Recent evidence showed with novel histological data that disrupted skeletal 

muscle integrity is accounted for with the replacement of muscle with collagen, fat, and 

fibrosis tissues and this result was supported by altered transcriptional profiling of TGF-β 
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(regulator of tissue fibrosis) in pancreatic cancer patients.107 However, the regulation of 

ECM in CC is not completely understood and additional investigations are required to 

delineate its elusive roles of ECM during the development and progression of CC.

Sex differences in skeletal muscle during the development and progression of CC

CC occurs in both male and female populations; however, mechanisms that drive muscle 

loss differ between male and female subjects.17,108 In fact, female mice are less sensitive 

to inflammation-mediated activation of the ubiquitin-proteasome system and subsequent 

muscle protein breakdown, common in CC, as compared to males.109–111 Differences in 

the inflammation and protein breakdown pathways observed in prior works show distinct 

variations in cancer-induced muscle degradation mechanisms that occur between sexes in 

mice.17,108 More studies are needed to delineate the ambiguous roles of biological sex 

during the development and progression of CC. Considering differences in CC susceptibility 

by biological sex, explorations of mechanistic differences in CC between biological 

sexes may provide valuable insight to therapeutic approaches to prevent or attenuate this 

condition. The 4-core genotype model has recently been developed in order to delineate 

whether sex specific changes are primarily caused from hormonal changes, chromosomal 

differences or a combination of both.112 However, tools such as the 4-core genotype model 

have never been used to delineate mechanisms behind sex specific differences in CC.

Alterations to non-skeletal muscle tissues during development and 

progression of CC

Though the skeletal muscle is by definition a primary focus and definitive aspect of CC, 

this condition affects multiple organ systems. In many cases these alterations to tissues such 

as the liver, adipose tissue, cardiac muscle, brain and others are relatively underexplored. A 

summary of alterations to the non-skeletal muscle tissues during pre- and cachectic states 

can be found in Fig. 1. In addition to those discussed, further evidences strongly indicates 

a potential role of altered immune function in CC, these alterations have been recently 

described in a review by VanderVeen et al.113 and thus will not be described here. However, 

they may be critical to understanding the full spectra of this condition and appropriate 

therapeutic strategies.

Changes in other tissues during the development and progression of CC: adipose tissue

Adipose tissue along with the skeletal muscle are two major tissues that undergo significant 

weight loss during CC, however, changes in adipose tissue are less understood than muscle 

during cancer development. A recent investigation shed light on the importance of fat 

wasting during CC.114 In this study, three cachexia phenotypes were identified (64% 

had muscle and fat wasting, 17% had fat-only wasting, and 19% had no wasting) and 

surprisingly, survival rate for cancer patients with fat-only wasting was as poor as for 

those with muscle and fat wasting,114 indicating adipose tissue may play an essential role 

in cancer-induced wasting. Loss of fat mass could result from either elevated lipolysis or 

reduced lipogenesis. In patients suffering from CC, elevated free fatty acid concentrations 

have been reported, which may suggest activated lipolysis,115 increasing free-fatty acids. 
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Increased cytosolic free-fatty acids are then transferred to the mitochondrial matrix, where 

they are used for β-oxidation,116 thereby losing fat storage.

In addition, the activation of thermogenic fat cells (brown and beige fat) has been described 

in both pre-clinical models and cachectic patients.117–119 In fact, recent studies observed 

elevated thermogenic activity and energy expenditure of adipose tissue occur in pre-clinical 

animal models of CC.120–122 Thermogenic adipocytes such as brown and beige cells 

burn calories to help maintain body temperature and can be activated in response to 

cold exposure or sympathetic stimulation in normal physiological conditions. However, 

abnormally upregulated thermogenesis via beiging of white fat depots contributes to energy 

wasting, thereby inducing weight loss.123 A recent investigation using a loss of PRDM16, 

a transcription factor required for the beiging process, prevented adipose wasting in tumor

bearing mice.120 These prior works indicate tumors activate thermogenesis when it is not 

necessary during CC, exacerbating cachectic phenotype although the underlying mechanism 

is not completely understood. Collectively, these prior studies suggest an important role for 

adipose tissue in progressive wasting in CC. Further studies are required to determine more 

precise mechanisms on adipose tissue during CC and if targeting components of adipose 

tissue develops in the treatment of CC.

Changes in other tissues during the development and progression of CC: liver

CC is closely implicated with liver metabolic dysfunctions as cancer-induced pro

inflammatory cytokines play a crucial role in regulating metabolic homeostasis such as 

energy production and glycogen storage in the liver.124–127 Accordingly, changes in hepatic 

function and regulation may contribute to cancer-induced weight loss.128 In fact, prior 

investigations have suggested that cachectic mice exhibit depleted liver glycogen content 

and increased mRNA content of glycolytic and gluconeogenic enzymes, ER-stress, and 

inflammatory signalings in cachectic mice126,127

Furthermore, it has been described that an enlarged liver mass is present in tumor-bearing 

cachectic rodents with pronounced inflammation markers.129–131 This increased liver mass 

during CC is accompanied by increased collagen deposition and elevated MMPs,130 

suggesting that the enlarged liver mass during CC may in part be due to elevated fibrosis 

and/or collagen deposition via the upregulation of MMPs. Moreover, the regulation of 

hepatic metabolism can be largely controlled by mitochondrial function as mitochondria 

are the major whole-body ATP producer, especially, in liver and muscle. Dumas et 

al.132 further observed reduced efficiency of oxidative phosphorylation, elevated ROS 

emission, and fatty acid accumulation in hepatic mitochondria of rats with CC. Our recent 

investigation revealed impaired content of mitochondrial quality regulators in the liver of 

pre-cachectic mice,130 which may contribute to hepatic mitochondrial dysfunction observed 

in tumor-bearing rodents. Alterations in hepatic metabolic regulation may contribute to 

cancer-induced weight loss.128 Due to high levels of protein catabolism and glycolytic 

flux in cancer patients, elevated plasma contents of lactate and amino acids are often 

observed in those patients.133–135 Elevated plasma amino acids and lactate are then used as 

a substrate to exploit hepatic gluconeogenesis, leading to increased glucose supply for tumor 

growth.136 Overall, prior evidence has indicated various molecular alterations in liver in CC, 
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however, to our knowledge, only one study,130 has directly assessed timecourse aberration in 

hepatic physiology during development and progression of CC in rodents. Considering the 

critical function of liver in whole body metabolism better clarifying mechanisms of hepatic 

degeneration in CC may be critical to prevention and reversal of this condition.

Changes in other tissues during the development and progression of CC: heart

Cancer and heart disease are the two leading causes of death accounting for approximately 

50% of total deaths in the U.S.137 while decreased cardiac function limits overall survival 

for cancer patients.138,139 Cardiac impairments such as reduced cardiac mass, pathological 

signaling, and impaired left ventricular systolic function are often present in subjects 

suffering from CC.140,141 Furthermore, cardiac dysfunction and atrophy during CC are 

correlated with skeletal muscle atrophy.142 Our recent evidence indicates that cardiac tissue 

from LLC-induced tumor-bearing mice and in vitro models of cardiac cachexia exhibit 

elevated mitochondria content (likely driven by reduced mitophagy suggesting accumulation 

of damaged mitochondria), decreased mitochondrial mRNA translation rate, and increased 

mitochondrial ROS emission with reduced scavenging capacity.143 Unfortunately, to date 

cardiac cachexia remains significantly understudied. Therefore, there remains a critical need 

to identify key underlying mechanisms in development of cardiac cachexia.

Changes in other tissues during the development and progression of CC: brain

Progressive wasting is indeed a hallmark and defining feature of CC and it can be partially 

driven by loss of appetite (anorexia) and abnormal energy metabolism6 that are controlled 

via neurons converging on nuclei in the hypothalamus.144,145 Although loss of appetite 

is not the sole culprit for marked weight loss in CC, most advanced cancer patients 

undergo some degree of anorexia.146 In addition, primary anorexia is associated with 

neurohormonal signaling, inflammatory cytokines, and peripheral appetite signaling147,148 

while the pathophysiology behind the primary anorexia remains understudied. The 

inflammatory environment associated with cancer may influence the appetite. Specifically, 

pro-inflammatory cytokines such as IL-6 are elevated during CC.35 Pro-inflammatory 

cytokines can be sensed by the hypothalamus, which then activates the central melanocortin 

system, which controls energy homeostasis.149 When activated, the central melanocortin 

system signals to reduce food intake, thereby promoting muscle and adipose wasting.149

Furthermore, prior evidence has revealed that cancer reduces the capacity of voltage-gated 

ion channels in the brain of rats,150 which is associated with mitochondrial dysfunction, 

calcium imbalance, and mtDNA damage.52,151 Despite of this information, little attention 

has still been received in brain physiology during CC. Therefore, more attention should be 

paid to brain activities including atrophic signaling, mitochondrial function, and appetite 

regulations during the development and progression of CC.

Conclusions

Pronounced muscle loss in cancer patients is a hallmark for deteriorating conditions, which 

affects numerous cancer patients. Understanding the molecular mechanisms involved in 

muscle loss during the development and progression of CC is an urgent issue to improve 
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cancer outcomes. The problem with waiting until symptoms of CC occur is that cancer

related changes in metabolism often occur prior to the onset of phenotypic CC62,84,130,152; 

therefore, preventative approaches prior to CC onset may be necessary. Furthermore, a 

large portion of CC research focuses on skeletal muscle. Tumor burden affects multiple 

organ systems, and many of these organ systems contribute to the weight loss associated 

with cancer. Another important aspect is that pre-clinical animal models of CC has mainly 

investigated using male animals although distinct sex differences in cachectic phenotype 

have been reported in CC.17,21,153 Taken together, future studies should more focus on 

biological sex and both muscle and non-muscle organs from a chronological perspective 

during the development and progression of CC to advance the study of CC.
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Fig. 1. 
Summary of alterations previously demonstrated in non-skeletal muscle tissues during 

cancer cachexia.
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Table 1

A summary of alterations to the skeletal muscle during pre- and cachectic states.

Marker Pre-cachexia Cachexia Reference

Protein synthesis ↔ ↓ 52, 53, 54, 65, 110

Protein degradation ↔ ↑ 52, 53, 54

Atrogenes (Atrogin-1 & MuRF-1) ↔ ↑ 52, 53, 93, 110

Deptor ? ↑ 53,

Regeneration ? ↓ 74

Cell cycling & Myogensis ↓ ↔ 53

Autophagy ↔ ↑ 40, 52, 53, 82

ATP production ? ↓ 40, 78

MAPK ↔ ↑ 53, 86, 93, 100

Muscle contractility ↓ ↓ 84, 86, 87

Calcium homeostasis ? ↓ 76, 89

Mitochondrial content ↔ ↓ 75, 79

ROS emission ↑ ↑ 40, 75, 83

Oxidative stress ↑ ↑ 40, 75

Mitochondrial fusion ↓ ↓ 40, 36, 75

Mitochondrial fission ↔ ↑ 40, 36, 75

Mitophagy ↔ ↑ 75

Mitochondrial respiration ↔ ↓ 40, 54, 75

Antioxidant activity ↔ ↔ 75

Apoptosis ? ↑ 36, 65, 82

Inflammation ↑ ↑ 32, 36, 86, 93, 100
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