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Abstract

In chronic infections and in cancer, persistent antigen stimulation under suboptimal conditions can 

lead to the induction of T-cell exhaustion. Exhausted T-cells are characterized by an increased 

expression of inhibitory markers and a progressive and hierarchical loss of function. While cancer­

induced exhaustion in CD8 T-cells has been well-characterized and identified as a therapeutic 

target (i.e. via checkpoint inhibition), in-depth analyses of exhaustion in other immune cell types, 

including CD4 T-cells, is wanting. While perhaps attributable to the contextual discovery of 

exhaustion amidst chronic viral infection, the lack of thorough inquiry into CD4 T-cell exhaustion 

is particularly surprising given their important role in orchestrating immune responses through 

T helper and direct cytotoxic functions. Current work suggests that CD4 T-cell exhaustion may 

indeed be prevalent, and as CD4 T-cells have been implicated in various disease pathologies, such 

exhaustion is likely to be clinically relevant. Defining phenotypic exhaustion in the various CD4 

T-cell subsets and how it influences immune responses and disease severity will be crucial to 

understanding collective immune dysfunction in a variety of pathologies. In this review, we will 

discuss mechanistic and clinical evidence for CD4 T-cell exhaustion in cancer. Further insight 

into the derivation and manifestation of exhaustive processes in CD4 T-cells could reveal novel 

therapeutic targets to abrogate CD4 T-cell exhaustion in cancer and induce a robust antitumor 

immune response.
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INTRODUCTION

T-cell dysfunction can strongly impact both physiologic and pathologic states. Amongst 

the known modes of T-cell dysfunction, exhaustion has garnered an increasing degree of 

recent attention. As exhaustion was initially described as a hyporesponsive T-cell state in 

chronic lymphocytic choriomeningitis viral (LCMV) infections (1-3), significant effort was 

initially aimed at characterizing exhaustion in virus-combating CD8 T-cells, specifically. A 

hallmark of mice exposed to chronic infection with LCMV Clone-13, exhaustion has come 

to encompass a broad state of CD8 T-cell dysfunction resulting from persistent antigen 

exposure under suboptimal conditions (4), including inadequate CD4 T-cell help (5-7). It 

has evolved as a transcriptionally programmed and host-adaptive state designed to limit 

collateral immunologic damage in conditions of failed pathogen clearance and continued 

antigen exposure, establishing a “stalemate” of sorts between host and pathogen.

More recently, exhaustion has become an acknowledged mode of T-cell dysfunction in 

cancer as well (8,9). Importantly, the upregulation of exhaustion-demarcating immune 

checkpoints by T-cells has been associated with the development of tumor resistance to 

checkpoint blockade therapies (10). While restoration of exhausted CD8 T-cell function is 

a primary goal for checkpoint inhibition, CD4 T-cells are also liable to suffer exhaustion 

and contribute to rejuvenation of the antitumor immune response post-checkpoint blockade. 

However, thorough investigations into the definition, prevalence, and mechanisms of CD4 

exhaustion remain lacking. This presents a gap in our understanding of the summative 

immune dysfunction characterizing a number of disease states where CD4 T-cell function is 

relevant, including cancer.

CD4 T-cells perform a wide variety of functions within the adaptive immune system and 

are best known for their role as T helper (Th) cells, including Th1, Th2, Th17, and 

regulatory T-cell (Treg) subsets. Importantly, CD4 T-cells license dendritic cells (DC) to 

allow optimal priming of CD8 T-cells; provide key signals for antibody class switching; 

promote bactericidal activity of phagocytes; recruit neutrophils; influence angiogenesis; 

and secrete cytokines, in addition to perhaps possessing direct cytotoxic functions (11-13) 

(Fig. 1). Likewise, CD4 T-cells appear to possess significant plasticity, allowing subsets to 

transition between one another, broadening their functional impact (14).

CD4 T-cells are strongly implicated in the development of antitumor responses (Table 

1), as they can enhance tumoricidal activity of other antitumor effector cells, such as 

CD8 T-cells and macrophages (6,15,16). Some CD4 subsets, particularly Th2 and Tregs, 

are known to negatively affect the antitumor response by decreasing antigen presentation 

and dampening T-cell effector functions, respectively. Furthermore, certain CD4 T-cells 

appear able to directly lyse tumor cells (11,12), and adoptive transfer of tumor-specific CD4 

T-cells alone has demonstrated impressive efficacy in some studies (17). Direct tumor cell 

recognition and killing by CD4 T-cells requires Class II Major Histocompatibility Complex 

(MHC), and overexpression of Class II MHC Transactivator (CIITA) on murine mammary 

adenocarcinoma cells increased interferon gamma (IFNγ) and granzyme B production in 

CD4 T-cells and restricted tumor growth (18). These studies remain controversial, however, 

as many tumor cells will not have the antigen presentation machinery required to properly 
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load peptides onto MHC-II. Nevertheless, CD4 T-cells with a cytotoxic transcriptional 

profile have been found enriched in patients responding to immune checkpoint blockade 

(19).

Given the diverse repertoire of CD4 T-cell capacities, dysfunction in this compartment 

is assuredly relevant. In this review, we will discuss the current best evidence for the 

delineation and significance of CD4 T-cell exhaustion in cancer. A brief overview of CD4 

T-cell exhaustion in chronic infections, transplantation, and autoimmune diseases will also 

provide context across pertinent pathologies. Understanding these processes is anticipated to 

aid in identifying novel therapeutic targets and considerations for improving the antitumor 

responses.

OVERVIEW OF EXHAUSTION

The framework for our current understanding of CD4 T-cell exhaustion is generated 

from the more extensively studied CD8 T-cell exhaustion, elegantly reviewed in McLane 

et al. (20). When antigen clearance fails and exposure is maintained, as in the setting 

of chronic infection or cancer, an exhausted T-cell phenotype may emerge. A primary 

feature of exhausted T-cells is the sustained co-expression of multiple inhibitory surface 

receptors, referred to commonly as immune checkpoints. The function of these checkpoints 

is to permit protective curbing of T-cell activity following immune activation. The 

“classical” immune checkpoints include cytotoxic T-lymphocyte-associated protein 4 

(CTLA4) and programmed cell death protein 1 (PD1). Newer “alternative” checkpoints 

include molecules such as T-cell immunoglobulin and mucin-domain containing-3 (TIM3); 

lymphocyte-activation gene 3 (LAG3); B- and T-lymphocyte attenuator (BTLA); 2B4; T­

cell immunoreceptor with Ig and ITIM domains (TIGIT); and SLAM Family Member 6 

(SLAMF6) (21,22). These inhibitory receptors (checkpoints) are known to be expressed 

on exhausted T-cells, with mounting checkpoint expression associated with more severe 

phenotypes (8,10). The typical characteristics of CD8 T-cell exhaustion include antigen 

load-dependent and temporally-progressive loss of effector activity (8,23,24); loss of 

proliferative capacity (25,26); altered expression of transcription factors (27,28); loss of 

antigen-independent homeostatic proliferation (29); and modified epigenetic landscapes 

(30-32) and metabolic requirements (28,33,34). In turn, disruption of the PD1 / programmed 

death ligand 1 (PD-L1) pathway, in particular, has demonstrated the capacity to reverse 

features of the exhausted phenotype and restore T-cell proliferative and effector function 

(35).

Recent evidence suggests that the exhausted phenotype in CD8 T-cell is not homogeneous 

and includes lineage-spanning, stage-like “progenitor” (SLAMF6+TIM3−) and “terminally­

differentiated” (SLAMF6−TIM3+) subtypes (21,26), with varied capacities for effector 

function and proliferation dispersed among the subgroups. Terminally exhausted CD8 

T-cells are further characterized by higher levels of PD1 on their surface. Whereas 

progenitor exhausted CD8 T-cells remain capable of co-producing multiple cytokines and 

can proliferate in vivo, terminally exhausted CD8 T-cells are limited to single cytokine 

production and upregulation of Granzyme B. Furthermore, only progenitor exhausted 

subsets are capable of responding to anti-PD1 treatment (21,26). SLAMF6-positive CD8 
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T-cells express the transcription factor T-cell factor 1 (TCF1) (21), which has been linked to 

the preservation of effector functions (36). Loss of TCF1 with concomitant upregulation 

of multiple co-inhibitory receptors is associated with the terminally differentiated 

exhaustion phenotype and a further decline in effector functions (21) and/or adoption of 

immunoregulatory function (37). While exhausted CD8 T-cells retain the ability to recognize 

antigen through their T-cell receptor (TCR), antigen exposure fails to elicit a robust, 

meaningful cytotoxic response (23).

Our current grasp of CD4 T-cell exhaustion is decidedly anemic when compared to the 

above understanding we have acquired for CD8s. To begin, an accepted definition of CD4 

T-cell exhaustion has not yet been established, limiting the capacity to properly assign 

the term definitively. Much of the research on CD4 T-cell exhaustion to date has focused 

merely on the expression vs. absence of co-inhibitory receptors and/or cytokine production, 

with data being suggestive of an exhausted state (Fig. 2). Further research is required to 

determine whether additional criteria delineating CD8 T-cell exhaustion, including loss of 

antigen-independent homeostatic proliferation (29,38,39), alterations in metabolic profiles 

(28,33,34), and unique epigenetic features (30-32), also apply to exhausted CD4 T-cells. 

Likewise, it will be crucial to understand whether CD4 exhaustion evolves in a similar stage- 

and lineage-dependent manner to CD8 T-cells (30,31), and whether or not there are differing 

relative susceptibilities to and impacts for exhaustion in the various CD4 subsets.

EVIDENCE FOR CD4 T-CELL EXHAUSTION

Original Evidence: Chronic infections

As CD8 T-cell exhaustion was first defined in chronic LCMV infection, this remains a 

logical place to begin when analyzing the evidence for a similar exhausted state amongst 

CD4 T-cells. Compared to acute infections, chronic LCMV infections induce markedly 

greater expression of exhaustion-suggestive immune checkpoints on CD4 T-cells (40,41). 

Upregulation of these same inhibitory receptors typical of CD8 exhaustion has also been 

identified on CD4 T-cells in other chronic and recurrent infections, suggesting an analogous 

CD4 T-cell exhaustion phenotype (42-44). Similar to what is seen with CD8 T-cells, antigen­

specific CD4 T-cells (45-49) and CD4 T-cells from infected tissues (50,51) express higher 

levels of the relevant co-inhibitory receptors, drawing a parallel role for antigen exposure 

in the induction of the seemingly matched CD4 exhausted state. Accordingly, increased co­

inhibitory receptor expression is generally associated with more advanced disease (52-56), 

while successful disease treatment correlates in turn with reduced expression of the same 

markers (56-58). However, upregulation of inhibitory markers is not sufficient to call a cell 

exhausted, as some co-inhibitory receptors are also activation markers (59).

Importantly, then, functional deficits are also observed amidst the phenotypically exhausted 

CD4 T-cell compartment following chronic infection (45,60-63). In LCMV in particular, 

CD4 T-cell differentiation in the presence of persistent antigen resulted in upregulation 

of co-inhibitory molecules (62), premature contraction of the antigen-specific immune 

population (41,61), reduced cytokine production (41,61), decreased splenic motility (62), 

and poor recall responses upon a secondary challenge (61). Reduced CD4 effector functions 

and increased expression of inhibitory molecules could be induced upon exposure of CD4 
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T-cells to Tumor Necrosis Factor (TNF) (64) and Fibrinogen Like 2 (FGL2) (65). A link 

between decreased performance of CD4 T-cells and exhaustion was established through 

increased motility and cytokine production following anti-PD1 treatment (41,62), although 

recovery of function was inconsistent (46,59,63,66-68).

Exhaustion is also characterized (and confirmed) by prescribed and stereotyped 

transcriptional programs. Various studies examining transcriptional programs within CD4 

T-cells have provided mechanistic insight into factors that may be involved in the 

establishment of CD4 T-cell exhaustion during LCMV or other chronic infection response. 

Such studies suggest roles for upregulation of IKZF2 (encoding Helios) (42); Klf4 (42); 

protein tyrosine phosphatase, non-receptor type 22 (PTPN22) (69); cAMP responsive 

element modulator (CREM) (69); and PR/SET domain 1 (PRDM1, encodes Blimp1) (45). 

Likewise exhaustion in CD4 T-cells has been observed with loss or downregulation of 

ThPOK (70) and nuclear factor of activated T-cells (NFAT) (71).

Not all effector functions of CD4 T-cells are necessarily compromised during chronic 

infections: perforin (72) and granzyme B (73) production in CD4 T-cells are increased 

in HIV patients when compared to healthy controls, for instance. Interestingly, such regain 

of cytotoxic function has also been described for “terminally” exhausted CD8 T-cells (21). 

Therefore, the acquisition or retention of these functions might simply indicate varying 

exhaustion stages, again eliciting similarities with observations made amidst CD8 T-cell 

exhaustion.

Evidence and Significance in Cancer:

Cytotoxic CD8 T-cells promote antitumor immunity that can be correspondingly restricted 

by their tumor-induced diversion down a pathway towards exhaustion (8,9,74-76). Yet, a 

successful antitumor immune response requires the coordination of a variety of non-T-cells 

constituting the tumor microenvironment (TME), including macrophages, DC, B cells, and 

others. Given the role CD4 T-cells play in orchestrating the responses by each of these 

cell types, the potential impact that exhaustion might have amidst the tumor-infiltrating 

or even systemic CD4 population is substantial. Likewise, the direct cytotoxic role that 

CD4 T-cells can have in mediating antitumor immunity (11-13) makes them a particularly 

germane population in cancer. As an extension, restoration of exhausted CD4 T-cell function 

by checkpoint blockade, if feasible, may contribute significant clinical benefit in tumors, 

either by improving direct CD4 antitumor activity or increasing CD4 helper functions.

Canonical and alternative inhibitory receptors suggestive of exhaustion on CD4 T-cells 

(PD1, CTLA4, LAG3, TIM3, TIGIT) have been identified in multiple solid tumors and 

hematologic malignancies (77-82) in both humans and mice (Table 2). In many cases, 

similar to that seen with chronic infection, the expression of such checkpoints has been 

associated with more advanced disease states and diminished progression-free survival 

(PFS) (83-85). Furthermore, successful anti-cancer therapies have been associated with 

reductions in the level of these markers on the surface of CD4 T-cells (86-88), while failure 

to achieve complete remission and/or disease relapse has positively correlated with their 

persistent or enhanced expression (89-93).
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As with CD8 exhaustion, a number of co-inhibitory receptors may also serve to denote 

T-cell activation (59). Therefore, their expression alone is not sufficient to signal the true 

emergence of exhaustion. Functional and transcriptomic correlates are needed. Ultimately, it 

is a balance between co-stimulatory and co-inhibitory signals that provide a gain adjustment 

on the immune response. Currently, however, such phenotypic and functional assessments 

of tumor-infiltrating CD4 T-cells remain somewhat lacking. Functional deficits in CD4 

proliferation, cytokine production, signaling, and provision of B cell help have varied 

according to tumor type and source of CD4 T-cells (94-100). Nonetheless, current studies 

in a variety of cancers indicate a correlative relationship between typical markers of T-cell 

exhaustion on CD4 T-cells and the degree of disease severity. Likewise, at least partial 

restoration of CD4 effector functions has been observed after treatment with checkpoint 

inhibitors (84,94,98,101) (Table 2).

To evaluate whether apparent CD4 T-cell exhaustion parallels the development of CD8 

T-cell exhaustion, Rausch et al. (102) and Malandro et al. (103) investigated the role of 

antigen stimulation on CD4 T-cell function using murine melanoma models. Persistently 

increased antigen availability reduced CD4 proliferation, cytokine production, and antitumor 

responses and increased checkpoint expression on CD4 T-cells. Checkpoint inhibition 

induced only a variable recovery of CD4 effector functions in their hands. Furthermore, 

clinical observations demonstrate that tumor-infiltrating CD4 T-cells express higher levels 

of co-inhibitory markers compared to circulatory (99,104,105) or adjacent tissue-infiltrating 

CD4 T-cells (101,106,107). These data indicate that perpetual antigen encounters can induce 

a severe, and potentially irreversible, exhaustion phenotype that mimics terminal exhaustion 

in CD8 T-cells (21).

To further investigate parallels between the development of CD4 T-cell and CD8 T-cell 

exhaustion and differentiation states, Fu and colleagues examined the transition from 

progenitor exhaustion (SLAMF6+TIM3−) to terminal exhaustion (SLAMF6−TIM3+) (21) 

occurring amongst CD4 T-cells within a murine melanoma model. They observed a 

downregulation of TCF1 and SLAMF6 on tumor-infiltrating CD4 T-cells compared to 

CD4 T-cells in the spleen, indicating more prevalent differentiation into the terminally 

exhausted state within tumors. Furthermore, treatment with anti-PD-L1 resulted in an 

increase in TCF1 and a decrease in TIM3 and LAG3 on CD4 T-cells, indicating maintenance 

of the progenitor exhausted subset (108). These data were corroborated by experiments 

performed in human samples of head and neck, ovarian, and cervical tumors (109). In 

contrast to terminally exhausted CD8 T-cells, terminal exhaustion in CD4 T-cells was 

represented by the expression of CD39, rather than TIM3. CD39+ cells were found to have 

higher levels of PD1, produce fewer cytokines, and were more likely to produce a single 

cytokine (predominantly IFNγ) rather than coproduce multiple cytokines. Treatment with 

anti-PD1 increased cytokine production, upregulated CD40 ligand (CD40L), and increased 

DC maturation and CD8 proliferation, indicating increased CD4 helper functions (109). 

Paralleling CD8 T-cell exhaustion, CD39+ CD4 T-cells expressed the highest level of 

thymocyte selection-associated high mobility group box (TOX) (110) and lost expression of 

TCF1 (21). The parallel of increased TOX expression with that described in CD8 exhaustion 

is of particular interest, as TOX has recently been found to initiate the epigenetic changes 

associated with the exhausted phenotype (111). Epigenetic changes are hallmarks of CD8 
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T-cell exhaustion (30-32), and this similarity should drive further investigation into the 

epigenetic landscape of CD4 T-cell exhaustion.

Drawing additional similarities to terminally exhausted CD8 T-cells, studies suggest that 

exhausted CD4 T-cells may actually gain certain additional functionality, as the acquisition 

of non-canonical T-cell function was observed among putatively exhausted CD4 T-cells in 

solid tumors. For instance, C-X-C Motif Chemokine ligand 13 (CXCL13) was found to be 

exclusively produced by PD1hi CD4 T-cells in non-small cell lung cancer (NSCLC) (107), 

suggesting a skew towards effector function in what otherwise resembled exhausted CD4 

T-cells. Conversely, increased effector function might not translate to increased tumoricidal 

activity. For instance, enhanced IFNγ production was observed in CD4 T-cells positive for 

the inhibitory marker TIGIT in patients with chronic lymphocytic leukemia (CLL). In spite 

of the improved secretion of pro-inflammatory cytokines, TIGIT expression on CD4 T-cells 

was also associated with more advanced disease, and TIGIT blockade hindered tumor cell 

viability in vitro, despite also decreasing IFNγ production (112).

Mouse tumor models have been utilized to better evaluate the impact and relevance of CD4 

T-cells and CD4 T-cell exhaustion for antitumor immunity. Adoptive transfer of melanoma­

specific CD4 T-cells into a RAG1 knockout recipient resulted in tumor regression. However, 

a subset of mice presented with tumor relapse. CD4 T-cells taken from the recurrent tumors 

expressed fewer cytokines, increased levels of co-inhibitory receptors (113), and were 

unable to induce tumor regression when transplanted into a secondary tumor-bearing host, 

suggesting the emergence of response-limiting exhaustion (114). Meanwhile, combination 

therapy with anti-PD-L1 and anti-LAG3 decreased checkpoint expression, increased CD4 

effector functions, and resulted in durable tumor control (113,114). The lack of CD8 T-cells 

in this model indicates a significant role for CD4 T-cell exhaustion in facilitating tumor 

escape. Furthermore, these data suggest that checkpoint blockade strategies aimed at CD4 

T-cells could very well improve tumor control.

Tumor models have likewise been utilized to shed light on important considerations for CD4 

T-cell exhaustion, including the relative frequency of exhaustion within the various CD4 

subsets. For instance, examining the directly cytotoxic CD4 T-cell subset, we return to an 

earlier mentioned study in which tumor cells overexpressing CIITA were generated to permit 

CD4 recognition of class II MHC-expressing tumors (18). Despite increased cytotoxic 

CD4 T-cell-mediated tumor control of these tumors, outgrowth eventually occurred, with 

associated upregulation of co-inhibitory markers on tumor-infiltrating CD4 T-cells. This 

expansion was reversed with anti-CTLA4 treatment, highlighting the role of CD4 T-cell 

exhaustion in tumor progression, as well as the capacity for cytotoxic CD4 T-cells, 

specifically, to undergo an exhaustion program (18).

Interestingly, exhaustion-indicative expression of immune checkpoints has also been 

observed on the Treg subset of CD4 T-cells in the tumors of patients with glioblastoma 

multiforme (GBM) (115) and hepatocellular carcinoma (HCC) (116). This suggests that 

exhaustion amongst CD4 T-cells may not be limited solely to effector CD4 T-cells. 

PD1-expressing Tregs in patients with GBM demonstrate enrichment of exhaustion-related 

genes and decreased suppressive capacities (115), indicating that suppressive functions 
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may be exhaustion-susceptible, as well. Given the substantial role Tregs play limiting 

cellular immunity in GBM (and other cancers) (117,118), selective strategies for reversing 

exhaustion in cytotoxic and Th1-type CD4 T-cells while maintaining or enhancing it in Tregs 

may represent challenging but worthwhile future directions. Accordingly, understanding 

whether exhaustion-inducing mechanisms are the same in each of these CD4 subsets 

becomes an important endeavor.

In addition to exhaustion, anergy (119,120) and senescence (121) have been recognized 

as modes of T-cell dysfunction that negatively influence antitumor immunity (122,123). 

While these states overlap with regard to various functional and/or phenotypic elements, 

the mechanisms eliciting the phenotypes are distinct. In contrast to the relatively insidious 

development of T-cell exhaustion following continuous antigen stimulation, for instance, 

T-cell senescence is associated with cell-cycle arrest due to shortening of telomeric 

ends or danger signals, such as oxidative stress (124,125). Likewise, anergy develops at 

priming, subsequent to excessive stimulation of the TCR without proper co-stimulatory 

signals. While inhibitory receptors such as PD1, CTLA4, TIM3, and LAG3 are more 

commonly associated with T-cell exhaustion, other markers, such as CD57 and killer 

cell lectin-like receptor subfamily G member 1 (KLRG1), are more commonly associated 

with senescence (125). Unlike senescenT-cells, however, progenitor exhausted T-cells are 

capable of responding to checkpoint blockade (21), allowing restoration of function. Further 

explorations will be required to further delineate these hypo- or un-responsive states and 

unravel the relative contributions that each of these modes of CD4 dysfunction makes to 

hindering antitumor immunity.

Ultimately, the data reviewed above begin to establish CD4 T-cell exhaustion as a unique 

differentiation state impacting antitumor immunity, paralleling exhaustion in CD8 T-cells. 

Further comparisons, including epigenetic and metabolic profiles between exhausted and 

non-exhausted CD4 T-cell states, will be essential. These experiments will increase our 

understanding of the complex immune responses generated to cancer and persistent 

infections and could provide novel therapeutic targets. Additional insights should be 

gathered by evaluating other pathologies where CD4 exhaustion has been identified. In 

addition to cancer and chronic infections, these can include transplantation and autoimmune 

diseases.

Salient Studies in Transplantation and Autoimmune Diseases:

Studies into transplantation and autoimmune diseases can help shed light on the possibility 

of modulating CD4 T-cell exhaustion as a therapeutic strategy. In contrast to cancer 

and chronic infections, CD4 T-cells in transplantation and autoimmunity are a source of 

undesirable activity and collateral host tissue damage. In the case of hematopoietic stem 

cell (HSC) and solid organ transplantation, CD4 T-cells have been demonstrated to play 

a significant role in allograft rejection (126,127) by providing help to the two major cell 

subsets responsible for tissue damage: cytotoxic donor-specific CD8 T-cells and B cells 

(128). Therefore, inducing specific CD4 T-cell tolerance (129-131) or exhaustion could 

potentially mitigate the need for systemic immunosuppression by selectively restraining 
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graft-specific effector cells while leaving the remainder of the immune system capable of 

responding to foreign antigens, reducing the risk of infections and malignancy.

Upregulation of co-inhibitory molecules on CD4 T-cells is observed following HSC 

(132,133) and solid organ transplantation (134). Transgenic overexpression of TIM3 on 

CD4 T-cells resulted in decreased pro-inflammatory cytokine production and prevented 

immune-mediated graft pathology (135), indicating a direct role for TIM3 on CD4 T-cells 

in the prevention of rejection. Mechanistically, loss of IFN regulatory factor 4 (IRF4) or 

Fucosyltransferase 7 (Fut7) in CD4 T-cells induced graft tolerance through the establishment 

of exhaustion in these cells. Graft rejection could be initiated in the early phases after 

transplant upon treatment with monoclonal antibodies interfering with the PD1 – PD-L1 

pathway (136,137). However, irreversible dysfunction was established in IRF4 knock-out 

(KO) CD4 T-cells if anti-PD1 treatment was delayed until 30 days post-transplant (136).

Much like transplantation, the management of autoimmune diseases frequently involves 

systemic immunosuppression, and the role of CD4 T-cells in autoimmune pathology has 

long been recognized (138,139). Conversely, a negative correlation between CD4 inhibitory 

receptor expression and disease severity has been observed in a rheumatoid arthritis (RA) 

population (140), although this has not been a consistent finding (141). Insights into the role 

of CD4 T-cell exhaustion and its influence on disease severity in autoimmunity comes from 

mechanistic studies evaluating Nuclear Receptor Subfamily 4 Group A Member 1 (NR4A1), 

Nuclear Factor Interleukin 3 Regulation (NFIL3), and human leukocyte antigen B (HLA-B)­

associated transcript 3 (Bat3). Upregulation of NR4A1 and NFIL3 and downregulation of 

Bat3 increased expression of exhaustion markers on CD4 T-cells and decreased cytokine 

production and disease severity (142-144). Additionally, persistent stimulation of CD4 T­

cells with endogenous peptides resulted in loss of cytokine production and proliferation, 

upregulation of inhibitory markers, and delayed onset of autoimmune diabetes (145).

CONCLUSION AND FUTURE DIRECTIONS

Compared to CD8 T-cell exhaustion, the impact of CD4 T-cell exhaustion in cancer 

and other disease states has remained relatively underappreciated. Current studies have 

provided mostly phenotypic data, and investigations into additional criteria established 

for CD8 T-cell exhaustion, such as metabolic profiles and epigenetic landscapes, will be 

required to determine if CD4 exhaustion likewise comprises a distinct and progressing 

T-cell differentiation state. Our current mechanistic understanding of factors involved in 

CD4 T-cell exhaustion is summarized in Figure 2. Further evaluation of CD4 T-cell-specific 

factors will be essential to increase our understanding of the mechanistic derivations of 

exhaustion in this population. Analysis of factors associated with CD4 T-cell exhaustion 

in other pathologies should be extended into tumor models to evaluate similarities and 

differences in mechanistic determinants. It remains to be seen whether the processes 

underlying CD4 T-cell exhaustion are similar across different disease pathologies and CD4 

subsets, or whether different convergent transcriptional programs happen to result in the 

same terminally differentiated fate. Furthermore, in depth assessment of the potentially 

differential susceptibility of various CD4 T-cell subsets to exhaustion will be required to 

increase our understanding of its consequences, as well as the relative contribution of 
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each CD4 T-cell subset to antitumor immunity. Finally, examination of the dynamics of 

the initiation and progression of CD4 T-cell exhaustion and assessment of the role of 

tumor cells and the TME in the process will be invaluable to understanding parallels and 

differences between CD4 and CD8 T-cell exhaustion. Crystallizing these insights will be 

vital to increase our understanding of CD4 T-cell exhaustion and its therapeutic implications.
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Figure 1: Overview of CD4 T-cell functions.
CD4 T-cells are most well known for their T helper cell functions (displayed on the right). 

Through recognition of the T-cell receptor (TCR) of the peptide-major histocompatitibility 

(MHC) complex, CD4 T-cells mediate increased maturation and activation of dendritic 

cells (DC). This process allows augmented CD8 T-cell effectors upon interaction with 

the activated DC. Furthermore, CD4 T-cells increase B cell maturation, antibody class 

switching, and affinity maturation, and enhance phagocytosis within macrophages (Mϕ). 

Aside from helper functions, CD4 T-cell possess both direct and indirect tumor cytotoxicity 

capacities (displayed on the left). Direct cytotoxicity was demonstrated by cytotoxic CD4 

T expressing Class I-restricted T-cell-associated molecule (CRTAM). Indirect cytotoxicity 

could also be guided by CD4 T-cells through interaction with antigen presenting cells 

(APCs) or natural killer cells.
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Figure 2: Consequences of CD4 T-cell exhaustion on CD4 T helper functions.
While the details of CD4 T-cell exhaustion remain to be deciphered, negative effects on 

proliferation, cytokine production, B cell help, and CD8 effector functions have been 

reported. Additionally, CD4 T-cells with reduced effector functions upregulate immune­

regulatory proteins, such as T-cell immunoglobulin and mucin domain-3 (TIM3) and 

programmed cell death protein 1 (PD1), paralleling phenotypes observed in exhausted CD8 

T-cells. Whether CD4 T-cell exhaustion negatively impacts macrophage activation and direct 

tumor cytotoxicity remains to be determined. Further research is required to determine 

whether loss of antigen independent homeostatic proliferation and alterations in epigenetic 

and metabolic profiles are features of exhausted CD4 T-cells, similar to exhausted CD8 

T-cells. Abbreviations: Bat3: human leukocyte antigen B (HLA-B)-associated transcript 

3; CREM: CAMP Responsive Element Modulator; Fut7: Fucosyltransferase 7; IRF4: 

Interferon Regulatory Factor 4; Klf4: Krüppel-like factor 4; MHC: major histocompatibility 

complex; NFAT: nuclear factor of activated T-cells; NFIL3: Nuclear Factor, Interleukin 3 

Regulated; NR4A1: Nuclear Receptor Subfamily 4 Group A Member 1; PRDM1: PR/SET 

domain 1 (encodes Blimp1); PTPN22: protein tyrosine phosphatase, non-receptor type 22; 

TCR: T-cell receptor; Zbtb7b: Zinc Finger And BTB Domain Containing 7B (encodes 

ThPOK).
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Table 1:

Overview of CD4 populations and their contributions to tumor immunity. Tbet: T-box expressed in T-cells; 

IFNγ: interferon gamma; GATA3:GATA binding protein 3; IL: interleukin; RORγt: retinoic-acid-receptor­

related orphan nuclear receptor gamma; FoxP3: Forkhead Box P3; TGFβ: transforming growth factor beta; 

Runx3: RUNX Family Transcription Factor 3.

T-cell
subset

Master
regulator

Cytokine Functions within the tumor

Th1 Tbet IFNγ • Activate macrophages to phagocytose

• Promote recruitment of antigen presenting cells

• Enhance CD8 effector function

• Inhibit angiogenesis

Th2 GATA3 IL4, IL5, IL13 • Recruit eosinophils

• Inhibit antigen processing by dendritic cells

Th17 RORγt IL17 • Promote angiogenesis

• Recruit neutrophils

Regulatory T-cell FoxP3 IL10, TGFβ • Decrease effector functions of tumor-infiltrating T-cells

Cytotoxic CD4 T-cells Runx3 Perforin, Granzymes • Direct tumor cytotoxicity
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