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Abstract

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) 

imaging is the gold standard for non-invasive myocardial tissue characterization, but requires 

intravenous contrast agent administration. It is highly desired to develop a contrast-agent-free 

technology to replace LGE for faster and cheaper CMR scans.

Methods: A CMR Virtual Native Enhancement (VNE) imaging technology was developed using 

artificial intelligence. The deep learning model for generating VNE uses multiple streams of 

convolutional neural networks to exploit and enhance the existing signals in native T1-maps 

(pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, 

presenting them as LGE-equivalent images. The VNE generator was trained using generative 
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adversarial networks. This technology was first developed on CMR datasets from the multi-center 

Hypertrophic Cardiomyopathy Registry (HCMR), using HCM as an exemplar. The datasets were 

randomized into two independent groups for deep learning training and testing. The test data 

of VNE and LGE were scored and contoured by experienced human operators to assess image 

quality, visuospatial agreement and myocardial lesion burden quantification. Image quality was 

compared using nonparametric Wilcoxon test. Intra- and inter-observer agreement was analyzed 

using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were 

compared using linear regression and ICC.

Results: 1348 HCM patients provided 4093 triplets of matched T1-maps, cines, and LGE 

datasets. After randomization and data quality control, 2695 datasets were used for VNE method 

development, and 345 for independent testing. VNE had significantly better image quality than 

LGE, as assessed by 4 operators (n=345 datasets, p<0.001, Wilcoxon test). VNE revealed 

characteristic HCM lesions in high visuospatial agreement with LGE. In 121 patients (n=326 

datasets), VNE correlated with LGE in detecting and quantifying both hyper-intensity myocardial 

lesions (r=0.77–0.79, ICC=0.77–0.87; p<0.001) and intermediate-intensity lesions (r=0.70–0.76, 

ICC=0.82–0.85; p<0.001). The native CMR images (cine plus T1-map) required for VNE can be 

acquired within 15 minutes. Producing a VNE image takes less than one second.

Conclusions: VNE is a new CMR technology that resembles conventional LGE, without the 

need for contrast administration. VNE achieved high agreement with LGE in the distribution and 

quantification of lesions, with significantly better image quality.
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Introduction

Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging 

is well-validated for detecting focal myocardial lesions and fibrosis in a variety of 

cardiovascular diseases [1–5]. The presence and extent of LGE is independently associated 

with adverse outcomes, including in hypertrophic cardiomyopathy (HCM) [6–11]. However, 

LGE requires intravenous injection of a gadolinium-based contrast agent (GBCA), which 

is cautioned in patients with severe kidney failure and contraindicated in those with known 

GBCA allergy [12]. Eliminating the need for GBCA administration could significantly 

shorten scan times, reduce costs of associated consumables, shorten patient preparation time, 

and circumvent the need for physician presence.

Native (pre-contrast) CMR modalities are alternative means for tissue characterization 

without the need for GBCA. Cine imaging consists of a sequence of images at different 

cardiac phases to assess the cardiac structure and motion. Native T1-mapping estimates 

the T1 (proton spin-lattice) relaxation time of tissues on a pixel-by-pixel basis. Native 

T1-mapping exhibits sensitivity to a variety of cardiac diseases [13], including early 

myocardial changes in HCM [14–16]. Abnormal T1 signals correlate to areas of LGE and on 

histopathology in models of focal and diffuse fibrosis [17–19]. Native T1-mapping appears 
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the most promising GBCA-free technique to reveal intrinsic imaging signals associated 

with myocardial abnormalities seen in LGE. However, the clinical utility of T1-mapping 

has largely been hindered by a lack of standardized interpretation and post-processing, 

confounding factors and diagnostic specificity [13, 20].

We hypothesized that native T1-maps may be transformed into visually diagnostic images 

similar to LGE images. In this work, using novel artificial intelligence (AI) approaches, 

a Virtual Native Enhancement (VNE) imaging technology was developed, which exploits 

and enhances existing contrast and signals within the native T1-maps and cine frames, and 

displays them in a standardized presentation. The VNE imaging was then validated by 

comparing against matching LGE for image quality, visuospatial agreement, and myocardial 

lesion quantification. The approach was developed first in HCM, partly because it is an 

important indication for LGE assessment in its own right, but also because its features of 

regional heterogeneity and diverse tissue remodeling processes make it a good test case for a 

wide range of cardiac pathology.

Methods

The anonymized test data that support the findings of this study are available from the 

corresponding author upon reasonable request and subject to multicenter Hypertrophic 

Cardiomyopathy Registry (HCMR) committee approval.

Deep learning method for Virtual Native Enhancement

The proposed VNE technology uses two native components: native T1-mapping (including 

the native inversion recovery-weighted (IRW) images) and pre-contrast cine frames of a 

cardiac cycle. IRW images and T1-maps provide image contrast and signal changes in 

myocardial tissue properties. Cine frames provide additional wall motion information and 

more defined myocardial borders. These images were input into a deep learning generator to 

derive a VNE image (Figure 1B).

Neural Network Design.—The VNE generator has three parallel convolutional neural 

network streams to process cine frames, IRW images and T1-maps, respectively. Each 

stream has an encoder-decoder U-Net [21] architecture (Figure 1B). The encoder 

successively computes image features from fine to coarse, providing a multi-scale feature 

representation. The decoder combines the multi-scale features to produce final feature maps. 

The three streams of feature maps by U-Nets are concatenated and input into a further 

neural network block to fuse the information from multi-modalities and produce a final VNE 

image.

Neural Network Training.—The neural networks were trained using a modified 

conditional Generative Adversarial Network approach [22], which optimizes the VNE 

generator together with a “discriminator”. This VNE application focused on the 

enhancement of native CMR signals and presenting them as VNE that resembles LGE 

images. This was achieved by defining the objective of the generator to produce VNE 

images that match LGE in perceptual similarity – a higher deep learning feature comparison 

using a pre-trained neural network (VGG-net) [23] – and that are indistinguishable from 

Zhang et al. Page 3

Circulation. Author manuscript; available in PMC 2022 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LGE contrast. The objective of the “discriminator” is to distinguish between VNE and 

LGE images. The two neural networks were trained in an adversarial manner. This strategy 

resulted in a trained generator that translates the existing native CMR signals into LGE 

representation. For reproducibility, full deep learning details are provided in Expanded 

Methods in the Supplement. Once trained, generating a VNE image takes ~50 milliseconds 

on GPU, or 130 milliseconds on a modern CPU. The generated VNE images have the same 

spatial resolution as the T1-maps.

Materials for validation of the concept

CMR datasets from the large HCMR study [11] were used. This study has institutional 

review committee approval and ethics approval, and all patients have given written consent. 

The HCMR [11] scanning protocol included pre-contrast short-axis cine imaging (for 

assessing cardiac motion and structure) and native T1-mapping (quantitative pixel-wise 

maps of T1 relaxation time), followed by intravenous administration of 0.1–0.2 mmol/kg 

GBCA and LGE imaging at ~10 minutes post GBCA (Figure 1A). Each scan has typically 

three short-axis T1-maps, and whole-heart short-axis coverage for cine and LGE. Short-axis 

native T1-maps (ShMOLLI [24], protocol checked using a phantom approach [25]), cines 

(before any administration of GBCA) and LGE images [26] were collected. LGE images 

were acquired using a conventional and widely-available 2D breath-hold and segmented 

phase-sensitive inversion-recovery (PSIR) method [11]. The LGE PSIR images were used 

for developing the deep learning models because of its consistent image appearance due 

to less sensitivity to the inversion time (TI) setting. T1-maps, cines and LGE images were 

matched for slice orientation (slice plane cosine similarity >0.9) and position (slice location 

difference <4mm) using an automated pipeline written in Python. Additional manual 

quality control was performed to exclude cases with severe artefacts and slice mismatch 

due to patient movement (Figure 2). All T1-maps have consistent pixel spacing (distance 

between pixel centers) of approximately 1mm in the datasets. Cine and LGE images were 

interpolated to match the pixel spacing, image position and orientation to the T1-maps – 

therefore, a pixel-to-pixel match (see Figure I in the Supplement).

The CMR datasets were randomized into two independent groups for deep learning method 

development and testing (Figure 2). The development group was further divided into training 

(90%) and validation (10%) datasets. Deep learning models were blinded to the test group.

Qualitative and quantitative evaluation of VNE and LGE

Three clinical assessors trained in CMR and one CMR radiographer scored the image 

quality of VNE and LGE guided by a 5-point categorical scale: “uninterpretable”, “poor 

quality”, “acceptable quality”, “good quality” and “excellent quality” that is intuitive for 

human operators (Figure II in the Supplement, interface by IAP). Behind the interface, the 

score was recorded on a numerical scale between 0–100 for statistical analyses (see an 

example in Figure II F). The quality aspects considered included motion artefacts, noise, 

image contrast, and clarity of tissue borders. The images were randomly shuffled and the 

operators were blinded to whether the image was VNE or LGE.
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Semi-automated myocardial lesion quantification by VNE and LGE was performed as 

follows: Epicardial and endocardial LV contours were initialized automatically [27] and 

adjusted manually on all images by an experienced operator (EL, 10 years of experience 

in CMR image analysis) using MC-ROI (developed by SKP in Interactive Data Language 

v6.1). A remote reference region of interest (ROI) without LGE was added and lesion 

burden was calculated using adaptations of the Full Width at Half Maximum (FWHM) 

method [28]. Specifically, average signal intensities of remote myocardium ROI set the 

minimum values. Average signal intensities of the LV blood pool center ROIs (avoiding 

papillary muscles) set the maximum values, for consistency among cases with hyper­

intensity, intermediate-intensity signals or no lesions. FWHM thresholding at 50th percentile, 

despite superior reproducibility, has been reported to underestimate lesion burden in HCM 

[29]. Therefore, progressive thresholds at 25th and 12.5th percentiles were also used, referred 

to as full width at quarter maximum (FWQM) and eighth maximum (FWEM), respectively, 

to capture subtle, intermediate-intensity changes often seen in HCM [30]. Lesion burden was 

quantified for each patient as the sum of lesion areas divided by the total LV myocardial area 

in all available short-axis slices.

Statistical analysis

For image quality assessment, the test images were shuffled and scored blindly by all 

operators, with 20% random images scored repeatedly to calculate intra-observer variability, 

reported as standard deviation (SD) and intraclass correlation coefficients (ICC). The 

statistical significance of differences in VNE and LGE quality scores was analyzed using 

nonparametric Wilcoxon tests. Correlation between lesion burden quantification by VNE 

and LGE was assessed using linear regression coefficients and ICC. Bland-Altman analysis 

was performed to analyze any systematic differences between quantification by VNE and 

LGE. Statistical significance was defined as p<0.05.

Results

Study population

1348 patient CMR datasets met the selection criteria of having matched pre- and post­

contrast images (Figure 2), providing 4093 triplets of T1-maps, cines and LGE images 

from 28 multinational CMR sites. Quality control excluded post-contrast cines, T1-maps 

with severe artefacts, and mismatched slice locations in the triplets (Figure 2). After this, 

2695 triplets of images (from 1075 patients) were available for training of the deep learning 

methods, and 345 triplets (from 124 patients) for independent testing.

Image quality of VNE and LGE

On head-to-head comparisons, VNE provided significantly better image quality than LGE, 

as assessed by all 4 independent and blinded operators (p<0.001, Wilcoxon test) (Figure 

3A). Intra-observer variability for the four operators was SD = 5.9, 8.3, 6.9, 7.3, and 

ICC was 0.87, 0.88, 0.89, 0.87. Inter-observer variability was SD = 8.5±0.7 and ICC was 

0.83±0.03. For “uninterpretable” (Figure 3A, red clusters, n=19) or “poor” (blue, n=53) 

LGE cases, VNE improved the quality of all but one image (Figure 3A, dashed line), and 

was scored as acceptable or above for all but 4 images. Conventional LGE can be affected 
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by inaccurate TI selection and breathing artefacts due to patient fatigue at the last stage 

of long scanning sessions (Figure 3B, orange boxed). In contrast, VNE produced more 

consistent and better image quality (Figure 3B, green boxed). Additionally, VNE images 

have better-defined shapes and borders (Figure 3B, green boxed), likely inherited from cine 

images. Cases with “uninterpretable” LGE (5.5%, 19 slices out of 345) were excluded for 

lesion quantification assessment.

Comparison of myocardial lesion quantification between VNE and LGE

After exclusion of cases with “uninterpretable” LGE (Figure 3A, red clusters, n=19), lesion 

quantification was performed on 326 short-axis pairs of VNE and LGE images (from 

121 patients). VNE lesions were in high visuospatial agreement with LGE, as visually 

assessed by two CMR experts independently (examples in Figure 4A–F). The lesion regions 

defined by FWHM, FWQM and FWEM methods (i.e., thresholding at 50th, 25th, 12.5th 

percentiles) were displayed with three progressive colors to visualize hyper-intensity (red) 

and intermediate-intensity (yellow to light blue) abnormalities (Figure 4, bottom two rows). 

VNE revealed characteristic HCM lesions in hypertrophied segments and at the anterior 

and inferior RV insertion points (Figure 4). Origins of these VNE signals can be seen 

in corresponding native T1-maps (Figure 4, top row). Despite matched slice position and 

orientation by image metadata between T1-maps and LGE, some T1-maps and their derived 

VNE have slightly different image appearance than the corresponding LGE (Figure 4E, 

yellow arrows). This may be due to slight positional differences due to patient movement 

between acquisitions of the T1-maps and LGE, despite meticulous checks for such effects 

(Figure 2, and Figure IV in the Supplement).

On the full 121 test patients, lesion burdens by VNE correlated strongly with LGE in 

both hyper-intensity lesions (quantified by FWHM), and more subtle intermediate-intensity 

abnormalities (quantified by FWQM and FWEM). The linear correlation coefficient was 

R=0.77, 0.75, 0.72, and ICC was 0.77, 0.84, 0.83 for FWHM, FWQM, FWEM, respectively 

(all p<0.001; Figure 5A–C). Bland-Altman plots showed 5% to 8% average lower lesion 

burdens by VNE, with asymmetric 95% confidence intervals (upper bound of 11% to 17% 

and bottom bound −21% to −30%) (Figure 5A–C, bottom panels). These plots also revealed 

a perceivable skew, which may indicate enhanced signals in VNE for detecting subtle 

LGE lesions (Figure 5A–C, arrowed), pending future validation. Figure 4G provides an 

example of subtle lesions in this range, in which VNE showed clearer lesion signals than the 

corresponding LGE, which also detected the lesions, albeit more subtly.

To achieve comparable lesion quantification between VNE and LGE, adjusted threshold 

values (e.g., 35th, 20th, 10th percentiles) can be used for VNE, to match with LGE using 

50th, 25th, 12.5th percentiles, respectively, when determining hyper- to intermediate-intensity 

abnormalities. The results (Figure 5D–F) suggested that lesion quantification by VNE 

thresholding at the 35th percentile, for example, are directly comparable with LGE using 

the FWHM method (i.e., 50th percentile), making this version of VNE highly promising to 

replace LGE in HCM lesion assessment. On the full test set, LGE and threshold-adjusted 

VNE reported similar average values of hyper- to intermediate-intensity lesions (LGE: 9.8%, 

26.1%, 44.4%, versus VNE: 9.9%, 24.1%, 43.9%; Table I in the Supplement). VNE with 
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adjusted thresholds also highlights the signals of subtle abnormalities for easier visualization 

(Figure 5E and F, arrowed). There were no false-positive VNE cases, where good quality 

VNE had introduced lesions in patients with good quality negative LGE by the conventional 

contrast-enhanced method.

Discussion

In this work, an AI technology was presented that translates native T1-maps (together with 

cines) into the widely-recognized presentation of LGE, a format immediately ready for 

standard clinical interpretation. The AI deep learning is effectively acting as a “virtual 

contrast agent” that enhances the native CMR. In other words, it produces a “virtual 

LGE” image without the need for gadolinium. This work showed that: (1) virtual native 

enhancement (VNE) images had significantly better quality than LGE images; and (2) lesion 

burden quantification by VNE correlated well with LGE, both on a visuospatial (Figure 

4) and quantitative (Figure 5) basis. The VNE technology has the potential to change the 

current paradigm for CMR imaging, as it may allow significantly faster, lower-cost and 

contrast-free CMR scans, enabling frequent monitoring of myocardial tissue changes.

Advantages of VNE over LGE

Conventional LGE is dependent on intravenous administration of GBCA, and requires at 

least 10 minutes post GBCA to develop the contrast redistribution [31]. LGE image quality 

is dependent on appropriate adjustment of TI, although the PSIR technique is less sensitive 

to TI setting. In comparison, VNE requires no intravenous access or GBCA, is derived 

from native imaging, and can be repeated as required to confirm findings and ensure 

sufficient image quality, without concerns about contrast agent wash-out. VNE employs 

readily-available conventional cine and T1-mapping sequences, which can be completed 

within 15 minutes, limiting the likelihood of image artefacts due to patient fatigue. VNE 

showed significantly greater image quality and more consistent image contrast than LGE 

(Figure 3).

Lesion assessment by VNE and LGE

VNE showed strong agreement with LGE in myocardial lesion visuospatial distribution and 

quantification. The ICC of 0.77 to 0.87 and a 95% CI of ~20% for inter-method comparison 

appears to be excellent in view of the reported LGE intra-method variability of ICC at 0.88 

[29] and inter-laboratory inconsistencies of 10–15% [32]. Above the linear correlation trend, 

there is a perceivable skew of enhanced signals in VNE (Figure 5, arrowed). While much 

work remains to confirm the clinical utility of detecting subtle lesions (often also seen in 

LGE), this sensitivity appears to arise directly from features of native T1-mapping, in line 

with literature reporting sensitivity of T1 to early myocardial changes in HCM patients [14, 

15, 33].

Deep learning contrast enhancement mechanism

The concept of deep learning contrast enhancement emerged very recently with the 

advancement in AI methods. In CMR, although the term “synthetic” LGE (generated by 

deep learning) exists [34–36], they were designed for multi-modal image registration and not 
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to generate lesion signals. In brain MRI, “virtual gadolinium enhancement” [37, 38] aimed 

to reduce the contrast dose while predicting the full-dose image signals, but with notable 

degradation in quality and sensitivity, and with no application to image the heart.

CMR is inherently multi-modal, with each modality demonstrating unique sensitivities to 

certain pathophysiologies. Previous T1-mapping development suggested that pursuing exact 

reproduction of conventional modalities (such as LGE) may hinder the potential of the new 

technology to detect pathologies over standard methods [39, 40]. Therefore, VNE focused 

on enhancing existing native CMR signals. As a result, in addition to good agreement 

with LGE, the VNE technology also better displays the subtle lesions often seen in HCM 

patients.

Limitations and future work

The current VNE is trained on LGE PSIR images typically obtained >10 minutes post 

GBCA administration [11]. Separate training is required to predict other LGE pulse 

sequences and post-contrast images, for example, early gadolinium enhancement, first pass 

perfusion and extra-cellular volume fraction mapping. In collaboration with MR vendors, 

we plan to implement VNE as an inline sequence on the scanner to allow immediate VNE 

generation after cine and T1-map acquisitions. It can also be implemented for rapid offline 

analysis by third-party software vendors.

Individual imaging features may distinguish LGE from VNE and introduce observer bias 

in image quality assessment; reassuringly, there were no differences between operators 

who were aware of the study design (MKB, MS) and those who were not (CN, RM). 

The VNE-LGE agreement appeared to be higher with better image quality (Figure V in 

the Supplement); future work is needed to test the association between image quality and 

diagnostic accuracy. The mechanism(s) of how each pre-contrast component contributes to 

the VNE signals is to be investigated using deep learning visualization techniques [41, 42].

Before recommendation for wide clinical use of VNE, further work is planned to link VNE­

detected signals to patient outcomes. VNE may be expanded in future by adding more native 

modalities, such as T2-mapping or MR fingerprinting [43]. VNE variants developed on 

different cardiac disease datasets and native modalities can potentially differentiate between 

pathophysiologic changes, such as oedema, fibrosis and microvascular obstruction.

Clinical impact

T1-mapping interpretation.—Clinical translation of T1-mapping is hindered by non­

standardized image interpretation methods [44]. VNE has now addressed this challenge 

by translating T1-maps into the common language of LGE, whose interpretation is widely 

accepted and understood in routine clinical practice. Further, it provides a deep learning 

framework to enhance T1-maps with additional native CMR modalities, demonstrated in this 

work with pre-contrast cines.

HCM assessment.—The proposed VNE technology is of potentially high clinical impact 

to HCM patients, who often undergo serial CMRs to monitor disease progression. VNE 

can obviate repeated administration of GBCA and allow more frequent CMR follow-ups. 
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Subject to further validation by the planned HCMR study outcomes, the apparent VNE 

signals to subtle lesions (inherited from T1-mapping) may potentially lead to better 

HCM risk stratification and treatment, especially given new, potentially disease-modifying 

therapies for HCM on the horizon [45–48].

GBCA-free CMR.—By expanding the training material to a wider range of pathologies, 

It is envisaged that VNE could lead to a novel, GBCA-free CMR scanning protocol for 

myocardial tissue characterization, compatible with the standard clinical interpretation like 

for GBCA-based LGE. This could expand the capabilities of CMR to include patients 

in whom GBCAs are contraindicated, ultimately leading to increased patient benefit, 

satisfaction, and clinical throughput.

Cost-savings.—Currently, the majority of CMR scans for tissue characterization requires 

intravenous access, the use of GBCA, related consumables and patient preparation by 

trained staff. VNE is available immediately after native T1-mapping acquisition with no 

additional cost. Replacing LGE with VNE can significantly shorten the scan time to within 

15 minutes, allowing twice as many patients to benefit from CMR at the same infrastructure 

capacity. The clinical impact and potential cost savings of popularizing this new CMR 

technology could be substantial.

Conclusions

Virtual Native Enhancement (VNE) imaging is a new CMR technology that resembles 

conventional LGE, without the need for GBCA administration. VNE achieved a high 

agreement with LGE in the visuospatial distribution and quantification of lesion burden, 

with significantly better image quality. While currently validated in the HCM population, 

there is a clear pathway to extend the technology to a wider range of myocardial pathologies. 

VNE has enormous potential to significantly improve clinical practice, reduce scan time and 

costs, and expand the reach of CMR in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard Abbreviations and Acronyms:

AI Artificial Intelligence

CMR Cardiovascular Magnetic Resonance

FWEM Full Width at Eighth Maximum

FWHM Full Width at Half Maximum

FWQM Full Width at Quarter Maximum

GBCA Gadolinium-based Contrast Agent

HCM Hypertrophic Cardiomyopathy

HCMR Hypertrophic Cardiomyopathy Registry

ICC Intraclass Correlation Coefficients

IRW Inversion Recovery-Weighted

LGE Late Gadolinium Enhancement

PSIR Phase-Sensitive Inversion-Recovery

ROI Region of Interest

TI Inversion Time

VNE Virtual Native Enhancement
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Clinical Perspective

What is new?

• Virtual Native Enhancement (VNE) is a new deep learning-driven CMR 

technology that generates images closely resembling conventional LGE 

without the need for gadolinium-based contrast agent (GBCA); in other 

words, it serves as a “virtual contrast agent” and produces “virtual LGE” 

images.

• VNE images achieve high agreement with LGE in the visuospatial 

distribution and quantification of lesions, with significantly better image 

quality than LGE.

• VNE offers a new CMR tissue characterization technology that can 

significantly reduce scan time and obviate the need for contrast agent.

What are the clinical implications?

• For hypertrophic cardiomyopathy (HCM) patients, VNE can obviate repeated 

administration of GBCA in serial CMR scans for monitoring disease 

progression.

• While currently validated in HCM, there is a clear pathway to extend VNE to 

characterize a wider range of cardiac pathologies.

• The VNE technology has the potential to change the current paradigm for 

CMR imaging, as it may allow significantly faster, lower-cost and contrast­

free CMR scans, enabling frequent monitoring of myocardial tissue changes.
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Figure 1. Overview of the Virtual Native Enhancement (VNE) imaging technology.
(A) Simplified illustration of HCMR scan protocol which includes native (pre-contrast) 

cine, T1-mapping (including native inversion recovery-weighted images), and conventional 

post-contrast late gadolinium enhancement (LGE). (B) VNE generator. Native CMR images 

are input to three steams of encoder-decoder U-Nets to extract feature maps, followed by a 

further neural network block to fuse all feature maps and derive a VNE image. Once trained, 

producing a VNE image takes less than one second.

Zhang et al. Page 15

Circulation. Author manuscript; available in PMC 2022 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Flow of patient material selection for developing and testing the VNE technology.
*The excluded T1-maps (n=10) in testing materials are disclosed in Figure III in the 

Supplement. **Four of the 36 triplets were retrospectively excluded from analysis due to 

slice position mismatch and coil problems identified by consensus of two CMR experts; see 

Figure IV in the Supplement. These examples were not detected automatically using the 

pre-defined criteria in slice position matching, and were excluded after manual inspection.
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Figure 3. VNE and LGE image quality assessment on 346 test materials (124 patients).
(A) VNE provides significantly better image quality, assessed by four blinded operators and 

their average scores (all p<0.001). For cases with “uninterpretable” (red clusters) or “poor” 

(blue) LGE images, VNE provides superior imaging quality in all but one case (dashed line). 

(B) examples of image quality improvement by VNE, which has more consistent appearance 

and defined borders. Arrows point to the LGE artefacts.
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Figure 4. Examples to illustrate visuospatial agreement between VNE and conventional LGE.
T1 colormaps (top row) were adjusted individually to highlight the T1 signals corresponding 

to VNE signals. Bottom two rows visualize lesion regions by VNE and LGE using 

progressive thresholding (full width at half, a quarter, and eighth maximum, i.e., at 50th, 

25th, 12.5th percentiles) displayed with different colors. (A-F) High visuospatial agreement 

was observed between VNE and LGE. Yellow arrows point to slightly different right 

ventricle sizes in VNE and LGE, suggesting patient movement between acquisitions. (G) 

An example of VNE displaying subtle changes clearer than LGE.
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Figure 5. VNE correlated strongly with conventional LGE in quantifying hyper-intensity to 
intermediate-intensity lesions (left to right) in 121 test patients.
(A-C) use same thresholding methods FWHM, FWQM, FWEM (i.e. thresholding at 

50th, 25th, 12.5th percentiles, reflecting hyper-intensity to intermediate-intensity subtle 

lesions) for VNE and LGE. (D-F) use adjusted thresholding at 35th, 20th, 10th percentiles 

for VNE. Threshold values are illustrated on color bars. Linear regression equations, 

correlation coefficient R-values, and ICC are provided. Bland-Altman plots below each 
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panel demonstrate perceivable trends (arrowed) with associated clustering, suggesting 

enhanced signals in VNE for subtle lesions.
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