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Abstract

Innovations in medical technology and dedicated focus from the scientific community have 

inspired numerous treatment strategies for benign and invasive cancers. While these improvements 

often lend themselves to more positive prognoses and greater patient longevity, means for early 

detection and severity stratification have failed to keep pace. Detection and validation of cancer­

specific biomarkers hinges on the ability to identify subtype-specific phenotypic and proteomic 

alterations and the systematic screening of diverse patient groups. For this reason, clinical 

and scientific research settings rely on high throughput and high sensitivity mass spectrometry 

methods to discover and quantify unique molecular perturbations in cancer patients. Discussed 

within is an overview of quantitative proteomics strategies and a summary of recent applications 

that enable revealing potential biomarkers and treatment targets in prostate, ovarian, breast, and 

pancreatic cancer in a high throughput manner.
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Introduction

Mass spectrometry (MS) represents a unique and powerful technological platform in 

investigative biomolecular research. This high sensitivity regime grants access to the 

discovery and identification of small molecules,1–3 endogenous peptides,4–7 proteins,8–10 

and macromolecular complexes.11–13 The utility of MS is enhanced through the facility 

of ionizing biomolecule species in solution via electrospray ionization14 (ESI) and matrix­
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assisted laser desorption/ionization15–17 (MALDI) that provides a means of producing ions 

from stationary supports and tissue sections. As well, numerous mass analyzers18 have been 

developed to accommodate high-speed and high-resolution measurements. Realizing the 

full potential and flexibility of modern MS platforms, as well as their ability to decipher 

complex biological samples, focus has shifted towards improving instrument efficiency and 

sample throughput.

Gradual improvements in instrument operational speed, the advent of novel dissociation 

techniques19–22 and implementation of multidimensional ion separation regimes23–25 enable 

researchers to obtain greater levels of detail from complex mixtures than ever before. 

However, while shotgun proteomics provides a means for deep proteomic profiling, the 

typical time course and complexity of a single experiment26 renders repetitive measurements 

of numerous samples untenable. For this reason, many have turned to multiplexed 

quantitative proteomics workflows to provide simultaneous deep proteomic profiling of 

numerous samples while retaining the ability to assign relative and absolute abundance 

information.

Quantitative proteomics, now comprised of several distinct strategies, operates under the 

principle that signal response from any given analyte is related to its abundance within 

the mixture. As such, should an analyte be identified in numerous samples, the relative 

intensity of the analyte’s signal response in each sample can be used to provide a means 

of relative or absolute quantitation. However, MS reporting signal is divided into numerous 

channels depending on the quantity and ionization efficiency of all present biomolecules, 

which indicates the high variability that can arise from even discrete sample changes. In 

remedy of this ailment—and to remove run-to-run variation—researchers have employed 

unique chemical modifiers that often incorporate stable isotopes to label biomolecules 

within solution. These labels result in a unique mass shift for each sample without altering 

their retention time in liquid-chromatography. These newly tagged analytes may then be 

combined, measured simultaneously via MS, and then evaluated for the relative abundance 

of all labeled channels.

These quantitative strategies have provided unique avenues towards the discovery and 

validation of cancer-specific biomarkers. The ability to analyze numerous samples 

simultaneously provides researchers not only with a means for high throughput sample 

profiling, but also a means to uncover what proteomic perturbations are relevant across 

patients, between control groups, and specific to disease severity and progression. These 

perturbations and quantitative differences are often discussed in language that is familiar to 

proteomic researchers but that may create confusion in those coming from adjacent fields of 

research. Within proteomics, and ubiquitous throughout this review, quantitative differences 

of proteins, peptides and other biomolecules are described as “up-regulated” or “down­

regulated.” These terms are used to describe those species with quantifiable differences 

against the control, often with statistical significance. Though readers may conjecture that 

up- or down-regulated protein species are the result of pathway regulation, these hypotheses 

are often not explored in proteomic literature and may be discussed elsewhere. For this 

reason, it is important to clarify that differences in regulation are meant only to indicate the 

quantitative findings presented by the original authors. Regardless of verbiage technicalities, 
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researchers often pursue quantitative proteomics as a facile avenue towards novel biological 

insight.

Given the significant heterogeneity associated with various cancer subtypes, researchers 

have sought to employ quantitative proteomics to a litany of biological questions. 

As seen within, these endeavors have provided seminal insights into the role post­

translational modifications play in cancer progression, uncovering up- and down-regulation 

of biomolecules in disease groups, as well as the efficacy of using protein expression 

to monitor medical treatment. The true breadth of proteomic cancer research cannot be 

understated. While quantitative experiments date back several decades, we aim to present 

a mass spectrometry-centric review. High-throughput quantitative proteomics firmly gained 

prominence in the early 2000s, providing nearly twenty years of meaningful contributions to 

cancer detection, identification, and understanding. To provide readers with the most timely 

and topical review—as well as to provide discussion on future research interests, we have 

confined our literature review to applications published within the past 5 years. This concise 

range enables us to provide critical suggestions for researchers seeking to begin or continue 

their unique cancer research. Here we present a brief introduction to quantitative proteomics 

methods and recent investigations of prostate, ovarian, breast, and pancreatic cancer.

Quantitative Strategies

Quantitative proteomics has experienced substantial growth over the last two decades, 

due in large part to the invention and development of high-speed, high-resolution mass 

spectrometry instrumentation. While there are numerous unique and technically driven 

means to pursue relative and absolute protein quantitation, most applications fall within 

one of four major categories: metabolic labeling, isotopic labeling, isobaric labeling, and 

label-free quantitation. Each method has been thoroughly reviewed and in-depth discussion 

can be found elsewhere. However, in order to provide rationale behind each strategy for use 

in investigative cancer research, understanding the principles and key considerations of each 

is imperative.

Metabolic Labeling

Metabolic labeling is the earliest27, 28 and arguably most traditional method of mass 

spectrometry-based quantitative proteomics. Taking after the classical Meselson-Stahl29 

experiment that proved the semiconservative nature of DNA replication, more routine 

use of mass spectrometry for peptide identification revealed that proteins, too, could be 

metabolically labeled with stable isotopes to provide ‘heavy’ and ‘light’ isotopologues. 

Within these experiments, adjacent cell cultures are provided with either unlabeled, naturally 

occurring amino acids or amino acids that have been labeled with stable isotopes; this also 

lends itself to the acronym SILAC, Stable Isotopic Labeling with Amino Acids in Cell 

Culture.27, 30 Though SILAC has grown to incorporate numerous stable isotopes, the most 

traditional SILAC strategy is to grow a control group in the presence of 12C-Lysine and 
13N- Arginine while providing the experimental group with 13C-Lysine and 15N-Arginine.31 

During culture growth, these light or heavy amino acids are incorporated into the protein 

backbones with no effect on protein function, viability or expression. Digesting these 
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cellular proteins with a proteolytic enzyme (e.g. trypsin) produces peptides that contain 

a single labeled or unlabeled residue. Peptides are then combined and analyzed via MS, at 

which point their mass difference can be observed. Evaluating the intensities of the labeled 

and unlabeled peptide partners allows the relative abundance of peptides and proteins to be 

determined. Metabolic labeling strategies are of topical interest to groups seeking to reveal 

how altered growth conditions, drug administration, or environmental perturbations affect 

protein production and expression. Beyond relative quantitation of proteins and peptides, 

SILAC-like experiments have been used to probe post-translational modification production 

and turnover. However, the chief considerations and drawbacks of these methods are 1) 

the small number of suitable amino acids that may be used for isotope incorporation; 

2) poor separation of isotopic envelopes (causing errors in quantitative accuracy); and 3) 

the inability to incorporate isotopes to biological tissue and biofluid samples. In remedy, 

researchers may choose to tag proteins and peptides with isotopic labels after extraction and 

digestion.

Isotopic Tagging

Isotopic tagging, though similar in nature to metabolic incorporation, comes with a higher 

level of flexibility and customization.31 Modern research settings have access to a broad 

array of stable isotopes, the most ubiquitous being 13C, 15N, 2H, and 18O. These isotopes 

enable researchers to synthesize their own chemical scaffold while varying the incorporation 

of these isotopes, creating an array of chemical tags with unique masses that may be 

functionalized and chemically bound to proteolytic peptides to provide them with a mass 

difference distinguishable via MS.32, 33 In this way, the need for metabolic incorporation is 

completely removed and experimental peptides can be labeled after extraction and digestion. 

Similar to metabolic labeling, differences in MS1-level signal intensity between labeled 

species allow for determination of relative quantitation. Furthermore, isotopic labeling can 

be used as a means of absolute quantitation, whereby internal calibration curves are created 

and compared to experimental peptides. Overall, isotopic labeling presents highest utility 

in instances where the sample collection is relatively small because as sample number 

increases so does spectral complexity, which can create mass overlap between unique 

peptide species and produce erroneous quantitation estimates. These limitations in mind, the 

vast improvements in MS operational speeds, resolving power, and scanning depth begged 

the question as to whether more efficient chemical labels could leverage these instrumental 

improvements and eliminate the spectral complexity found in complex isotopic tagging 

experiments.

Isobaric Labeling

As mass spectrometry technology continued to develop, it became obvious that the 

spectral complexity associated with high-throughput metabolic labeling and isotopic tagging 

experiments directly counteracted any instrumental improvements. As such, it became 

pertinent to find a method for absolute and relative quantitation that alleviate the ailments 

posed by multiplexed labeling methods while still retaining the facility in quantitative 

measurements. Remembering that isotopic tags may be constructed to provide a high 

number of labeling channels, each with a distinct mass difference of >1 Da, isobaric labels 

correct for this inherent mass difference using a balancing group.34 When implemented, 

Miles et al. Page 4

RSC Chem Biol. Author manuscript; available in PMC 2021 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these isobaric labels display virtually indistinguishable masses at the MS1 level, reducing 

the spectral complexity of high-throughput experiments. Upon selection of a labeled analyte, 

MS dissociation causes the isobaric tags to fragment and produce ‘reporter ions’ of unique 

mass. In this way labeled analytes may be selected and fragmented, providing identification 

and quantitative information in a single step. As a result, the reduced spectral complexity at 

the MS1 level promotes greater profiling depth of complex samples and provides equivalent 

quantitative accuracy. The most popular examples of commercial isobaric labels are iTRAQ, 

Isotopic Tags for Relative and Absolute Quantitation35 and TMT, Tandem Mass Tags.36 

However, the broad utility of isobaric labeling has garnered significant attention from the 

research community, resulting in numerous novel quantitative labeling strategies37, 38 that 

promote quantitative accuracy at significantly reduced cost.

Label-free and Reaction Monitoring

Finally, in instances where sample labeling may not be preferred (i.e., precious samples, 

low-abundance molecules of interest, or instances where protein targets are known), 

label-free and reaction monitoring methods provide a suitable alternative.39 Label-free 

quantitation serves to provide relative quantitation between samples by comparing area­

under-curve for detected analytes. This method, though steadily improving with better 

instrumentation and software tools, is highly susceptible to changes in sample composition, 

can result in missing values, and is lower throughput than labeled methods. However, 

label-free quantitation does still represent a meaningful entry point in discovery-based 

quantitative proteomics, often providing deep sample profiling and elucidating targets 

for future analyses. In contrast, reaction monitoring workflows (e.g. multiple reaction 

monitoring, select reaction monitoring, etc.) may be considered one of the most accurate 

quantitative strategies, being most suited to targeted analyses and instances when internal 

standards are readily available. Though reaction monitoring strategies are often tailored to 

fit unique experimental conditions, all workflows bear resemblance to a basic strategy. First, 

serial dilutions of a purified or synthetic peptide standard are analyzed via targeted MS/MS. 

In these targeted analyses, the biomolecule(s) of interest are subjected to MS dissociation, 

with the various fragments observed and recorded. As each biomolecule will provide a 

unique transition/fragment, the prevalence of these transitions may be used as a proxy for 

overall biomolecule abundance. In this way, absolute and relative quantitation information 

can be determined without the need for chemical labeling while eliminating concerns over 

sample and spectral complexity. Often, it is preferential to incorporate an isotope-encoded 

standard,40, 41 enabling rapid analyses and high quantitative accuracy. Given the variety 

of quantitative strategies, it is of topical importance to evaluate their efficacy and provide 

understanding of quantitative accuracy.

Diagnostic Accuracy

As quantitative proteomics continues to mature, discussions over quantitative accuracy 

will continue to be a vanguard consideration. Recently, Dowle, et al.42 provided an in­

depth comparison of multiple quantitative strategies and should evaluated independently by 

interested parties. Within all quantitative strategies, the primary diagnostic for accuracy and 

utility are metrics built on specificity and sensitivity. Measures of specificity (i.e. proportion 

of correctly-identified trye positives) and sensitivity (i.e. proportion of correctly-identified 
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true negatives), may be combined into a single metric. This receiver operating characteristic 

(ROC) is often viewed as a curve with high sensitivity and specificity representing a 

value close to 1. As demonstrated by Dowel, several commonly used quantitative strategies 

display high ROC values, providing detailed considerations of the method most appropriate 

for a range of experiments. This work may serve as a helpful guide when entering or 

expanding quantitative proteomics experiments.

Taken together, metabolic labeling, isotopic tagging, isobaric labeling, and label-free 

strategies provide a wealth of entry points into quantitative proteomics. This access in mind, 

the growing needs of the medical community combined with the ever-increasing access to 

mass spectrometry technology necessitate the utilization and expansion of investigational 

proteomics to aid in discovering and validating cancer-specific biomarkers.

Prostate Cancer

The second leading cancer type in men, prostate cancer is estimated to affect around 

12 percent of all men during their lifetime and currently affects over 3 million men 

within the United States, with the majority of individuals diagnosed being at least 65 

and older.43 Androgen deprivation, the first means of therapeutic intervention, can lead 

to the progression of castration-resistant prostate cancer (CRPC) in some men, a more 

aggressive stage of cancer resulting in poor prognosis and survival, with the majority 

of men developing metastases prior to or following diagnosis.44 Further analyses of the 

literature have characterized these CRPC subtypes and demonstrated the growing emergence 

of CRPC phenotypes that have either low or negative AR expression for which there are few 

targeted therapeutics.45 The growing heterogeneity in prostate cancer subtype underscores 

the urgency to elucidate and discover novel molecular mechanisms underlying pathogenesis 

for all subtypes. The use of mass spectrometry (MS)-based quantitative proteomics for 

prostate cancer research in recent years has been a driving force to exploit the factors 

underlying tumorigenesis and metastasis.

Cellular and Tissue Analyses

Investigations often profile quantitative differences in the proteome via patient-derived tissue 

samples, cellular models, or genetically engineered mouse models such as the transgenic 

adenocarcinoma of the mouse prostate (TRAMP) model. One such study by Zhang et al.46 

utilized a label-free approach to quantify differences in expression between the prostate 

glands of TRAMP versus wild-type littermates. Through generation and an in-depth analysis 

of the quantitative proteomics data, the authors were able to predict and validate the role of 

platelet-derived growth factor (PDGF)-B overexpression in increased proliferation, thereby 

highlighting the therapeutic potential of targeting PDGF signaling within prostate cancer. 

Other label-free approaches have utilized patient-derived tissue samples to profile global 

differences, including the work of Müller et al.47 using formalin fixed, paraffin embedded 

tissue from radical prostatectomy, which focused on characterizing differences between 

nonmetastasizing tumors, metastasizing primary tumors and their distant nodal metastases. 

Although the analysis had only five biological replicates per tumor type, significant 

differences in expression were measured that allowed for clear distinction of each and 
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presented several potential proteins whose increased expression in metastatic tumors could 

be targeted in future therapeutic studies. However, a smaller sample set warrants further 

investigation into these proteins as potential targets with a larger sample cohort.

Methods that incorporate stable isotopes into the peptide backbone, such as SILAC, 

allow for direct comparison of identical peptides across sample types and is more robust 

to instrumentational variation compared to unlabeled approaches. Recently, SILAC was 

used to examine extracellular vesicles (EVs) and the impact that upregulated α(1,6)­

fucosyltransferase (FUT8) expression had on biogenesis of these secreted biomolecules.48 

This was one of the first reports to map the systematic impact of an overexpressed 

glycosyltransferase on the EV proteome, specifically of a glycosyltransferase with known 

oncogenic activity.49, 50 FUT8 overexpression showed a decrease in EVs produced 

compared to wild-type cells and further analysis of intact glycopeptides from LAPC4 EVs 

showed marked differences in glycosite occupancy between EV populations and revealed 

a shift in glycoform composition. Miao et al.51 combined the SILAC approach with parallel­

reaction-monitoring (PRM) methods to discern differential kinase expression in two bone 

metastasis-derived prostate lines, PC3 and PC3MLN4.51 Of the kinases that were quantified 

and found to be differentially expressed, most notably different was mitogen-activated 

protein kinase kinase kinase kinase 4 (MAP4K4), a kinase previously observed to play 

a role in ovarian cancer.52 One final example using the SILAC strategy by Sbrissa et 
al.53 investigated the mechanisms of bone metastasis by determining CXCR4-interacting 

proteins through overexpression and knockdown of CXCR4 in PC3 cell lines. Proteomic 

analysis found one unexpected protein, phosphatidylinositol 4-kinase III α (PI4KIIIα), to be 

upregulated and it was found to localize with CXCR4 to lipid rafts and thus promote cancer 

cell invasion through increasing phosphatidylinositol-4-phosphate production. The discovery 

of this novel interaction between chemokine receptor and PI4KIIIα and its regulation on 

tumor cell invasion requires more detailed experiments characterizing the specific molecular 

details regarding receptor-kinase communication.

Chemical or enzymatic isotopic labeling strategies allow for labeling of more than cell 

culture models to study prostate cancer. One approach by Lee et al.54 used biotin – both as 

an isotopic label and for affinity purification – to systematically label cell-surface proteins 

that could serve to distinguish adenocarcinoma from neuroendocrine prostate cancer. From 

this proteogenomic investigation, they systematically validated two candidate antigens: 

FXYD domain containing ion transport regulator 3 (FXYD3) in prostate adenocarcinoma 

and CEA cell adhesion molecule 5 (CEACAM5) in neuroendocrine prostate cancer. While 

additional investigation into targeting these antigens is warranted, such a study demonstrates 

the utility of quantitative proteomics in discovering and validating new therapeutic targets 

for advanced prostate cancer.

Much of the quantitative research has shifted to the use of isobaric labeling strategies, 

which allow for increased multiplexing capabilities and decreased instrument variation 

through reduced overall runs. Zhou et al.55 used 5-plex TMT labeling to perform a 

large-scale proteomic quantitation of core fucosylated glycopeptides after selective lectin 

affinity enrichment to differentiate non-aggressive and aggressive prostate cancer cell 

models (Figure 1). Over 20 fucosylated proteins were upregulated in the aggressive cell 
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lines and were involved in processes such as cellular signaling, adhesion and extracellular 

communication. Identification of these fucosylated proteins and their upregulation in 

aggressive prostate cancer models establishes these proteins as potential targets for further 

examination into how their upregulation impacts the aggressive phenotype of the associated 

model. Another advantage to using TMT labeling is that these tags can undergo synchronous 

precursor selection (SPS)-MS3 quantitation, which allow for more accurate quantitation. 

Zhou et al.56 utilized a TMT-SPS-MS3 approach on patient-derived tissue samples with 

varying prostatic phenotypes to determine differential expression of protein complexes. 

Low-grade prostate cancer samples were found to have upregulation of complexes involved 

in RNA splicing and downregulation of those associated with cell adhesion, while high­

grade prostate tissue samples had increased assembly of antiapoptotic complexes and a 

similar lower abundance of complexes involving cell adhesion. Such a comprehensive study 

of individual protein complexes may give way to determining what protein complexes are 

critical in distinguishing and diagnosing low- and high-grade cancers.

Comparable to TMT labeling, iTRAQ allows for both relative and absolute quantitation 

of labeled samples. Höti et al.57 set out to examine the mechanisms underlying androgen 

resistance through a global proteomic approach using iTRAQ, labeling tryptic peptides 

from two prostate cancer cell models grown in triplicate. One main realization of the 

data was that androgen resistance cannot be treated with a single therapeutic, as the 

mechanisms driving resistance involve multiple independent pathways. While unfortunate, 

these findings did uncover some of the mechanisms driving resistance, including the 

PI3K/AKT signaling pathway, mitochondrial dysfunction of oxidative phosphorylation 

complexes and the multicatalytic 26S proteasome. Zhang et al.58 used two sublines of 

PC-3M to distinguish unique characteristics of highly- and poorly-metastatic potential in 

prostate cancer. After validation, two proteins were found to potentially contribute to the 

higher metastatic potential, matrix metallopeptidase 1 (MMP1) and four and a half LIM 

domains 1 (FHL1). While FHL1 has been extensively studied in a variety of cancer types, 

the information collected here suggests a unique role of MMP1 for increasing metastatic 

potential in prostate cancer, presenting the opportunity for future inspection of both 

MMP1 and other MMPs. Webber et al.59 performed a stromal cell proteomics analysis to 

differentiate normal from tumor-reactive stromal phenotypes that drive disease progression. 

One compelling finding was the loss of aldehyde dehydrogenase (ALDH1A1) expression 

in altered versus normal stromal types, suggesting its potential role as a novel marker of 

disease-induced changes of the stromal environment. Additional investigations have turned 

to animal models, as prostate cancers grown in vivo reflect interactions that may otherwise 

be missed in cell culture models. The Pten-knockout mouse model60 was recently examined 

by Zhang et al.61 through the combined analysis of iTRAQ proteomics and microarray 

transcriptomics to identify associated molecular changes in mouse prostate carcinogenesis. 

Both transcriptomic and proteomic data found that immune and inflammation responses 

were greatly perturbed, in addition to mediations in central nodal activity through the Akt, 

NF-κB and P53 signaling pathways.

While tissue-based sampling allows for determination of mechanistic properties of the 

pathways contributing to tumorigenesis and metastasis, its highly invasive nature is 

discouraged unless necessary. Even if biopsies are obtained, these analyses are often 
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limited by size constraints, as patient-derived tissues covering all stages of prostate cancer 

progression can be difficult to obtain in large numbers. Mouse models afford the opportunity 

to mimic tumor progression and metastasis in vivo, but there are still controversies 

surrounding prostate-based mouse models due to distinct anatomical differences.62 Cell 

culture models avoid the translational constraints that other model organisms are bound 

to, but often omit stromal-epithelial interactions during cell growth, a process that has a 

great impact on tumor invasiveness and metastatic potential. Additionally, current cell-based 

models for prostate cancer often either only reflect advanced prostate cancer or require the 

use of multiple cell lines to cover multiple progression stages, introducing variability that 

complicates genetic-based analyses. Recent advances in cell-based prostate models have 

been made that address some of the pitfalls outlined here,63 so future quantitative studies 

should be selective in the models they choose when profiling.

Biofluid Analyses

There is a push to develop biomarker strategies involving the collection of biofluids, 

a less invasive and more cost-effective method of sample collection. Biofluids – such 

as blood, tissue-based fluid, saliva, or urine – allow for easier monitoring of patient 

outcomes, as disease progression and treatment responsiveness can be evaluated with 

frequent patient sampling. Such biofluid-based monitoring strategies are critical in prostate 

cancer patients, as a portion of men diagnosed with prostate cancer have tumors that are 

indolent. One study by Davalieva et al.64 comparatively profiled urine samples using a 

label-free strategy from patients with prostate cancer, benign prostatic hyperplasia, bladder 

cancer and renal cancer to determine selective biomarkers for earlier diagnosis of prostate 

cancer. Of the most promising urinary biomarkers identified by the authors, nine had not 

yet been associated with prostate cancer, indicating their potential as novel biomarkers and 

necessitating further research into their associated pathways. Soekmadji et al.65 profiled 

secretome differences of unlabeled, CD9-positive EVs from cell culture models treated with 

the hormone dihydrotestosterone (DHT). Their combined analyses determined that DHT 

treatment increases CD9-positive EV secretion and alters the content of secreted EVs, and in 

agreement with previous literature highlighting the potential of CD9 EVs as a biomarker for 

prostate cancer.

Reaction monitoring-based strategies are one label-free approach that are typically used 

after initial discovery for validation and accurate quantitation of biomarkers. Targeted 

analysis of urinary EVs was completed by Sequeiros et al.66 using SRM to quantify 64 

protein candidate biomarkers for prostate cancer. A two-protein combination (ADSV and 

TGM4) distinguished patients with benign tissue from those with cancer, and a five-protein 

panel differentiated high- from low-grade prostate cancer (CD63, GLPK5, SPHM, PSA 

and PAPP), highlighting the advantages of targeted proteomics as a diagnostic tool in the 

clinic. Kim et al.67 investigated expressed prostatic secretion samples using SRM-based 

quantitation to determine molecular signatures for extracapsular prostate cancer. From a pool 

of over 200 potential candidates, these researchers narrowed the candidate list to include 34 

peptides representative of 27 unique proteins with promising results as biomarkers. Karasota 

et al.68 evaluated the analytical performance of multiple SRM- and PRM-based strategies to 

quantitate kallikrein related peptidase 4 (KLK4) in a variety of biofluid samples. Secreted 
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KLK4 was demonstrated to be present in seminal plasma, and for the first time was 

investigated as a potential biomarker in both seminal plasma and blood. Taken together, the 

label-free, targeted proteomics methods used for analysis of biofluids offer a reliable tool for 

biomarker validation and should thus be considered as useful tools for clinical development.

Fujita et al.69 combined two strategies, initially using iTRAQ for urine samples to profile 

EVs from patients with a high Gleason score.70 After quantifying 3528 proteins, candidate 

biomarkers were selected for further quantitation and validation using SRM/MRM. Fatty 

acid binding protein 5 (FABP5) was highlighted as the most promising biomarker from 

urinary EVs for the detection and diagnosis of high Gleason score prostate cancer, but 

further studies would be necessary for confirmation. Yan et al.71 performed an iTRAQ­

based analysis on the serum of prostate cancer patients with or without bone metastasis 

to find potential biomarkers indicative of these metastases. Of the 32 differentially 

expressed proteins identified, three – CD59, haptoglobin and tetranectin – were selected 

and validated to be related to prostate cancer bone metastasis, confirming their utility as 

serum biomarkers. Larkin et al.72 implemented iTRAQ to enhance their proteomic profiling 

of high-quality serum samples for biomarker discovery. After identification and validation 

using ELISA, two biomarkers, SAA and TSR1, showed promising results when used in 

combination with KLK3. However, these results were obtained in a small sample cohort, 

so further studies with a larger, more diverse sample set are necessary before serious 

consideration of these proteins as biomarkers. Table 1 summarizes selected prostate cancer 

biomarkers.

The use of quantitative proteomic strategies on patient-derived biofluid samples show 

promise in the discovery and validation of new biomarkers. Specifically, the KLK family of 

proteins has been shown in the mentioned literature to have potential in many biofluids and 

may improve diagnostic accuracy further when combined with others. On the other hand, 

serum biomarkers in prostate cancer deserve a level of scrutiny as demonstrated by prostate­

specific antigen (PSA), a currently approved biomarker whose elevation in serum is also 

associated with benign prostatic hyperplasia (BPH), resulting in high false positive rates.73 

Noting this, prostate cancer biomarkers should be rigorously tested against patients with 

BPH and other prostatic diseases to ensure accuracy. Such rigorous tests involving larger 

sample sets can be achieved using the quantitative strategies described above, indicating 

their potential to advance the knowledge within the field at a rapid pace.

Pancreatic Cancer

The seventh leading cause of cancer-related deaths in the world,74 pancreatic cancer 

has rightfully garnered significant attention from clinical research communities. In-depth 

proteomic analyses have illuminated the highly dynamic nature of post-translational 

modifications,75–77 while providing novel insights toward treatment monitoring and severity 

stratification. The promising results of these profiling experiments in hand, great success 

has come in the effort to employ quantitative strategies to illuminate dysregulated protein 

expression, identify treatment pathways, and validate potential biomarkers.
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Tissue Analyses

The prevalence of pancreatic cancer across the world’s population has necessitated in-depth 

proteomic analyses of cancerous tissue and model systems. Model cell lines have enabled 

researchers to identify pertinent biomolecules specific to pancreatic cancer without the need 

for invasive, repetitive tissue resection. Naturally, the study of cell lines lends itself to 

the use of SILAC to perform quantitative investigations. Recently, Liu et al.78 performed 

secretomic analyses of pancreatic cancer cells (PC-1), revealing 161 proteins with altered 

expression, including 55 proteins not previously reported. As well, they note a combination 

panel for cadherin 3 (CDH3), plasmogen activator, urokinase (PLAU), and lunatic fringe 

(LFNG) proteins that may be useful for improving cancer patient prognoses. Beyond 

this, Marchand et al.79 employed a three-channel SILAC approach to reveal association 

of transcription factor EB (TFEB) with nuclear proteins upon inhibition of glycogen 

synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR). Moving beyond 

SILAC experiments, Shi et al.80 used isotopic dimethyl labeling to examine paracrine 

communication between pancreatic cancer cells and pancreatic stellate cells (PSCs). This 

experiment provided the knowledge that leukemia inhibitory factor (LIF) is a key paracrine 

factor from activated PSCs acting on cancer cells. Employing a novel approach, Roberts et 
al. 81 developed a cysteine-reactive fragment-based ligand library to coordinate novel small 

molecules that impair pancreatic cancer pathogenicity with druggable hotspots for potential 

cancer therapy. While numerous SILAC and isotopic tagging workflows exist outside the 

time frame of this review, the relatively small number of recent applications indicates an area 

of potential focus for researchers examining pancreatic cancer.

Isobaric labeling, however, has seen significant use in the study of pancreatic cancer. 

Zhang and colleagues82 have provided a meaningful guide for those seeking to perform 

isobaric labeling experiments using the commercial TMT36 offering from ThermoScientific. 

Beyond this, Perera et al.83 employed TMT labeling to study pancreatic cancer cell 

metabolism, revealing the MiT/TFE proteins – MITF, TFE3 and TFEB – are decoupled 

from regulatory mechanisms, increasing expression levels of lysosomal catabolic function 

essential for pancreatic ductal adenocarcinoma (PDA) growth. As an alternative to TMT, An 

et al.84 employed iTRAQ in the analysis of serum exosomes from chemotherapy patients 

(Figure 2). Of note, this study indicates patient-derived exosomes play a significant role 

in cancer metastasis. Furthermore, Li et al.85 demonstrated monumental success in broad 

protein quantitation while analyzing Peripheral Blood Mononuclear Cells (PBMCs). This 

study, which employed iTRAQ labeling and 2D-LC-MS quantified 3,357 proteins, with 

114 being distinguished as dysregulated in the cancer group. These examples of isobaric 

labeling indicate the broad utility for high throughput analyses of complex pancreatic 

cancer samples. However, a chief limitation of TMT and iTRAQ is cost, placing their use 

out-of-reach for many budding research groups. In remedy, Li and colleagues34 developed 

Dimethyl Leucine (DiLeu) that provides greater multiplexity86–88 than commercial options 

at a fraction of the cost. DiLeu is available as an isotopic,89 isobaric,34, 86, 87 and mass­

defect90 chemical tag and has even been modified to provide absolute quantitation.89, 91 The 

mass-defect offering, mdDiLeu, has been successfully applied for simultaneous multiomic 

analysis of pancreatic cancer cells,92 providing uncompromised access to high throughput 

small molecule and protein quantitation.
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Label-free analyses, too, have seen routine utilization in pancreatic cancer investigations. 

Wang et al.93 introduced the novel IonStar pipeline for accurate MS1-level protein 

quantitation. This preliminary example quantified >4,000 proteins from 40 biological 

samples and identified 541 proteins dysregulated groups treated with birinapant and 

paclitaxel. Later Zhu et al.94 applied the IonStar pipeline to elucidate the relations 

among relevant signaling pathways during gemcitabine and birinapant treatment. These 

applications highlight the utility of quantitative proteomics to evaluate treatment efficacy. 

In a similar vein, Singh et al.95 presented a large-scale, label-free proteomics study to 

uncover the mechanism by which sanguinarine suppresses cancer proliferation. While 

quantifying >3,100 proteins, 37 biomolecules were identified as differentially expressed, 

highlighting the pleotropic effects of sanguinarine. Finally, Zhou et al.96 employed parallel 

reaction monitoring (PRM) to identify 165 potential biomarkers in pancreatic cancer. During 

validation, brain acid soluble protein 1 (BASP1) was identified as a novel target for 

pancreatic cancer therapy and is shown to interact with Wilms tumor protein (WT1).

Biofluid Analyses

Considering the real-world application of investigational proteomics analyses, a topical 

concern is the need for invasive patient sampling. This in mind, researchers have long 

sought to identify cancer-specific analytes from biofluids, which may be sampled repeatedly 

at lower physical and monetary cost to patients. Though metabolic and isotopic labeling 

are not well represented in pancreatic cancer research in recent years, Jhaveri et al.97 

used a novel serum antibody–based SILAC immunoprecipitation approach, denoted as 

SASI, to identify specific targets expressed in cancer patients post-vaccine therapy. More 

popular, however, are applications utilizing isobaric labeling. Sogawa et al.98 employed 

TMT labeling to ascertain that complement component 4 binding protein alpha (C4BPA) 

and polymeric immunoglobulin receptor (PIGR) expression was significantly higher in 

preoperative patients than postoperative. Naba et al.99 identified unique expression levels 

in 35 proteins as pancreatic cancer islets progressed from hyperplastic to angiogenic to 

insulomas. Yu et al.100 employed iTRAQ to quantify 4,517 proteins in the exosomes of 

Panc02 and Panc02-H7 cells, notably revealing cancer-derived exosomes promote tumor 

metastasis. Lin et al.101 and Liu et al.102 further implemented iTRAQ for quantitative 

evaluations of pancreatic cancer patient serum. An important overlap of these two studies 

was the identification that apolipoprotein A-1 (APOA1) shows distinct expression in 

pancreatic cancer patients. Considering this trend was shared between patients expressing 

carbohydrate antigen (CA) 19-9 and those who are CA19-9-negative, APOA1 presents an 

area of significant interest moving forward.

Similar to the studies presented in pancreatic cancer tissue analyses, label-free quantitation 

has been routinely employed in quantification of biofluid proteins. Through this quantitative 

strategy, Ohmine et al.103 successfully validated deoxycytidine kinase (dCK) as a good 

predictor of progression-free survival and an effective biomarker of gemcitabine sensitivity. 

Yoneyama et al.104 identified insulin-like growth factor-binding proteins insulin-like growth 

factor binding protein 2 (IGFBP2) and IGFBP3 as compensatory biomarkers of pancreatic 

cancer in instances when CA19-9 screening is inconclusive. Park et al.105 performed a 

large-scale validation of biomarkers, finding that APOA-IV, APOCIII, IGFBP2, and tissue 

Miles et al. Page 12

RSC Chem Biol. Author manuscript; available in PMC 2021 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibitor of metalloproteinase 1 (TIMP) were significantly altered in pancreatic cancer. Of 

note, a panel including CA19-9, APOA-IV, and TIMP1 showed improved performance in 

distinguishing early pancreatic cancer from pancreatitis. Do et al.106 identified 18 biomarker 

candidates associated with malignancy in intraductal papillary mucinous neoplasms 

(IPMNs). Finally, Nigjeh et al.107 developed an optimized data-independent acquisition 

(DIA) workflow to identify and quantify >14,000 peptides from ~2,300 plasma proteins 

(Figure 3).

As seen by the numerous examples of pancreatic cancer tissue and biofluid investigation, 

quantitative proteomics provides a facile entry point into the field of biomarker identification 

and validation (Table 2). Considering the agreement across several studies that proteins 

such as APOA1, APOA4, IGFBP and CA19-9 serve as rigorous biomarkers in pancreatic 

cancer, future studies should investigate the utility of high throughput label-free, PRM, or 

MRM screening of these biomolecules. Meaningful evaluation of MS-based protein assays 

in blind studies may demonstrate potential to accurately identify and diagnose pancreatic 

cancer at scale. Development of these workflows and associated technology will be vital to 

understanding the risk factors associated with disease onset and progression, as well as the 

success of current and novel treatment strategies.

Breast Cancer

The high rate of incidence associated with breast cancer, as well as targeted focus drawn 

from successful advocacy and research fundraising, have shed significant light on the 

mechanisms of breast cancer. Though this dedicated focus has reduced patient mortality 

and cancer rates in high income countries, developing nations display the opposite trend.108 

Beyond this, breast cancer is of continual interest to the medical community due to the high 

rate of recurrence and metastasis.109, 110 For these reasons, many have turned to quantitative 

proteomics to aid in stratifying cancer subtypes and identifying potential biomarkers.

Tissue and Biofluid Analyses

Within the timeframe of this review, the majority of quantitative proteomic investigations 

have been centered on tissue analyses, often employing model cell lines or resected tumor 

tissue to determine protein expression. Though few applications have employed metabolic 

labeling for quantitative analyses, Tyanova et al.111 presented a robust investigation that 

merged quantitative mass spectrometry with traditional RNA- and DNA-based sequencing 

strategies. Analyzing 40 tumors that were either estrogen receptor positive, Her2 positive, or 

triple negative, the authors identified an average of >7,000 proteins on average, spanning 8 

orders of magnitude in protein intensity. Within this study, they combined their quantitative 

results with microarray analyses and machine learning classification to identify potential 

subtype-specific therapies.

More popular than SILAC-like experiments, isobaric labeling has been extensively 

employed in breast cancer investigations. Suman et al.112 employed iTRAQ to identify 

proteins associated with breast cancer subtypes. Notably, this study indicated fibronectin 

(FN1), alpha-2-macroglobulin (A2M), complement component-4-binding protein-alpha 

(C4BPA) and complement factor-B (CFB) were critical to subtype differentiation in both 
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plasma and tissue samples. Calderon-Gonzalez et al.113 further employed this technology 

to identify 306 differentially expressed proteins in breast cancer cell lines. As well, their 

study indicates large proline-rich protein (BAG6), ATP-dependent RNA helicase (DDX39), 

annexin A8 (ANXA8) and cytochrome c oxidase subunit 4 (COX4) may serve as useful 

biomarkers. Gajbhiye et al.114 provided a novel DIA-iTRAQ strategy to uncover proteomic 

divergence in HER2-enriched cancer cell lines, which allowed for the creation and testing 

of a 21 protein panel to discriminate cancer and healthy controls. Turning to TMT labeling, 

Going et al.115 and Clark et al.116 utilized this strategy, illuminating the pathways of action 

of methoxyclcone in triple negative breast cancer (Figure 4) and classifying exosomal cargo 

proteins, respectively. As a cost-effective alternative to these iTRAQ and TMT labeling 

strategies, DiLeu tagging approach has also successfully been employed in identifying 

strategies for inhibiting cancer cell proliferation. Within this work, Liu, et al.117 revealed 

that dynamic methylation of pyruvate kinase M2 (PKM2) directly affect the metabolic 

activity of cancer cells and promotes cell propagation, migration and metastasis. This 

study, along with those detailed above, serve to indicate the importance of high-throughput 

quantitative cancer proteomics, outlining potential targets for future treatment strategies.

A significant entry into quantitative breast cancer proteomics was provided by Johansson et 
al.118. This study provided in-depth quantitation of 45 breast cancer tumors, spanning each 

of the 5 PAM50-based molecular classifications. Upon quantitation of 9,995 proteins, the 

authors used these proteome profiles to interpret multiple layers of systems measurements. 

While each of these studies offered unique insight into uncovering and validating potential 

biomarkers and investigative strategies, a chief concern among many is the long-term 

reproducibility of quantitative measurements. Using iTRAQ to quantify proteins from 

human-in-mouse xenograft tissue, Zhou et al.119 demonstrated that the large majority of 

quantitative measurements hold consistent over time, but also raised some topical concerns. 

First, they observed higher variability in quantitation of hydrophilic peptides compared 

to those of average peptide character, likely due to poor retention of these peptides on 

column. Second, as researchers have their choice of dissociation methods, this study 

reveals stepped collision energy offers higher reproducibility between unique measurements. 

Finally, whereas most commercial software implements a form of scoring to determine the 

quality of a peptide spectral match (PSM), this study goes further and reveals that a stricter 

scoring mechanism improves reliability of time-course measurements. This study provides 

an excellent framework and series of considerations for individuals seeking to begin or 

improve quantitative mass spectrometry investigations.

Label-free analyses have also been routinely implemented for high throughput biomarker 

discovery and screening. Among these, Ntai et al.120 compared the quantitation efficiency 

in bottom-up and top-down analyses of tumor xenografts. Tveitras et al.121 performed 

comparative analyses of pre-metastatic and metastatic triple negative breast cancer xenograft 

tissue, uncovering significant changes in expression of haptoglobin, fibrinogen, and 

thrombospondin-4 and transferrin receptor protein 1 between groups. Wang et al.122 

employed a DIA-select reaction monitoring (SRM) approach to reveal distinct proteomic 

and N-glycoproteomic divergence between normal, precancerous, and cancerous tissues. 

Gamez-Pozo et al.123 integrated label-free MS quantitation with RT-qPCR to definitively 

distinguish estrogen receptor positive and triple negative cancer subtypes. Nie et al. 124 
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identified 98 differentially expressed proteins when comparing pure breast cancer stem 

cells and mature luminal cells. Finally, Warmoes et al.125 elucidated 215 proteins that are 

significantly enriched in BRCA1-deficient secretome. This study highlights the potential 

of mass spectrometry to provide sensitive identification of biomarkers in instances when 

traditional ELISA screening may fall short.

These examples of successful quantitative proteomic analyses in breast cancer applications 

highlight the flexibility and facility of creating novel workflows to answer an array 

of biological problems. Knowing there have been a significant number of proteomic 

measurements made prior to the period in review, these examples of biomarker discovery 

and validation highlight how rigorous protein MS-based screening assays for the confident 

identification and stratification of breast cancer may be within reach (Table 3). Assays 

of this kind, devoid of the need for invasive and repetitive tissue sampling, provide a 

meaningful conduit towards aiding communities that have limited access to dedicated cancer 

screening centers and provide direct targets for potential novel therapies.

Ovarian Cancer

Although it has an estimated incidence rate of approximately 2% for 2020, ovarian cancer 

is the deadliest reproductive cancer in women, with an estimated mortality rate of 5% 

in women diagnosed with any cancer type and 64% for women diagnosed with ovarian 

cancer.126 Much emphasis has been placed on the continued research into mechanisms 

driving ovarian cancer, as late-stage diagnosis of advanced cancer contributes to the 

high mortality of ovarian cancer. Continued efforts have focused on the identification of 

critical mechanisms driving disease progression across ovarian cancer subtypes. Quantitative 

proteomic strategies have continued to increase the depth of knowledge surrounding ovarian 

cancer and its various subtypes to improve earlier identification strategies and highlight new 

therapeutic targets.

Cellular and Tissue Analyses

Because the majority of diagnosed ovarian cancer cases have already progressed to a 

more advanced stage, much quantitative research delves into tissue and cellular proteomic 

profiling to isolate and exploit dysregulated proteins. While only applicable to cellular-based 

models, SILAC has been implemented in ovarian cell lines and led to the discovery 

of critical modulators in ovarian disease progression. Musrap et al.127 cultured the 

ovarian line OV-90 in adherent and non-adherent conditions using SILAC to compare 

the impacts of cancer aggregate formation on cellular proteomics. After quantifying 1533 

proteins in total, they compared expression with other aggregate-forming lines and saw 

upregulation of CLCA1, which appeared to affect cancer cell aggregation after further 

siRNA experimentation. Grassi et al.128 utilized SILAC to quantify epidermal growth factor 

(EGF)-induced epithelial-mesenchymal transition (EMT) to identify specific mechanisms of 

this process that may be dysregulated for metastatic purposes. 206 proteins were found to 

be differentially expressed, some of which included proteins associated with the G1 and G2 

checkpoints of the cell cycle, indicating the role of EGF-induced EMT in cell cycle control 

mechanisms. Another investigation by Ji et al.129 utilized the metabolic strategy to perform 
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an integrated proteomic and N-glycoproteomic analysis of ovarian cancer lines that were 

either doxorubicin-sensitive or -resistant. They quantified 5509 protein groups and identified 

1525 high-confidence N-glycosites corresponding to 740 glycoproteins. Quantifying the 

protein abundance allowed these researchers to examine glycoprotein abundances and 

alterations, which provides unique information into the role of N-glycosylation in drug 

resistance.

Applicable to more than just cell culture-based models, isobaric labeling is commonly 

employed for quantitative experiments applied to ovarian cancer sample sets. Zhang et al.130 

used iTRAQ labeling to integrate quantitative proteomics with the transcriptomic profile 

of ovarian high-grade serous cancer (HGSC) patient biospecimens. Over 3500 proteins 

were quantified and used in tandem with genomic results to reveal a strong association 

between specific histone acetylation events and the homologous recombination deficient 

phenotype seen in patient samples. Hiramatsu et al.131 comparatively profiled HGSC and 

endometrial carcinoma samples using iTRAQ-based quantitation. Comprehensive analysis 

revealed 356 quantifiable proteins and identified mitochondrial inner membrane protease 

subunit 2 (IMP2) and minichromosome maintenance complex component 2 (MCM2) to be 

modulators of rapid HGSC growth, illustrating the need to examine these two proteins in 

further ovarian cancer studies.

Alternatively, many other analyses have used the TMT-based isobaric strategy rather than 

iTRAQ labeling. Recently, Hu et al.132 used an integrated proteomic and glycoproteomic 

approach with TMT-labeled peptides in their analysis of ovarian HGSC versus non-tumor 

tissues. These authors combined global proteomics, solid-phase extraction of glycosite­

containing peptides (SPEG) and glycan identification via intact glycopeptide analysis 

to provide a comprehensive view into N-glycoproteomics within ovarian cancer. Their 

integrated approach yielded promising results, identifying tumor-specific glycosylation and 

revealing glycosylation enzymes that were correlated with altered glycosylation status. 

Yoshimura et al.133 treated neighboring peritoneal mesothelial cells with a microRNA 

shown to be elevated in the serum of ovarian cancer patients to determine its role in 

cancer invasion and metastasis. The TMT-based proteomics analysis exhibited increased 

expression of fibronectin and vitronectin, enhancing the ability of the cancer cells to 

invade the surrounding environment. A straightforward, quantitative comparison of TMT­

labeled normal versus cancerous ovarian tissue was performed by Qu et al.134 to find 

differentially expressed proteins that hold promise in elucidating disease progression. Initial 

analyses found 498 differentially expressed proteins and highlighted chloride intracellular 

channel protein 1 (CLIC1), which was examined further and ultimately determined 

to promote tumorigenesis, making it an attractive therapeutic target. Proteogenomic 

and phosphoproteomic analysis was performed by McDermott et al.135 to characterize 

mechanisms driving ovarian HGSC functions down to the post-translational level. Global 

proteomic analysis led to the identification of 10,706 proteins and combined results 

described a role of histone acetylation as a marker for homologous recombination 

deficiency, confirming an association earlier proposed by Zhang et al.130 Phosphoproteomics 

data provided understanding into proliferation-induced replication stress and the impact 

it has on chromosomal instability in HGSC, implying that mitotic and cyclin-dependent 

kinases could serve as therapeutic targets after future experimental validation.
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Label-free quantitation is frequently employed for ovarian cancer analyses, as the global 

overview it provides of the proteome allows researchers to identify multiple pathways for 

further targeted analyses. Chuffa et al.136 used this approach to determine the influence 

of melatonin treatment on an in vivo model of ovarian cancer. Comparative proteomics 

analyses showed that downregulation of processes involved in cancer signaling was 

promoted, underlining molecular targets for therapeutic intervention while indicating the 

feasibility of melatonin supplementation for ovarian cancer patients. Another comparative 

analysis by Júnior et al.137 explored the effects of P-MAPA, IL-12 or a combination 

immunotherapy of the two on the SKOV-3 ovarian cancer cell line. After confirming 

532 proteins were identified across all groups, it was noted that combination therapy 

of P-MAPA and IL-12 was most efficient at regulating proteins involved in metabolic 

processes that may render cancer cells more vulnerable, suggesting that the use of the two 

therapies concomitantly is a plausible treatment strategy. Coscia et al.138 used a quantitative, 

label-free approach in tandem with other quantitative strategies to probe the proteomes 

of platinum-resistant and -sensitive ovarian HGSC patient-derived tissues (Figure 5). Multi­

level quantitative analyses revealed cancer/testis antigen family 45 (CT45) as a prognostic 

factor through mediation of chemosensitivity, thereby exposing it as an immunotherapy 

target.

The quantitative tissue analyses outlined here provide multiple protein targets for the 

development of new targeted therapies. The role of a defective DNA damage response in 

ovarian cancer is well established, so the multiple studies highlighting histone acetylation 

and its role in homologous recombination deficiency is supported by current literature 

and should be examined in therapeutic development.139 Additional analyses that examine 

post-translational modifications simultaneously with proteomics should also be explored, as 

these studies may highlight other processes outside the DNA damage response that promote 

cancer progression. The experiments above outline the utility that quantitative proteomic 

approaches hold in advancing the knowledge of the ovarian cancer field.

Biofluid Analyses

Quantitative analyses that inspect biofluids of ovarian cancer samples provide valuable 

information about potential biomarkers that allow for earlier detection and diagnosis, a 

current area of the ovarian cancer field that is in dire need of new research breakthroughs. 

Isobaric labeling of ovarian biofluids allow scientists to relatively quantify biomarkers that 

may otherwise go undetected or are lost during depletion of abundant serum proteins such 

as albumin. Zhang et al.140 profiled exosomes derived from patient plasma using the TMT 

tagging strategy. When the 225 proteins identified across all samples were quantitatively 

compared, proteins associated with the coagulation cascade were found to be differentially 

expressed and may therefore be promising diagnostic factors for ovarian cancer. Zhang et 
al.141 went on to further profile circulating exosomes of late-stage cancer patients using 

iTRAQ. After validation, they determined that apolipoprotein E (ApoE) multiplexed with 

epithelial cell adhesion molecule (EpCAM), plasminogen (PLG), serpin family C member 

1 (serpinC1) and complement component 1q (C1q)were able to accurately diagnose ovarian 

cancer. It was also noted that activation of coagulation cascades was increased in the ovarian 

cancer cohort due to increased Factor X levels, demonstrating the impact that tumor-derived 
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extracellular vesicles may have on other biological processes. Swiatly et al.142 examined 

iTRAQ-labeled serum proteins from healthy control, benign ovarian tumor and ovarian 

cancer patients. Five proteins were found to be differentially expressed within the ovarian 

cancer group, and three of these coupled to current biomarkers CA125 and HE4 improved 

diagnostic discrimination between benign and malignant ovarian tumors. Russell et al.143 

used iTRAQ to screen preclinical serum samples for detection of early stage biomarkers 

and initially identified 90 differentially expressed proteins in ovarian cancer cases. A 

second targeted analysis of 20 selected candidates revealed Vitamin K-dependent protein 

Z (VKDP), an anticoagulant not previously associated with ovarian cancer, as either a novel 

independent early detection biomarker or concomitantly with CA125 to increase differential 

diagnostic capabilities.

Although label-free analyses suffer from longer instrument times and potential run-to-run 

variability, they provide the greatest profiling depth of the multiple quantitative strategies 

and are vital to finding new ovarian biomarkers. Barnabas et al.144 performed deep proteome 

profiling of 187 uterine liquid biopsy-derived microvesicles to identify early detection 

biomarkers. Machine learning algorithms identified a 9-protein signature that correctly 

identified all Stage I lesions, demonstrating the strength of the panel for future use in 

early diagnosis. Zhang et al.145 studied the plasma proteins to isolate biomarkers related 

to chemoresistance of postoperative reoccurrence. These experiments found a total of 

six dysregulated proteins that could serve as predictive biomarkers for chemoresistance 

in ovarian cancer patients. The combination of plasma proteomics and metabolomics 

was utilized by Ahn et al.146 to discover new molecular signatures of ovarian HGSC. 

Differential expression of 34 metabolites and 197 proteins was found, with three proteins 

(phosphopantothenoylcysteine synthetase (PPCS), peripheral myelin protein 2 (PMP2) and 

tubulin beta class I (TUBB)) and two metabolites (L-carnitine and PC-O) related to the 

carnitine system established as potential markers of cancer plasticity. Hüttenhain et al.147 

created a biomarker development strategy for large-scale SRM studies in ovarian cancer 

plasma samples. After developing a 5-protein signature for ovarian cancer and testing it 

against the current ELISA-based standard for biomarker tests, it was found that the SRM­

based method had sensitivity measurements that exceeded the current ELISA standard, 

validating its potential for clinical development and use. Rauniyar et al.148 also used a 

more targeted approach, combining data-independent acquisition methods with PRM to 

improve identification of ovarian cancer serum biomarkers. They demonstrated that ApoA­

IV is a more reliable biomarker than previously determined by immunological assays in 

addition to the identification of C-reactive protein, transferrin and transthyretin as other 

available ovarian serum markers. Overall, this study validated the use of quantitative 

mass spectrometry as a more sensitive and reliable method of quantitation compared to 

immunological-based procedures.

While the quantitative research mentioned here has progressed ovarian cancer research, 

continuing studies are still necessary to delve deeper into specific mechanisms of novel 

markers identified. During the review process, many of the identified studies had a tissue­

based proteomics approach and minimal studies focused on biofluid samples (Table 4). 

More studies focusing on the use of biofluids in ovarian cancer research are critical in 

the development of novel biomarkers for earlier detection and treatment, and the lack of 
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literature compared to tissue-based studies highlights a current area for further quantitative 

experimentation in ovarian cancer. In particular, studying the microvesicular proteome 

for the discovery of novel biomarkers has shown great potential both here and in other 

quantitative applications. Profiling of extracellular vesicles may prove to be a vital key in 

the prevention of late-stage diagnosis and increasing the overall survival rate of patients 

diagnosed with ovarian cancer.

Conclusions and Future Directions

The various quantitative strategies outlined here have demonstrated the growing utility of 

MS-based quantitation methods in cancer diagnosis and research. Quantitative analyses 

of prostate cancer have been frequently performed within the field due to the growing 

emergence of resistance to first-line treatments and false diagnoses associated with elevated 

PSA levels. Multiple members of the KLK family were identified as potential biomarkers 

and further strengthened when detected in combination with other proteins, suggesting their 

potential for clinical diagnosis. Targeted validation experiments in a cohort spanning all 

grades of prostate cancer as well as BPH should be performed before serious consideration 

is given to using these proteins as biomarkers. Pancreatic studies have been relatively 

successful in determining sets of robust biomarkers for diagnosis and patient stratification. 

APOA1, APOA4, IGFBP, and CA19-9 have been indicated in numerous peer-reviewed 

studies as critical components for pancreatic cancer screening. Future analyses should 

focus on high throughput reaction monitoring to rapidly screen for these biomarkers. 

Breast cancer research has seen limited quantitative proteomics studies in recent years, 

so future efforts of those investigating new biomarkers and determining mechanisms of 

carcinogenesis should consider quantitative proteomics strategies in their analyses. The 

small number of studies highlighted here contribute potential protein panels useful for 

breast cancer screening, but more large-scale studies that confirm the utility of these 

proteins as biomarkers are necessary. Ovarian research has seen large numbers of tissue- 

and cellular-based quantitation, but there is a lack of biofluid-based experiments. While 

tissue-based studies provide large amounts of information that guide knowledge of disease 

mechanisms, biofluid studies offer important insights that could facilitate the identification 

and development of protein biomarkers for clinical diagnosis. Due to the lack of biomarkers 

that detect ovarian cancer at an earlier stage, studies covering biofluids are critical and 

present an understudied area within the ovarian field.

A common drawback of the quantitative studies addressed is that these investigations only 

determine up- or downregulation of differentially expressed proteins at a single point in 

time. Time-course evaluations monitoring the differential expression and dynamic changes 

of these proteins over time could prove to be more useful, as these studies would explain 

how expression levels change within a single patient over time. In combination with 

the expression levels across varying disease severity, there is a potential to determine a 

critical expression level for each stage of cancer progression that determines not only if the 

patient has cancer, but also the severity of that cancer relative to biomarker concentration 

levels. Rapid analyses of cancer samples via targeted monitoring strategies offer benefits 

over current immuno-based assays such as ELISA, demonstrating the advantage of MS­

based quantitation for detection and prolonged patient monitoring. Another strategy for 
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improving cancer diagnosis is the integration of additional analyses, such as transcriptomics, 

metabolomics, or analysis of post-translational modifications and associated crosstalk. Many 

of the studies outlined here utilized a combined approach to their investigations, leading 

to the successful identification of a specific protein or process with altered expression 

in both datasets. These integrated approaches help scientists identify mechanisms driving 

cancer metastasis and treatment resistance, thus demonstrating their growing utility in future 

studies. Additional efforts should be made towards understanding communication within the 

tumor microenvironment, as much remains to be known about the interactions that help a 

tumor transition from localized to metastatic ability. Finally, studies focusing on single-cell 

analyses should also be considered for future experiments, as the cellular diversity and 

heterogeneity provided from such examinations may prove to be critical in understanding 

specific mechanisms that allow pathogenesis to advance.

Taken together, this review highlights the utility of various quantitative strategies, their 

associated limitations, and some directions for novel applications in cancer diagnosis and 

cancer research. As instrumental capabilities continue to grow, it will become necessary for 

researchers to develop and validate higher throughput labeling strategies that accommodate 

deeper proteomic profiling. Regardless of the application, quantitative proteomics represents 

a premier avenue towards cancer biomarker detection, identification, and validation. 

Continued efforts in the coming years will certainly be centered on the utility of mass 

spectrometry-based biomarker detection in clinical settings and the development of point-of­

care biomolecule screening.
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Figure 1. 
Complete workflow utilized by Zhou et al.55 detailing the quantitative approach to 

investigate site-specific fucosylation and glycoproteins associated with aggressive prostate 

cancer phenotypes. The optimized enrichment strategy used to identify glycopeptides 

contributing to prostate cancer aggressiveness shows promise for application in a variety 

of cancer glycosylation studies but should also be applied to other prostate cancer models to 

determine its utility across sample types. Reprinted with permission.
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Figure 2. 
Workflow described by An, et al.84 for the quantitative analysis of chemotherapy patient 

exosomes through iTRAQ labeling and quantitative mass spectrometry. This example of a 

facile isobaric labeling proteomics experiment provides deep proteomic profiling of multiple 

complex samples with lower spectral complexity than isotopic labeling methods. Reprinted 
with permission.
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Figure 3. 
Workflow implemented by Nigjeh, et al.107 Quantitative workflows utilizing isobaric labels 

present the greatest propensity for deep proteome profiling. However, these workflows are 

limited by their instrument acquisition speed and cycle time required to select and fragment 

top precursors. For this reason, implementation of DIA strategies presents the ability to 

sequence a greater number of peptides in the same amount of time. Though the data 

processing methods are significantly more involved, DIA workflows are sure to be of critical 

importance to proteome profiling in the coming years. Reprinted with permission.
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Figure 4. 
Representative workflow established by Going, et al.115 As quantitative proteomics is 

critical for discovering and validated biomolecules of interest during periods of disease 

and treatment, this workflow represents an example of how treatment strategies may be 

controlled and systematically evaluated. While SILAC methods would be useful in situations 

where cell growth is monitored, isotopic labeling methods may be considered inherently 

lower throughput due to the increases in spectral complexity they may provide. Reprinted 
with permission.

Miles et al. Page 34

RSC Chem Biol. Author manuscript; available in PMC 2021 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Analysis by Coscia et al.138 to determine proteomic differences in ovarian cancer tissue 

samples either resistant or sensitive to platinum-based chemotherapeutics. This strategy 

identified CT45 as a chemosensitivity modulator and demonstrates the ability of quantitative 

methods to identify factors that play a role in therapeutic resistance. Reprinted with 
permission.
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Table 1 -

Summarized selection of prostate cancer biomarkers

Proposed Biomarker Source Findings

Platelet-derived growth factor (PDGF)-B 46 Prostatic tissue Overexpressed with increased cancer 
proliferation

α(1,6)-fucosyltransferase (FUT8) 48–50 LAPC4 and LNCaP 
cells

Increased FUT8 expression corresponded with 
decreased extracellular vesicle production

Mitogen-activated protein kinase kinase kinase kinase 4 
(MAP4K4) 51, 52

PC3 and PC3MLN4 
cells

Differential expression in metastasis-derived cell 
lines

Phosphatidylinositol 4-kinase III α (PI4KIIIα) 53 PC3 cells Upregulated in PC3 cell lines; promotes cancer 
cell invasion

FXYD domain containing ion transport regulator 3 (FXYD3) 54 PrAd, NEPC cell lines Biomarker specific to prostate adenocarcinoma

CEA cell adhesion molecule 5 (CEACAM5) 54 PrAd, NEPC cell lines Biomarker specific to neuroendocrine cancer

Four and a half LIM domains 1 (FHL1), Matrix 
metallopeptidase 1 (MMP1) 58

PC-3M sublines Promote higher metastatic potential

Aldehyde dehydrogenase (ALDH1A1) 59 Stromal tissue Loss of expression in altered stromal cell types

Actin-depolymerizing factor (ADSV), transglutaminase 4 
(TGM4) 66

Urine Differentiates benign and cancerous tissue

CD63 Molecule (CD63), glycerol kinase 5 (GLPK5), SPHM 
sulfohydrolase (SPHM), Prostate-specific antigen (PSA) and 
pappalysin 1 (PAPP) 66

Urine Distinguishes high- and low- grade cancer

Kallikrein related peptidase 4 (KLK4) 68 Seminal Fluid Biomarker available in seminal fluid

Fatty acid binding protein 5 (FABP5) Urine Utility in detecting, diagnosing high gleason 
score prostate cancer

CD59 molecule (CD59), haptoglobin and tetranectin 71 Serum Expression correlated to bone metastasis
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Table 2 -

Summarized selection of pancreatic cancer biomarkers

Proposed Biomarker Source Findings

Cadherin 3 (CDH3), plasmogen activator, urokinase (PLAU), 
lunatic fringe (LFNG) 78

PC-1 cell secretome Potential for improving cancer patient prognoses

Transcription factor EB (TFEB) 79 HEK293, PANC1, 
MIA PaCa-2 cells

Association with nuclear protein upon inhibition 
of GSK3

Leukemia inhibitory factor (LIF) 80 Pancreatic stellate 
cells

Denoted as major paracrine factor

Melanocyte inducing transcription factor (MITF), transcription 
factor binding to IGHM enhancer 3 (TFE3) and transcription 
factor EB (TFEB) 83

Tissue, PDA cells Decoupled from regulatory mechanisms, 
promote catabolic function

Brain acid soluble protein 1 (BASP1) 96 Tissue Novel cancer therapy target

Complement component 4 binding protein alpha (C4BPA), 
polymeric immunoglobulin receptor (PIGR) 98

Serum Higher expression in preoperative patients than 
postoperative

Apolipoprotein A-1 (APOA1) 101, 102 Serum Distinct expression in both CA 19-9 positive and 
CA 19-9-defficient patients

Deoxycytidine kinase (dCK) 103 PK9, CFPac-1, PK1, 
SUIT-2, and AsPC-1 
cells

Predictor of progression-free survival, biomarker 
of gemcitabine sensitivity

Insulin like growth factor binding protein 2 (IGFBP2) and 
IGFBP3 104

Plasma Compensatory biomarkers when CA 19-9 
screening is inconclusive

Insulin-like growth factor binding protein 2 (IGFBP2) tissue 
inhibitor of metalloproteinase 1 (TIMP1), Apolipoprotein A IV 
(APOA-IV), Apolipoprotein CIII APOCIII 105

Blood Protein panel highly effective in early detection 
of pancreatic cancer
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Table 3 -

Summarized selection of breast cancer biomarkers

Proposed Biomarker Source Findings

Fibronectin (FN1), alpha-2-macroglobulin (A2M), complement 
component-4-binding protein-alpha (C4BPA) and complement 
factor-B (CFB) 112

Tumor tissue Critical for subtype differentiation

Large proline-rich protein (BAG6), ATP-dependent RNA helicase 
(DDX39), annexin A8 (ANXA8) and cytochrome c oxidase subunit 
4 (COX4) 113

MCF7 and T47D, MDA­
MB-231, and SK-BR-3 cells

Putative biomarkers for breast cancer

Methylated pyruvate kinase M2 (PKM2) 117 MCF7, MDA-MB-231, 
HEK293T cells

Promotes cell propagation, migration 
and metastasis

Haptoglobin, fibrinogen, and thrombospondin-4 and transferrin 
receptor protein 1 121

Pre-/metastatic xenograft 
tissue

Reveal N-glycoproteomic divergence 
between normal, precancerous, and 
cancerous tissues
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Table 4 -

Summarized selection of ovarian cancer biomarkers

Proposed Biomarker Source Findings

Calcium-activated chloride channel 1 (CLCA1) 127 OV-90 cells Affects cancer cell regulation

Insulin-like growth factor 2 (IMP2) and minichromosome maintenance 
complex component 2 (MCM2) 131

HGSC and 
endometrial tissue

Modulators of rapid high-grade serous 
cancer growth

Fibronectin and vitronectin 133 Peritoneal 
mesothelial cells

Increased expression promotes cancer cell 
invasion

Chloride intracellular channel protein 1 (CLIC1) 134 Tissue Determined to promote tumorigenesis

Histone acetylation 130, 135 Tumor tissue Marker for homologous recombination 
deficiency

Phospholinoleate–palmitoleate anhydride (P-MAPA), interleukin 12 
(IL-12) 137

SKOV-3 Combination immunotherapy is a 
plausible treatment strategy

Cancer/testis antigen family 45 (CT45) 138 Tissue Found to be a prognostic factor

Apolipoprotein E (ApoE), epithelial cell adhesion molecule (EpCAM), 
plasminogen (PLG), serpin family C member 1 (serpinC1) and 
complement component 1q (C1q) 141

Circulating 
exosomes

Diagnostic markers of ovarian cancer

Vitamin K-dependent protein Z (VKDP) Preclinical serum Novel, early detection biomarker

Phosphopantothenoylcysteine synthetase (PPCS), peripheral myelin 
protein 2 (PMP2) and tubulin beta class I (TUBB) 146

Blood, plasma Potential markers of cancer plasticity

Apolipoprotein IV (ApoA-IV) 148 Serum More reliable biomarker compared to 
benchmark proteins
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