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Abstract

Goal: Eosinophilic esophagitis (EoE) is an allergic inflammatory condition characterized by 

eosinophil accumulation in the esophageal mucosa. EoE diagnosis includes a manual assessment 

of eosinophil levels in mucosal biopsies–a time-consuming, laborious task that is difficult to 
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standardize. One of the main challenges in automating this process, like many other biopsy-based 

diagnostics, is detecting features that are small relative to the size of the biopsy.

Results: In this work, we utilized hematoxylin- and eosin-stained slides from esophageal 

biopsies from patients with active EoE and control subjects to develop a platform based on a deep 

convolutional neural network (DCNN) that can classify esophageal biopsies with an accuracy of 

85%, sensitivity of 82.5%, and specificity of 87%. Moreover, by combining several downscaling 

and cropping strategies, we show that some of the features contributing to the correct classification 

are global rather than specific, local features.

Conclusions: We report the ability of artificial intelligence to identify EoE using computer 

vision analysis of esophageal biopsy slides. Further, the DCNN features associated with EoE are 

based on not only local eosinophils but also global histologic changes. Our approach can be used 

for other conditions that rely on biopsy-based histologic diagnostics.

Keywords

Decision support system; deep convolutional network; digital pathology; eosinophilic esophagitis; 
small features detection.

I. INTRODUCTION

Eosinophilic esophagitis (EoE) is a recently recognized chronic food allergic disease 

associated with esophageal specific inflammation characterized by high levels of eosinophils 

[1]. An allergic etiology is strongly supported by the efficacy of food elimination diets, 

the co-occurrence of EoE with other allergic diseases (e.g., asthma and atopic dermatitis), 

animal models demonstrating that experimental EoE can be induced by allergen exposure, 

and the necessity of allergic mediators of inflammation, such as Interleukin 5 and Interleukin 

13, on the basis of animal models and clinical studies [1], [2]. Disease pathogenesis is driven 

by food hypersensitivity and allergic inflammation and multiple genetic and environmental 

factors [3]. Although a rare disease with a prevalence of approximately 1:2000 individuals, 

EoE is now the chief cause of chronic refractory dysphagia in adults and an emerging cause 

for vomiting, failure to thrive, and abdominal pain in children [1].

Histologically, EoE involves eosinophil-predominant inflammation of the esophageal 

mucosa. Microscopic examination of esophageal mucosal biopsies is a prerequisite for EoE 

diagnosis. During esophagogastroduodenoscopy (EGD), several esophageal biopsies are 

procured. These are then formalin-fixed, embedded, sectioned, and subjected to hematoxylin 

and eosin (H&E) staining [4], [5]. Subsequently, a pathologist examines the biopsies to 

determine the peak eosinophil count (PEC) [1], [2], [6] (Fig. 1). In addition to determining 

PEC, other histopathologic features of EoE include abnormalities of the structural cells, 

including epithelial cells and fibroblasts comprising the lamina propria. These features 

can be reliably assessed and quantified using the newly developed EoE Histology Scoring 

System (HSS) [7]. This system not only reports the presence or absence of the features but 

also takes into account grade (severity) and stage (extent). This scoring system is trainable 

across pathologists [7]. However, considerable disagreement can occur among certain 
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observers, at least based on PEC [8], and even for trained observers, scoring esophageal 

biopsies requires a non-trivial time input.

During the last few years, deep learning and, in particular, deep convolutional neural 

networks (DCNNs) have become a significant component of computer vision. Unlike 

classical machine learning techniques, deep learning involves the net performing 

representation learning, which allows the machine to be fed raw data and to discover the 

representations needed for detection or classification automatically [9]–[12]. In particular, 

deep learning is used for the classification and diagnosis of conditions in which the 

diagnosis is based on histomorphology, such as cancer [12], [13]. However, the application 

of deep learning to medical applications poses two unique challenges: first, DCNN training 

requires a large number of images (hundreds to millions); and second, the size of the 

relevant objects within the images is small [14], [15].

Here, we developed a method based on DCNN and downscaling of esophageal biopsy 

images at different frequencies. By comparing the results of each frequency, we aimed 

to deduce whether the scattering is global (i.e., features appear diffusely throughout the 

tissue image) or local (i.e., features appear in only specific and/or discrete locations within 

the image). We developed a classifier that distinguishes between images of H&E-stained 

esophageal biopsies from patients with active EoE and non-EoE control patients with high 

accuracy. We show that some of the features that underlie the correct classification of disease 

are global in nature.

II. MATERIALS AND METHODS

A. Dateset

This study was performed under the Cincinnati Children’s Hospital Medical Center 

(CCHMC) IRB protocol 2008–0090. Subjects undergoing endoscopy (EGD) for standard­

of-care purposes agreed to donate additional gastrointestinal tissue biopsies for research 

purposes and to have their clinical, histologic, and demographic information stored in a 

private research database. One distal esophageal biopsy per patient was placed in 10% 

formalin; the tissue was then processed and embedded in paraffin. Sections (4μm) were 

mounted on glass slides and subjected to H&E staining, in a manner identical to the 

preparation of standard-of-care biopsies. Biopsies were viewed at 80× magnification using 

the Olympus BX51 microscope, and one photograph of each biopsy was taken using the 

DP71 camera. Images were classified into categories on the basis of the clinical pathology 

report associated with the distal esophagus biopsies that were obtained for clinical analysis 

during the same endoscopy during which the biopsy for research purposes was procured. 

The clinical report is based on the observation of the pathologist that was available when 

the biopsy was taken. In the context of strictly counting eosinophils, the inter-observer and 

intra-observer correlation for reporting eosinophilic peak counts was reported to be more 

than 0.97 [16].

In this study, we used images defined as being derived from individuals with active EoE 

(biopsy with PEC ≥ 15 eosinophils [eos]/400× high-power field [hpf]) or from non-EoE 

control individuals (biopsy with PEC=0 eos/hpf); (n=210 non-EoE; n=210 active EoE). The 
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images were taken with digital microscopy at different sizes: 4140 × 3096 pixels, 2010 

× 1548 pixels, or 1360 × 1024 pixels. In the original dataset, the number of images per 

category and at each size was not equal. Therefore, to avoid training bias, the images were 

randomly selected to build non-biased training and validation sets. In this new dataset, the 

number of images in each category was equal (training set: n = 147 active EoE, n = 147 

non-EoE; validation set: n = 63 active EoE, n = 63 non-EoE). Additionally, the number of 

images per size was equal in each category (4140 × 3096: n = 29; 2010 × 1548: n = 126; 

1360 × 1024: n = 55).

B. Downscale Approaches and Training

Two methods were employed to address the challenge of training on high-size images 

containing small features: first, downscaling the original image with the potential of losing 

the information associated with small features [14]; and second, dividing the images into 

smaller patches and analyzing each of the patches [17]. Although the second approach 

solves the image size challenge, if the relevant small feature (e.g., a local increase in 

eosinophil density) appears in only a few patches, many patches that do not contain the 

small feature are still labeled as positive. As a result, the false-positive prediction might 

significantly bias the final diagnosis. Yet, this method indicates whether the scatter of the 

features is global or local by carefully comparing it to a random classifier.

In this work, we used ResNet50, a residual network 50 layers deep [18]. Residual networks 

utilize skip-connections to transfer the output of a particular layer as input not only to the 

consecutive layer but also to subsequent layers. This property’s main advantage is in coping 

with issues such as vanishing gradients and the degradation problem that are common when 

training very deep networks [19]. Four different DCNNs were trained, wherein each of the 

input image sizes was obtained differently: 1) cropping the full image to patches of 224 × 

224 pixels (the optimal size for ResNet50), 2) cropping the full image to patches of 448 × 

448 pixels and downscaling them to 224 × 224, 3) downscaling the original image to 224 × 

224 pixels size, and 4) downscaling the original image to 1000 × 1000 pixels size (Table 1). 

This size was chosen because it represents nearly the maximum size possible for training on 

Nvidia 1080TI with a minimal mini-batch size of four images. Downscaling was done using 

bicubic interpolation.

Patches were cropped with a sliding window of the desired input (224 × 224, 448 × 448 

pixels) with steps of half of the input size for overlay, covering the full original images (an 

example of a full image is shown in Fig. 2(A)). Subsequently, only patches that had more 

than 10% tissue comprising the patch were chosen for training and validation sets (Fig. 

2(B)). All valid patches were used for training. Table S1 in the supplementary materials 

summarizes the number of images and patches for the validation and training sets for 

the various approaches. During training, rotation, translation, and reflection augmentations 

were performed. We used imageDataAugmenter, a MATLAB-based method, to augment 

the training set images. Each image in the training set was duplicated and underwent a 

combination of rotation, translation, and reflection. Rotation angles were random in the 

range [0 90] degrees, reflection was either horizontally or vertically with 50% probability, 
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and x and y translation were drawn randomly in the range [0 100] pixels (image size of 1000 

× 1000) or [0 20] (image size of 448 × 448 or 224 × 224).

III. RESULTS

Table 1 summarizes the whole image classification results for the four downscale and/or 

crop approaches employed. First, we downscaled the original images to two different input 

image sizes. If the majority of the information that defines the condition were local, we 

would expect that downscaling, resulting in smooth local features, would have a significant 

effect on the classification quality. Surprisingly, we found that downscaling the original 

images to a size of 1000 × 1000 did not result in a random classification, but instead resulted 

in a true positive rate (TPR) of 74.6% and a true negative rate (TNR) of 96.8%. These results 

suggest that some of the information that defines the condition is local but is large enough 

to sustain the downscaling; alternatively, the information could be global. The bias towards 

negative classification (predicted prevalence [PP] <0.5), as indicated by the PP of 0.39, 

suggests that the information that determines the condition is more local, leading to more 

positive-labeled images having the same feature as negative-labeled images. Downscaling 

the full images even further to a size of 224 × 224 reduced both the TPR and the TNR. Yet, 

consistent with the hypothesis that the information that defines the positive images is more 

sensitive to downscaling, the PP remained similar, and the TPR was reduced more than the 

TNR (Δ9.5% and Δ7.9%, respectively). It is insightful to examine quantitively the effect of 

the downscaling factor (the ratio between the original image area and input images area) on 

accuracy (Supplementary Materials, section II, Fig S1A). As the downscaling factor is more 

than ~5, there is a decrease in accuracy.

Next, we classified the whole images according to the sub-classification of their patches. 

The predicted label assigned to the whole image (i.e., active EoE or non-EoE) resulted 

from the majority vote of the predicted labels of its patches (i.e., if ≥ 50% of patches were 

classified as active EoE, the whole image was classified as active EoE; if ≥ 50% of patches 

were classified as non-EoE, the whole image was classified as non-EoE). First, each image 

was parsed into patches, each with a size of 448 × 448 that were then each downscaled to 

a size of 224 × 224. In this case, no substantial classification bias resulted; the PP of 0.48 

and the TPR of 82.5% increased substantially compared to the two downscaling methods 

described previously (Table 1).

Using patches of 224 × 224 that did not undergo downscaling yielded a similar TPR of 

82.5%; however, the TNR decreased to 77.8%. Breaking down the effect of image size, 

which is proportional to the number of patches, reveals a monotonically increasing relation 

between the image size and accuracy. Yet, cropping into 448 × 448 patches and downscale to 

224 × 224 gives better or equal accuracy, for all image sizes, than cropping into 224 × 224 

patches (Supplementary Materials, section II, Fig. S1B). This is likely due to the inherent 

tradeoff between the local and global information contained within the images. If an image 

is larger, it contains more global information, but the downscaling that is required prior to its 

input into the net is larger; thus, small features are smoothed out to a greater degree. In our 

case, using a 448 × 448 patch with downscaling provided a better TNR of 87.3% than did 

using smaller patches of 224 × 224 without downscaling.

Czyzewski et al. Page 5

IEEE Open J Eng Med Biol. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 summarizes the effect of the initial patch size and downscaling factor in 

the receiver operating characteristic (ROC) space. Applying other aggregation methods, 

such as hierarchal clustering or different voting thresholds, resulted in similar results 

(Supplementary Materials, section III, Fig. S2). We also benchmarked the DCNN 

classification results using standard well-known 20 textural features [20], [21], and three 

baseline classification methods: linear discriminant analysis, logistic regression, and linear 

SVM (Supplementary Materials, section IV). The DCNN performs significantly better than 

these standard classification approaches (Supplementary Materials, section IV, Table S3). 

Additional performance measures such as recall, precision, and F1-score are summarized in 

Table S4 in the supplementary materials section V.

To further analyze the tradeoff between locality and downscale factor, we evaluated the 

classification performance of the patches themselves (Table 2). The results are consistent 

with the whole image majority vote classification. In particular, both the TNR of 79.7% and 

TPR of 77.0% of the 448 × 448 patch downscaled to 224 × 224 are higher than those of the 

non-scaled 224 × 224 patch. These results indicate that incorporating more information in 

a patch is more important than downscaling by a factor of two and supports the notion that 

global information drives the classification for EoE.

To determine the effect of locality on the classification, we compared the distribution of 

prediction probability for patches with a size of 224 × 224 that did not undergo downscaling 

in two cases. In the first, each patch was labeled with the same label as the original image 

from which it was derived. In the second, each patch was assigned a random label.

Figure 4 shows the distribution for each case. In the case in which the patch labels are true 

(Fig. 4(A), (B), the distribution is bi-modal. In the case in which the patch labels are random 

(Fig. 4(C), (D), most of the patches are ambiguous, and thus the distribution is unimodal 

around 0.5. These collective case findings suggest that most of the patches that are classified 

correctly are not ambiguous. This indicates that the local patch labeling carries information 

that is relevant for the majority of the patches.

IV. DISCUSSION AND CONCLUSION

One of the main challenges in digital pathology is that the features of the conditions are 

very small compared with the size of the sample. This feature-sample size disparity leads 

to an inherent tradeoff between the size of the analyzed image and the downscaling factor. 

In the case of small, local features, visualizing the image as smaller patches may impede 

the classification because most of the patches will not include the small, local features. 

However, if local features are the primary source of information about the condition, 

downscaling the whole image may smooth them out.

Herein, we used DCNN and different downscaling and/or cropping approaches to achieve 

~85% accuracy in distinguishing active EoE from non-EoE esophageal biopsies, despite the 

relatively small number of labeled images utilized for training (n = 147 active EoE and n 

= 147 non-EoE). Although labeling relied primarily on a local feature (PEC ≥ 15 eos/hpf), 

our results support that EoE is also associated with additional global histopathologic features 
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that are learned by the classifier. Figure 5 illustrates possible scatter patterns for features that 

contribute to disease diagnosis. Of note, the features could be clustered locally (e.g., a local 

increase in density of eosinophils), or they could be distributed uniformly throughout the 

tissue (e.g., morphology of structural cells comprising the tissue).

The fact that images that were cropped into patches but were downscaled by a factor 

of greater than 10 (in terms of the number of pixels) provided low TPR, suggests that 

the features associated with the condition were not big enough for the classification task. 

However, if the features were distributed only locally (e.g., Fig. 5(A)–(C)), many patches 

cropped from the whole image would not include the features, and thus the classification 

according to patches would fail. However, in this study of EoE, most of these cropped 

patches were labeled correctly. Moreover, the classification was better with 448 × 448 

patches downscaled to 224 × 224 than non-scaled 224 × 224 patches, suggesting presence of 

global features (Fig. 5(D)). Our results thus indicate that although the original labeling was 

based primarily on local features, additional global features are associated with EoE (Fig. 

5(D)). This global information allows a classification with minimal PP bias (PP 0.49) and 

with only a small number of images.

In this work, we used an approach in which the label is global - the entire slide is labeled 

according to the patient condition (e.g., whether a patient is active or not) - and the network 

is trained without local labeling. To improve the accuracy, semantic information can be 

incorporated to estimate the number of eosinophils directly [22]. Another approach is to 

score the images not only according to their PEC, but also to account for additional features 

such as basal zone hyperplasia and dilated intercellular spaces [7].

Our work highlights the importance of systematic analysis of the image size vs. downscaling 

tradeoff, particularly in digital pathology, for improving classification and gaining insight 

into the features’ spatial distribution underlying a condition. These findings present an 

initial artificial intelligence approach to diagnosing EoE using digital microscopy and have 

implications for analyzing other biopsy-based disease diagnoses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact Statement—

Deep convolutional neural network, together with a systematic downscaling and cropping 

approach, can classify esophageal biopsies with high accuracy and reveals a global 

nature of the histologic features of eosinophilic esophagitis. Our approach of systematic 

analysis of the image size versus downscaling tradeoff can be used to improve disease 

classification performance and insight gathering in digital pathology.
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FIGURE 1. 
(A) Example of a full-size hematoxylin and eosin (H&E)-stained esophageal biopsy slide 

from a patient with active eosinophilic esophagitis (EoE). The red square marks an example 

of an area containing eosinophils (bright pink cells with purple nuclei; several examples 

are indicated by black arrows in the inset). (B) Schematics of the platform. Images 

(magnification 80×) of research slides (from one esophageal research biopsy per patient) 

are labeled as EoE or non-EoE on the basis of a pathologist’s analysis of corresponding 

clinical slides associated with the same endoscopy during which the research biopsy was 

obtained. The full-size images are downscaled and/or cropped using various approaches to 

smaller images that are then used to train a deep convolutional neural network (DCNN). eos, 

eosinophils; hpf, high-power field; PEC, peak eosinophil count.
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FIGURE 2. 
Steps in processing esophageal biopsy images to produce patches. (A) A typical image 

of a hematoxylin and eosin (H&E) stained esophageal biopsy section obtained from an 

individual with active EoE. The image was taken at 80X magnification. (B) The same image 

after background removal with an illustration of tissue coverage criteria per patch size to 

meet the threshold for inclusion in training or validation sets. Box 1 (red): patch of 224 × 

224 pixels with less than 10% tissue coverage. Box 2 (yellow): patch of 224 × 224 pixels 

with greater than 10% tissue coverage. Box 3 (red): patch of 448 × 448 pixels with less than 

10% tissue coverage. Box 4 (yellow): patch of 448 × 448 pixels with greater than 10% tissue 

coverage.
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FIGURE 3. 
Classification results as a function of initial image size and downscaling factor in the 

receiver operating characteristic (ROC) space. For each of the four downscale and/or crop 

approaches utilized to analyze the validation cohort of images (n = 63 active EoE; n = 63 

non-EoE), the true positive rate (TPR) vs. (1 - the true negative rate [TNR]) with TPR and 

TNR expressed as proportions is graphed. Blue lines highlight accuracy measurements of 

50% and 85% expressed as proportions.
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FIGURE 4. 
Prediction ability of nonrandom (blue) and random (red) classifier. (A) 224 × 224: histogram 

of the number of patches derived from non-EoE images vs. the probability that they will 

be classified as active EoE by the nonrandom classifier. (B) 224 × 224: histogram of the 

number of patches derived from active EoE images vs. the probability that they will be 

classified as active EoE by the nonrandom classifier. (C) Random 224 × 224: histogram of 

the number of patches derived from non-EoE-labeled images vs. the probability that they 

will be classified as active EoE by the random classifier. (D) Random 224 × 224: histogram 

of the number of patches derived from active EoE-labeled images vs. the probability that 

they will be classified as active EoE by the random classifier.
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FIGURE 5. 
Schematic of various potential distributions of local patterns within an esophageal biopsy 

section. An esophageal biopsy image is shown; red ovals denote a local feature that 

contributes to disease diagnosis. (A) Local pattern confined to a specific place in the tissue. 

(B) Local pattern distributed at the edge of the tissue. (C) Local pattern restricted to only 

half of the tissue. (D) Global pattern spread all over the tissue.
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TABLE 1.

Whole Image Classification Results for Four Downscale and/or Crop Approaches. The Validation Cohort of 

Images (N = 63 Active EoE; N = 63 non-EoE) Was the Same for Each of the Classifiers. True Positive Rate 

(TPR; Number of Images Classified as Active EoE / Number of Active EoE Images X 100), True Negative 

Rate (TNR; Number of Images Classified as non-EoE / Number of non-EoE Images X 100), Accuracy 

(Number of Images Accurately Classified as Either Active EoE or non-EoE / Total Number of Images X 100), 

and Predicted Prevalence (Total Number of Images Classified as Active [i.e., True Positive + False Positive 

Number of Images] / Total Number of Images) for Each Method are Shown. DCNN, Deep Convolutional 

Neural Network. ACC, Accuracy

Original Image Final DCNN input image size Active EoE (TPR) Non-EoE (TNR) ACC Predicted Prevalence (PP)

Full Image 1000×1000 (Downscale) 74.6% 96.8% 85.7% 0.39

Full Image 224×224 (Downscale) 65.1% 88.9% 77.0% 0.38

Patch = 448×448 224×224 (Downscale) 82.5% 87.3% 84.9% 0.48

Patch = 224×224 224×224 82.5% 77.8% 80.2% 0.52
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TABLE 2.

Classification Results for Individual Patches. The Validation Cohort of Images (N = 63 Active EoE; N = 63 

non-EoE) Was Subjected to Cropping Into Patches With the Indicated Pixel Sizes and Downscaled When 

Indicated. True Positive Rate (TPR; Number of Patches Classified as Active EoE / Number of Active EoE 

Patches X 100), True Negative Rate (TNR; Number of Patches Classified as non-EoE / Number of non-EoE 

Patches X 100), Accuracy (Number of Patches Accurately Classified as Either Active EoE or non-EoE / Total 

Number of Patches X 100), and Predicted Prevalence (Total Number of Images Classified as Active [i.e., True 

Positive + False Positive Number of Images] / Total Number of Images) for Each Patch Size and Downscaling 

Method (If Applicable) are Shown. DCNN, Deep Convolutional Neural Network; TPR, True Positive Rate; 

TNR, True Negative Rate. ACC, Accuracy

Original Image Final DCNN input image size Active EoE (TPR) Non-EoE (TNR) ACC Predicted Prevalence (PP)

Patch = 448×448 224×224 (Downscale) 77.0% 79.7% 78.3% 0.49

Patch = 224×224 224×224 73.3% 75.2% 74.2% 0.49
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