Skip to main content
. Author manuscript; available in PMC: 2021 Dec 2.
Published in final edited form as: IEEE Access. 2020 Sep 30;8:175244–175264. doi: 10.1109/ACCESS.2020.3019922
Algorithm 1 Epidemic Estimation with Stochastic SIR Model
Input:k,z1:k=[z1T,,zkT],N,D,β¯0,σβ2,γ¯0,σγ2,{x¯0(n),C¯0(n)}n=1NOutpu:{P(xkθk,z1:k),P(θkz1:k),s^kE,ı^kE,β^kE,γ^kE}k=1kINITIALIZATION1:k12:forθk=[βk,γk]TDdo3:P(θkz1:k1)N(βk;β¯0,σβ2)N(γk;γ¯0,σγ2)4:forn=1toNdo5:wkk1(n,θk)N16:x^kk1(n,θk)x¯0(n)7:C^kk1(n,θk)C¯0(n)8:endfor9:endfor10:fork=1tokdoUPDATE11:forθkDdo12:forn=1toNdo13:αkk1(n,θk)N(zk;h1(x^kk1(n,θk))),(R(x^kk1(n,θk))+HC^kk1(n,θk)HT)14:wkk(n,θk)αkk1(n,θk)wkk1(n,θk)n=1Nαkk1(n,θk)wkk1(n,θk)15:x^kk(n,θk)x^kk1(n,θk)+Kkk1(n,θk)[zkh1(x^kk1(n,θk))]16:C^kk(n,θk)C^kk1(n,θk)Kkk1(n,θk)HC^kk1(n,θk)17:endfor18:P(xkθk,z1:k)n=1Nwkk(n,θk)N(xk;x^kk(n,θk),C^kk(n,θk))19:P(θkz1:k)P(θkz1:k1)n=1Nαkk1(n,θk)wkk1(n,θk)θkDP(θkz1:k1)n=1Nαkk1(n,θk)wkk1(n,θk)20:endfor21:Computes^kE,ı^kE,β^kE,andγ^kEaccording to (37)(40)PREDICTION22:forθk+1Ddo23:P(θk+1z1:k)θkDP(θk+1θk)P(θkz1:k)24:n125:forθkDdo26:forn=1toNdo27:wk+1k(n,θk+1)=wk+1k(n,θk+1,θk)P(θk+1,θk)P(θkz1:k)P(θk+1z1:k)wkk(n,θk)28:x^k+1k(n,θk+1)x^k+1k(n,θk)(via moment matching)29:C^k+1k(n,θk+1)C^k+1k(n,θk)(via moment matching)30:nn+131:endfor32:endfor33:endforPRUNING34:forθk+1Ddo35:Sort in descending order theN×Dmixture components accordingto the weights{wk+1k(n,θk+1)}n=1N×D,and retain the firstNelements36:forn=1toNdo37:wk+1k(n,θk+1)wk+1k(n,θk+1)n=1Nwk+1k(n,θk+1)38:endfor39:endfor40:endfor