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Abstract

Background -—Carbohydrate responsive element binding protein (ChREBP) is a transcription 

factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption 

and genetic variants in the CHREBP locus have separately been linked to high-density 

lipoprotein cholesterol (HDL-C) and triglyceride (TG) concentrations. We hypothesized that SSB 

consumption would modify the association between genetic variants in the CHREBP locus and 

dyslipidemia.

Methods -—Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium (N=63,599) and the UK Biobank (UKB) (N=59,220) 

were used to quantify associations of SSB consumption, genetic variants, and their interaction 

on HDL-C and TG concentrations using linear regression models. A total of 1,606 single­

nucleotide polymorphisms (SNPs) within or near CHREBP were considered. SSB consumption 

was estimated from validated questionnaires and participants were grouped by their estimated 

intake.

Results -—In a meta-analysis, rs71556729 was significantly associated with higher HDL-C 

concentrations only among the highest SSB consumers (β, 2.12 [95% CI, 1.16–3.07] mg/dL per 

allele; P<0.0001), but not significantly among the lowest SSB consumers (p=0.81; pDiff<0.0001). 

Similar results were observed for two additional variants (rs35709627 and rs71556736). For 

TG, rs55673514 was positively associated with TG concentrations only among the highest SSB 

consumers (β, 0.06 [95% CI, 0.02–0.09] ln-mg/dL per allele, P=0.001), but not the lowest SSB 

consumers (p=0.84; pDiff=0.0005).

Conclusions -—Our results identified genetic variants in the CHREBP locus that may 

protect against SSB-associated reductions in HDL-C and other variants that may exacerbate 

SSB-associated increases in TG concentrations.

Clinical Trial Registration -—Some participating cohorts were registered at URL: 

https://www.clinicaltrials.gov/ with unique identifiers: NCT00005131 (Atherosclerosis Risk in 
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Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham 

Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis), and NCT00000479 

(Women’s Health Study: parent study of the Women’s Genome Health Study).

Keywords

sugars; genetics; carbohydrates; dyslipidemia; triglyceride; epidemiology; nutrition

Introduction

Low circulating high-density lipoprotein cholesterol (HDL-C) and elevated fasting 

triglyceride (TG) concentrations are positively associated with risk of type 2 diabetes (T2D) 

and cardiovascular disease (CVD).1–5 Both genetic and environmental factors, including 

diet, are important determinants of HDL-C and TG concentrations.5–7 Genetic determinants 

of HDL-C and TG concentrations have been identified in genome-wide association studies 

(GWAS),8–12 but the extent to which genetic variants interact with environmental exposures 

is unknown. It is plausible that unrecognized genetic variants or genetic effects may be 

suppressed or exacerbated by environmental factors, such as diet.

Carbohydrate Responsive Element Binding Protein (ChREBP) is a transcription factor 

that regulates glucose and lipid metabolism in response to sugar consumption, including 

sugar from sugar sweetened beverages (SSB).13,14 GWAS have consistently observed 

an association between single nucleotide polymorphisms (SNPs) in the CHREBP locus 

(also known as MLXIPL), and HDL-C and TG concentrations.8,9,15,16 In animal studies, 

hepatic ChREBP is robustly activated by dietary fructose, a major constituent of SSB, 

and potentiates hepatic lipogenesis and TG secretion.14,17–20 These findings are consistent 

with large population-based studies in which high SSB consumption has been associated 

with elevated fasting plasma TG and reduced HDL-C concentrations,21–24 and increased 

T2D25–27 and CVD21 risk. Thus, SNPs within the CHREBP locus present promising 

candidates for gene-SSB interactions on circulating HDL-C and TG concentrations.

These pieces of biological, epidemiological and genetic evidence suggest that SSB 

consumption may modify how genetic variants within the CHREBP locus influence plasma 

lipid concentrations in some individuals. Although reduction of SSB consumption is 

increasingly being encouraged globally,28 public health efforts to reduce SSB consumption 

have achieved limited success and SSB consumption remains a modifiable dietary exposure 

that contributes substantially to the burden of T2D and CVD worldwide.29,30 A better 

understanding of the mechanisms underlying the SSB-ChREBP-lipid relationship may 

reveal novel mechanisms that contribute to the pathogenesis of T2D and CVD risk. 

Understanding these mechanisms may provide alternative strategies and approaches to 

reduce metabolic disease that may complement or facilitate dietary interventions.

The present study aimed to examine whether SSB consumption may modify the association 

of genetic variants within the CHREBP locus on HDL-C and TG concentrations in 

aggregated data from cohorts who are part of the Cohorts for Heart and Aging Research in 

Genetic Epidemiology (CHARGE) consortium.31 Descriptions of the CHARGE cohorts are 
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included in the supplemental material, Table I. We further used data from the UK Biobank 

(UKB) to assess the reproducibility of these findings in an independent cohort.32

Methods

Methods are available in the Supplemental Material. The data that support the findings of 

this study are available from the corresponding author upon reasonable request. All study 

participants provided written informed consent, and approval for all study protocols was 

granted by local institutional review boards and/or oversight committees.

Results

General characteristics and mean dietary intakes for the eleven CHARGE cohorts are shown 

in Table 1. Replication of previous findings on associations of SSB consumption and SNPs 

with lipid traits in the CHARGE cohorts are presented in the Supplemental Results in the 

Supplemental Material.

Difference Test Interactions between SSB Consumption and SNPs on HDL-C and TG in 
CHARGE Cohorts

We identified 55 SNPs that displayed a significant (pDiff <0.0001) or suggestive (pDiff 

<0.005) difference in estimated effect by category of SSB consumption on HDL-C 

concentrations in either of the two covariate models in the meta-analysis of the CHARGE 

cohorts. Among these 55 top SNPs, four distinct signals for HDL-C concentrations were 

observed when applying the difference test interaction. Two distinct SNPs in moderate LD 

(linkage disequilibrium) with one another [rs35709627 and rs71556729; R2 = 0.55 (Figure 

II in the Supplemental Material)] and in low LD with the top SNP identified in the overall 

analysis for HDL-C concentrations (R2<0.3) displayed a statistically significant difference 

in effect by category of SSB intake on HDL-C concentrations in fully adjusted models 

(Model 2; pDiff<0.0001) (Table 2 and Figures III and IV in the Supplemental Material). In 

model 2, each additional minor allele at rs35709627 [β (SE): 2.72 (0.72), p=0.0002] and 

rs71556729 [β (SE): 3.89 (1.04), p=0.0002] was associated with higher mean concentrations 

of HDL-C concentrations among the highest SSB consumers (> 1 serving/day), but was not 

associated with mean HDL-C concentrations among the lowest SSB consumers (<1 serving/

month; p>0.05). The effect sizes of these SNPs among the highest SSB consumers were 

consistent across all the cohorts. There was no heterogeneity (I2=0%) observed for the top 

4 distinct signals (statistically significant and suggestive) among the highest SSB consumers 

(>1 serving/day), which could be due to low power to detect heterogeneity given the smaller 

sample size available among the highest SSB consumers (maximum n=4,033).

No statistically significant differences in effect by category of SSB intake on TG 

concentrations were observed when applying the difference test (pDiff >0.0001 for all SNPs). 

One SNP (rs799157) in moderate LD with a top SNP identified in the overall analysis for 

TG concentrations (Table X in the Supplemental Material; R2 with rs42124=0.44) displayed 

a suggestive difference in effect by category of SSB intake on TG concentrations in 

minimally adjusted models (Model 1; pDiff =0.005) (Table 2). Each additional minor allele 

at rs799157 was associated with higher mean TG concentrations among the highest SSB 
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consumers (> 1 serving/day) [β (SE): 0.11 (0.03) ln-mg/dl, p=0.002], but this association 

was attenuated among the lowest SSB consumers [β (SE): 0.01 (0.01) ln-mg/dl, p=0.11] 

(Figure V in the Supplemental Material). The direction of the effect size of this SNP among 

the highest SSB consumers was consistent across all the cohorts in which these SNPs were 

available, and heterogeneity was low among the highest SSB consumers (I2 = 0%).

Cross-Product Interactions between SSB Consumption and SNPs on HDL-C and TG in 
CHARGE Cohorts

No statistically significant cross-product interactions between SNPs and SSB consumption 

on HDL-C or TG concentrations were observed (pinteraction>0.0001), while some tests were 

suggestive (pinteraction<0.005) (Table 2). Three SNPs displayed a suggestive interaction with 

SSB consumption on HDL-C concentrations in either covariate model, and the clumping 

identified two distinct signals (rs71556729 and rs79578725). One SNP (rs55673514) 

displayed a suggestive interaction with SSB on TG concentrations in Model 2. Forest plots 

for top distinct signals in SSBxSNP interaction analyses on lipid traits are presented in 

Figures VI and VII in the Supplemental Material.

Interactions between SSB Consumption and SNPs on Lipid Traits in the UKB and Meta­
Analysis with CHARGE Cohort Results

General characteristics and mean dietary intakes for the 59,220 UKB participants are 

shown in Table VI in the Supplemental Material. Two out of five top signals for HDL-C 

(rs35709627 and rs71556729) and one out of two top signals for TG in the CHARGE 

consortium were replicated among the UKB participants (Table VII in the Supplemental 

Material). In a meta-analysis of the top results from the CHARGE consortium and data from 

the UKB, three out of the five top SNPs for HDL-C and one out of the two top SNPs for 

TG concentrations displayed statistically significant interactions (Table 3). The top SNP for 

HDL-C concentrations was located at rs71556729 (Figure 1A). In fully adjusted models, 

the association between the minor allele at rs71556729 with HDL-C concentrations was 

observed only among the highest SSB consumers [β (95% CI): 2.12 (1.16, 3.07) mg/dl, 

p<0.0001], and not the lowest SSB consumers (p=0.81; pDiff <0.0001). Similarly, two SNPs 

in low to moderate LD with rs71556729 (TBL2-rs35709627: R2 with rs71556729=0.55; 

rs71556736: R2 with rs71556729=0.19) displayed similar statistically significant differences 

in effect by category of SSB intake (pDiff <0.0001). The SNP at rs55673514 displayed 

a suggestive interaction with TG concentrations in the CHARGE meta-analysis and was 

statistically significant after including data from the UKB (Figure 1B, pDiff <0.0005). The 

association of the minor allele at rs55673514 with TG concentrations was observed only 

among the highest SSB consumers [β (95% CI): 0.06 (0.02, 0.09) ln-mg/dl, p=0.001], and 

not the lowest SSB consumers (p=0.84). The SNP at rs55673514 is not in appreciable LD 

with any of the top SNPs in the overall analysis for TG concentrations (R2<0.1). A heatmap 

of LD among top SNPs in overall and interaction analyses is provided in Figure II in the 

Supplemental Material. Sensitivity analyses examining the influence of adjustment for other 

dietary factors and fasting hours among UKB participants yielded similar results for the top 

SNPs identified in the meta-analysis (Supplemental Results in the Supplemental Material).
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Discussion

In this study, including up to 86,241 participants for whom genetic and SSB consumption 

data were available, we identified novel interactions between genetic variants at the 

CHREBP locus and SSB consumption on HDL-C and TG concentrations. Our data 

suggest that the magnitude of the inverse association between SSB consumption 

and HDL-C concentrations is lower among individuals harboring genetic variants at 

rs71556729, rs35709627, and/or rs71556736 and the positive association between SSB 

consumption and TG concentrations is exacerbated among individuals harboring genetic 

variants at rs55673514. In the CHARGE cohorts, we also observed a consistent inverse 

association between SSB consumption on fasting HDL-C and positive association on TG 

concentrations. We also replicated previously observed main associations between SNPs in 

the CHREBP locus and HDL-C and TG concentrations.

Our study provides evidence that SSB consumption may modify the association of genetic 

variants in the CHREBP locus with HDL-C and TG concentrations. Participants with the 

minor allele at rs71556729, rs35709627, and/or rs71556736 and high SSB consumption 

had higher mean HDL-C concentrations than those with the major allele who also had 

high SSB consumption. This suggests that participants with the minor allele at rs71556729 

(MAF [minor allele frequency] = 0.05), rs35709627 (MAF = 0.05), and/or rs71556736 

(MAF = 0.13) may be protected against SSB-induced reductions in HDL-C concentrations. 

The region containing these SNPs is enriched for enhancer histone marks and these 

SNPs lie within putative regulatory motifs for transcription factors that could potentially 

regulate ChREBP expression and function in an SSB dependent manner.33 Similarly, 

rs55673514, which associates with TG only among the highest SSB consumers, lies within 

a region enriched for enhancer histone marks in several tissues, including liver.33 Given the 

strong inverse relationship between HDL-C and TG concentrations, additional investigation 

into how these SNPs may independently influence HDL-C or TG concentrations could 

provide new insights into the distinct mechanisms contributing to plasma HDL-C and TG 

concentrations. Additional discussion of main associations between SNPs and SSB on TG 

and HDL-C in the CHARGE cohorts is provided in the Supplemental Discussion in the 

Supplemental Material.

The rs71556729 interaction was a top signal when testing for interactions using the 

difference test and the cross-product interaction test on HDL-C concentrations in the 

CHARGE cohorts. However, when applying the cross-product interaction test, the 

interaction appeared less significant than the result from the difference test. This may be 

due to heterogeneity in the association between rs71556729 and HDL-C concentrations 

resulting from increased misclassification of SSB consumption among those reporting low 

(1-4 servings/month) to moderate (1-2 and 3-7 servings/week) SSB consumption (Figure 

IV in the Supplemental Material). These results suggest that the difference test may be a 

useful method for identifying gene-diet interactions in observational studies, and this could 

be due to a reduction in misclassification of SSB intake and the potential to detect non-linear 

interaction effects. However, we do not comprehensively compare the difference test to the 

cross-product interaction test. Future methodological studies comparing the usefulness of 
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these two methods with varying degrees of misclassification and types of exposures may be 

useful to inform future gene-diet interaction studies.

There is a limited body of evidence describing how genes implicated in various diseases may 

interact with SSB consumption to modify cardiometabolic health and noncommunicable 

disease risk.34 One large prospective cohort study among Swedish adults examined whether 

genetic risk for dyslipidemia (using a weighted genetic risk score) interacted with SSB 

consumption to influence plasma lipid concentrations, but no significant interactions were 

observed.35 Although genetic risk scores can be useful for translation, as previously shown 

for the interaction between SSB consumption and genetic risk for obesity,36 a weakness 

of genetic risk scores is that aggregation of multiple SNPs from across the genome does 

not allow inclusion of potential interacting SNPs that may not be associated with the 

outcome in overall analyses. In addition, interaction effects of SNPs may be mitigated by 

the null interaction effects of other SNPs included in the genetic risk score. The candidate 

gene approach in the current study allows for the potential to generate hypotheses of the 

mechanisms underlying the interaction that could be tested using animal and human models 

in future studies.

No previous studies have examined the interaction between SNPs in the CHREBP region 

and SSB consumption on lipid concentrations. We previously investigated how selected 

SNPs in the ChREBP-FGF21 pathway interacted with SSB consumption to influence fasting 

insulin and glucose measures among 34,748 adults from CHARGE cohorts, but we did not 

identify a significant cross-product interaction that was consistent among the discovery and 

replication phases of that study.37 In the current study, we applied a comprehensive approach 

that tested a wide range of SNPs in the CHREBP region that were not necessarily identified 

in GWAS. Given that our suggestive interaction results do not include any SNPs that were 

statistically significant in the overall SNP analyses, our data indicate that there may be 

additional SNPs not identified in GWAS contributing to the heritability of HDL-C and TG 

concentrations, but their contribution is influenced by SSB consumption. Similar to previous 

GWAS for body mass index that have identified new loci when adjusting for environmental 

factors38,39, we provide an additional example of how missing genetic heritability may 

be revealed when accounting for environmental factors, such as SSB consumption in the 

current study.

The strengths of our study include the large sample size attained through meta-analysis of 

multiple independent cohorts, the ability to standardize the analyses conducted in all cohorts 

through a collaborative approach, the use of an external cohort to validate findings, and 

the use of multiple methods to screen for potential interactions between SSB consumption 

and over 1,606 SNPs in the CHREBP region on HDL-C and TG concentrations. The 

analytic approach revealed novel SNPs that may contribute to unexplained heritability of 

HDL-C and TG concentrations. Limitations of this study include its observational design 

that constrain our ability to infer causality, the sample of European-descent adults that limits 

generalizability, the use of self-reported dietary data from food frequency questionnaires 

and 24-hour recall that may lead to misclassification of food and nutrient intakes, and the 

possibility of residual confounding, even after controlling for potential dietary and lifestyle 

factors that co-vary with SSB intake. Our focus on the comparison of the highest SSB 
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consumers to the lowest SSB consumers helps minimize this potential misclassification by 

focusing on extreme consumption patterns. Misclassification in the UKB is likely given 

that a snapshot of intake on a single day cannot provide a reliable estimate of usual SSB 

consumption. However, this misclassification is likely non-differential by genotype, which 

would only result in attenuation of our results. Additionally, while our definition of SSB 

did consider a range of SSB, it was not comprehensive. For example, it did not include 

commonly consumed beverages, such as sweetened tea or coffee, and we included several 

types of SSB in the same exposure definition (colas and fruit drinks). The blood collection 

among UKB participants was conducted after less than the recommended 8 hours of fasting 

prior to measurement of lipids. We adjusted for fasting hours to help account for this 

variability and conducted a sensitivity analysis to examine the top interactions observed by 

fasting hours. The LD-based method used to estimate the number of independent tests in 

the region may be overly conservative, which could potentially lead to inflation of type 

II error rate. Thus, we additionally present suggestive results that did not reach statistical 

significance. Given these weaknesses, results from this study should be used to inform future 

studies with larger samples sizes or detailed experimental studies. Minority populations are 

disproportionality burdened by dyslipidemia and have higher SSB intake,40,41 and thus more 

studies in these populations may help reduce health inequality and disparity.

In conclusion, our findings suggest that the minor alleles of three SNPs in the CHREBP 
region (rs71556729, rs35709627, and rs71556736) may be protective against SSB-induced 

low HDL-C concentrations and the minor allele at rs55673514 may exacerbate positive 

associations between SSB consumption and TG concentrations. Several of the top SNPs 

identified in the interaction analyses were not top SNPs identified in the overall analyses, 

providing evidence that some genetic associations may be revealed only when conditioned 

on environmental factors, such as the range of SSB consumption in the current study. As 

larger datasets with genetics, diet, and lipids data become available, additional suggestive 

interactions between SSB consumption and SNPs within the CHREBP region on HDL-C 

and TG concentrations observed here may warrant further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SNPs single nucleotide polymorphisms
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Figure 1. 
Associations between top candidate SNPs and HDL-C and TG concentrations stratified 

by category of SSB intake in a meta-analysis of the CHARGE cohorts and the UKB. A) 
In a random effects meta-analysis of the CHARGE cohorts and the UKB, the association 

of the minor allele at rs71556729 with HDL-C concentrations was observed only among 

the highest SSB consumers [β (95% CI): 2.12 (1.16, 3.07) mg/dl, p<0.0001], and not the 

lowest SSB consumers (p=0.81; pDiff<0.0001); B) In a random effects meta-analysis of 

the CHARGE cohorts and the UKB, the association of the minor allele at rs55673514 

with TG concentrations was observed only among the highest SSB consumers [β (95% 

CI): 0.06 (0.02, 0.09) ln-mg/dl, p=0.001], and not the lowest SSB consumers (p=0.84; 

pDiff<0.0005); Linear regression models represent associations between each additional 

effect allele and HDL-C (mg/dl) or TG (ln-mg/dl) concentrations among SSB consumption 

categories accounting for family, population structure, and/or field center (where applicable) 

and adjusting for age, sex, total energy intake, education, smoking, physical activity, alcohol 

intake, and body mass index. Intake categories are different for the highest SSB consumers 

(CHARGE: >1 serving/day; UKB: SSB consumers) and lowest SSB consumers (CHARGE: 

<1 serving/month; UKB: SSB non-consumers) in the two samples. CI, confidence interval; 

CHARGE, Cohorts for Heart and Aging Research in Genetic Epidemiology; HDL-C, high­

density lipoprotein cholesterol concentrations; I2, percentage of variance in a meta-analysis 

that is attributable to study heterogeneity; SSB, sugar-sweetened beverage consumption; TG, 

triglyceride concentrations; UKB, UK Biobank.
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