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Abstract
Current research supports the strong potential of structural MRI profiles, even within cross-sectional
designs, as a promising method for the discrimination of Alzheimer’s Disease (AD) from normal
controls and for the prediction of Mild Cognitive Impairment (MCI) progression and conversion to
AD. Findings suggest that measures of structural change in mesial and lateral temporal, cingulate,
parietal and midfrontal areas may facilitate the assessment of a treatment’s ability to halt the
progressive structural loss that accompanies clinical decline in MCI. The performance of prediction
is likely to continue to improve with the incorporation of measures from other neuroimaging
modalities, clinical assessments, and neuromedical biomarkers, as the regional profile of individuals
at risk for progression is refined.
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1. Introduction
As one of the most serious health issues facing the U.S. today, AD may afflict an estimated
13.2 million people in 2050, with current cost of caring for individuals with AD estimated at
$148 billion per year in the US [1,12]. Millions more individuals are suffering prodromal
cognitive impairment that may be related to AD [40]. To facilitate the development of therapies
aimed at preventing or delaying the progression of AD, research has focused on the search for
sensitive, non-invasive, in vivo biomarkers that would enable earlier, more accurate clinical
diagnosis and aid in monitoring disease progression and the effectiveness of therapeutic
intervention [26,35,36,82]. Neuroimaging measures, which are sensitive to AD-related
neurodegeneration early in the disease, hold significant promise as direct measures of disease-
modifying treatment effects [66,73,82]. Numerous neuroimaging approaches provide insight
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into the neuronal and synaptic loss of AD, including structural MRI, positron emission
tomography (PET), and functional MRI. Such measures may improve the sensitivity and
specificity of detecting AD at early stages and assist in identifying individuals at risk for
developing AD. Early identification would allow treatment to begin before significant
functional impairment or extensive irreversible neuronal damage occurs and may permit
shorter treatment trials by focusing on patients with high likelihood of imminent conversion.
Structural MRI measures in particular are non-invasive and relatively free from confounding
behavioral factors, and, as a result, these measures may be less variable in assessing treatment
effects relative to performance on commonly used cognitive tests [46,48]. This decrease in
variability may result in greater statistical power in clinical trials, enabling the use of smaller
sample sizes. Cross-sectional, structural MRI research has provided insight into the
neuroanatomical profiles of pre-clinical and early AD and has demonstrated significant value
in the prediction of conversion and disease progression.

2. Neuropathology of Alzheimer’s disease
Neuropathological studies have defined the basic neurodegenerative profile of AD through the
distribution of hallmark features, amyloid plaques and neurofibrillary tangles. While amyloid
deposits in the cerebral cortex show considerable inter-individual variation in density and
distribution in the early stages of AD, the characteristic distribution of neurofibrillary
pathology allows post-mortem differentiation of progressive stages of AD [9,10].
Neurofibrillary changes first appear in the transentorhinal area, then migrate into limbic areas
before spreading into neocortical association areas [9,10,66]. Clinical diagnosis of AD
typically accompanies the third stage, when modest neuropathology is observed in
hippocampal structures and severe neuropathology is observed in the transentorhinal and
entorhinal areas, affecting many of the projection neurons within these areas [9,10]. Structural
MRI has provided insight into identifying the profile of early stage pathogenesis in vivo.

3. Mild cognitive impairment
The study of individuals with Mild Cognitive Impairment (MCI), which has been recognized
as a potential prodromal stage of AD, may increase our ability to detect early changes. MCI
refers to a syndrome of impairment on one or more standardized tests of cognitive function of
insufficient severity to cause functional impairment [64,66,68,69]. When memory is one of the
cognitive domains involved, often referred to as “amnestic MCI,” individuals are at increased
risk of converting to AD, estimated at 10–15% per year compared with 1–2% per year for
cognitively intact elderly [68]. In addition, at autopsy the majority of amnestic MCI individuals
show pathological features of AD, supporting amnestic MCI as a transitional state between
healthy aging and AD [60,64,70]. MCI is a heterogeneous disorder, however, as some
individuals do not progress, others convert to non-AD dementia, and a few revert to normal
cognitive status [8]. Autopsy studies of amnestic MCI cases have confirmed this heterogeneity
with individual cases demonstrating non-AD pathology, such as hippocampal sclerosis or sub-
cortical ischemic vascular disease, despite similar cognitive characterization [49,70]. There is
significant potential for neuroimaging to provide a more comprehensive characterization of
AD-related structural changes in MCI individuals that may further define the prodromal stages
of AD.

4. Cross-sectional structural MRI in AD and MCI
As expected from the neuropathological and clinical profiles of AD, structural MRI has
supported significant atrophy in mesial temporal structures affected early in the
neurodegenerative process as well as in temporoparietal association areas [3,9,10,71,77,83,
84]. These studies in AD individuals have also shown that early atrophy in these regions is
followed by more extensive involvement of frontal and parietal regions, leaving primary and
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secondary sensory areas relatively spared until late in the disease [3,9,10,77,83,84].
Consequently, studies in early AD and in those at risk for AD, such as individuals with MCI,
have focused primarily on mesial temporal regions, demonstrating that hippocampal and
entorhinal cortex typically are smaller than those measured in controls [3,5,7,14,24,45,52,53,
58,76,88], predictive of future conversion to AD [18,19,21,44,47,58,59,79], and correlated
with memory impairment [25,37]. The definitive classification and specificity of these changes
to AD, particularly for the hippocampus, remain a challenge [85], and ongoing work continues
to examine additional regions and patterns of regional changes [42,54,56,75,76,84,87]. The
cingulate cortex, for example, has been shown to exhibit changes in atrisk individuals [41,
50] and in those known to eventually convert to AD [57], and recent work suggests that MCI
individuals with impairment in other cognitive domains in addition to memory (multiple-
domain MCI, or MMCI) may evidence thinner precuneus cortices relative to individuals with
impairments restricted to the memory domain (single domain MCI, or SMCI) [75]. An accurate
depiction of the earliest patterns of degenerative changes will require extensive studies of
individuals in both preclinical and prodromal stages of AD.

5. Neuroanatomical profiles
In this context, our recent work has emphasized the role of cross-sectional, structural MRI in
providing neuroanatomical profiles of pre-clinical and early AD and in the prediction of disease
progression [29,61]. Our studies are based on data publicly available from the multi-site
Alzheimer’s Disease Neuroimaging Initiative (ADNI), an important effort designed to
facilitate the scientific evaluation of neuroimaging and other biomarkers in the onset and
progression of MCI and AD [43,65,66]. Using methods developed within the NIH/NCRR
sponsored Morphometry Biomedical Informatics Research Network (mBIRN) and the ADNI
[30,31,33,39,43,51], we studied normal elderly participants and individuals with MCI and AD.
The MCI participants were impaired on one or more standardized tests of cognitive function,
with memory as one of the impaired domains (i.e., amnestic MCI); demonstrated no associated
functional impairment; and did not meet criteria for clinical diagnosis of dementia at the time
of these baseline scans [68]. In addition, during our morphometric characterization, we defined
neuropsychological subgroups of the MCI cohort, dividing the group into those with SMCI,
which may reflect the earliest stage of prodromal AD, and those with MMCI, which may
represent a later disease state.

6. Characterization of single-domain, amnestic MCI
We characterized the MCI (n = 175) and AD (n = 84) cohorts relative to the normal controls
(n = 139) using methods based on volumetric segmentation [30,31] and cortical surface
reconstruction and parcellation [15,16,20,32,33] techniques for each individual’s brain,
combining region of interest (ROI) and cortical surface vertex-wide approaches that allow
greater exploitation of information obtained from all brain areas [29]. The results demonstrated
robust performance of the methods and evidenced measurements sufficiently sensitive to reveal
the subtle morphometric characterization of SMCI and MMCI in this cross-sectional sample
of individuals who may be in a prodromal AD state (Fig. 1). While significant mesial temporal
atrophy characterized all groups, including SMCI, MMCI, and AD, smaller volumes and
thinner cortex were widespread and evident across the cortex even within the SMCI group.

The regions that were most sensitive to early changes were within temporal, rostral posterior
cingulate, inferior parietal, precuneus, and caudal midfrontal cortices (Fig. 1). Areas critical
for distinguishing SMCI from NC were in the mesial temporal regions as expected, including
bilateral hippocampus, bilateral entorhinal cortex, and left amygdala, similar to recent findings
[42,75,76,87], supporting these regions as the most sensitive to early AD-related changes.
Given previous work suggesting that mesial temporal asymmetries also may be modified by
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disease state, we also examined left/right asymmetries as potential measures indicative of risk
or disease progression. Building on findings in AD (e.g. [4,55,83]), several investigators [75,
78] have suggested that left hemisphere regions may be more affected than the right, changing
the natural asymmetries, in individuals at increased risk for AD, although reports are conflicting
[56]. Our findings supported natural right dominant asymmetries in the hippocampus and
entorhinal cortex of normal controls, as suggested in some previous work (e.g. [28,67]),
however, these asymmetries did not interact with diagnostic group providing no support for
structural asymmetries as an indication of disease state (Fig. 2).

Importantly, in the SMCI cohort, characterized with impairment in the memory domain only,
significant atrophy extended beyond the mesial temporal regions into posterior cingulate,
parietal, and frontal regions indicating that widespread damage occurs before standard clinical
measures can detect AD. The pattern of thinning in SMCI overlapped to some extent with
recent findings by Seo and colleagues [75], although our larger sample demonstrated greater
thinning in medial parietal, lateral middle temporal, and anterior cingulate regions and powered
significant differences from NC in numerous ROIs. These broad changes even within
individuals impaired only in the memory domain suggest that standard neuropsychological
measures may not be sufficiently sensitive, although novel approaches may be more
informative (see Jacobson et al., this issue). The pattern of results also broadly supported the
view that MMCI may be a later stage of prodromal AD than SMCI, although some of the
structural changes observed confirmed the potential heterogeneity of the sample. Relative to
SMCI, the presumably later stage of MMCI showed greater atrophy in the inferior and lateral
temporal lobe, and significantly thinner temporo-parietal association cortices, retrosplenial,
anterior cingulate, and other frontal regions; these significant findings were more widespread
relative to previous work [75], perhaps due to a larger MMCI sample. The AD and MMCI
groups were relatively similar, with greater differences in some parietal, retrosplenial and
frontal regions. These profiles may prove useful in defining a pattern of degeneration that will
enable discrimination of early stage AD from other disorders that also impact mesial temporal
regions.

7. Proposed trajectory based on cross-sectional data
In this cross-sectional sample, we further explored the potential “progression” from NC to AD
employing regression models assessing the linear and quadratic effects. As expected, the
earliest and most dramatic effects across groups were evident within the entorhinal cortex.
Rostral posterior cingulate was reduced, similarly across groups, followed by additional
temporal, parietal, and frontal regions. Of the later changing regions, the lateral middle
temporal gyrus may change most rapidly, followed by the posterior cingulate and inferior
parietal cortices, and then the rostral middle frontal region. The proposed sequence of change
supports neuropathological findings as degeneration begins in the mesial temporal area, moves
through rostral posterior cingulate and medial orbitofrontal cortices, followed by lateral
temporal, retrosplenial and inferior parietal regions, and, subsequently, mid frontal cortex. The
growing body of evidence thus suggests that there is significant, widespread cortical atrophy
in preclinical stages of AD, including areas outside the mesial temporal lobe. These cross-
sectional findings then lead to the question of whether changes in these regions are predictive
of conversion to AD.

8. Discrimination, classification, and prediction
Methods to facilitate the prediction of which MCI individuals are likely to convert to AD could
increase efficiency of clinical treatment trials by allowing them to focus on individuals with
high likelihood of imminent conversion, permitting shorter follow-up periods to demonstrate
efficacy, alongside a potential utility for individual clinical prognosis. While previous work
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has supported the predictive power of mesial temporal regions for future conversion to AD
[2,18,19,21,23,44,47,58,59,79], these more extensive morphometric findings in MCI may
increase the power to predict conversion to AD. Cross-sectional differences in hippocampal
and entorhinal volumes have been found to discriminate between MCI patients who convert
to AD and those who remain stable [21,47,58,79]. Crosssectional differences in other brain
areas, such as the amygdala [19] or the volume of the temporal horn of the lateral ventricle
[59], have also been shown to predict conversion to AD. However, these classifiers may have
limited specificity to AD [47].

In this light, combinations of regional structural measures may increase accuracy in predicting
imminent risk of conversion to AD. Our recent work [61] employed multivariate procedures
to capitalize on this morphometric signature associated with early AD in the prediction of
disease progression in MCI, potentially increasing both specificity and sensitivity in detecting
AD at early stages. Several studies have shown improvement in classification accuracy when
more than one measure is used, often combining hippocampus and an additional measure such
as the amygdala or posterior cingulate volumes [11,38,47,80]. Additional small studies have
approached the search for a predictive structural profile through voxel-based techniques, such
as density maps and voxel based morphometry [17,81]. In a study of MCI and control
individuals, a high-dimensional pattern classification technique resulted in a cross-validated
accuracy of 90% for discriminating 15 MCI from 15 matched controls [17]. The resulting
classification algorithm included areas within the lateral and inferior regions of the
hippocampus, and regions in bilateral superior, middle, and inferior temporal gyri, bilateral
orbitofrontal, left fusiform and posterior cingulate. Another study found that although the
voxel-based approach resulted in superior classification relative to hippocampal volume alone,
the combination of the two provided the best classification [81]. These studies demonstrate the
promise of employing patterns of structural information in classification, although the
reliability of these approaches in larger samples with individuals further from conversion to
AD should be examined. The potential for neuroimaging biomarkers to be predictive of
conversion risk based on a baseline assessment for individuals with MCI may prove to be more
advantageous.

This issue is presently under investigation by several groups using baseline data from the
ADNI. Fan and colleagues [27] analyzed baseline MRI data from 66 controls, 88 individuals
with MCI, and 56 individuals with AD from the ADNI. High dimensional pattern classification
methods were applied to voxel based morphometric measures from the healthy controls and
AD subjects to identify a pattern of atrophy characteristic of AD. The resulting pattern was
spatially complex, involving widespread brain regions. Importantly, individuals with MCI who
displayed this pattern showed greater 1-year clinical decline than those who did not [27].

9. Discrimination of controls and AD
We have recently extended these findings by applying multivariate procedures to a larger subset
of the ADNI cohort (the ADNI sample characterized earlier [29], which included 139 controls,
175 individuals with MCI, and 84 with AD) [61]. We were able to identify a pattern of regional
atrophy characteristic of AD and to demonstrate that the presence of this pattern in individuals
with MCI was predictive of 1-year clinical decline and structural volume loss [61]. With
stepwise linear discriminant analysis (LDA) using candidate input morphometric variables
from 58 ROIs, including lateral ventricles, mesial temporal structures, and cortical association
areas, we identified a pattern of regional atrophy that best discriminated AD from NC. The
regional pattern that best discriminated NC from AD subjects involved eight measures,
including left hippocampal volume and cortical thickness of right entorhinal, right middle
temporal, left bank of the superior temporal sulcus, right retrosplenial, right superior temporal,
left medial orbital frontal, and right lateral orbital frontal regions.
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10. Classification of MCI subgroups
This discriminant model was then applied to MCI data, producing an “atrophy score” for each
MCI individual reflecting the degree to which the individual’s MRI reflected the presence of
characteristic AD atrophy. On the basis of this score, each MCI participant was classified as
showing either the NC or AD “imaging phenotype” (Fig. 3). MCI participants with AD atrophy
showed an imaging pattern nearly identical to that of the AD group, with structural thinning
evident even in regions not contributing to the atrophy score. MCI subjects without the AD
atrophy pattern displayed less widespread atrophy, with a reduced level of atrophy in
hippocampal and middle temporal regions. MCI individuals with AD atrophy had higher
baseline CDR sum of boxes and lower verbal memory scores but equivalent MMSE scores at
baseline.

In essence, the pattern that best discriminated NC from AD, and that was predictive of decline
in MCI, involved the mesial temporal, lateral temporal, retrosplenial and orbitofrontal regions.
Mesial temporal structures have long been implicated early in AD, and atrophy in these
structures has been found to be predictive of disease progression [21,22,44,58,79]. Lateral
temporal areas, including inferior, middle, and superior temporal gyri, have been implicated
in the progression of AD [13,72,86,87], and we demonstrated in our morphometric study that
there is also evidence of such changes in SMCI [29]. These findings support a pattern of
preclinical cortical atrophy that may be predictive of a more rapid course of disease progression.

11. Prediction of clinical decline
Of significant interest, follow-up data were available for 160 of these MCI cases for a year
from baseline evaluation. Those expressing the baseline AD phenotype showed a significant
decline in MMSE score over one year, whereas those with the NC phenotype remained stable.
The atrophy score was the primary predictor for this decline, although additional power in
prediction came from Apolipoprotein E (APOE) ε4 allele status (a genetic risk factor for late-
onset AD [6]) and Logical Memory Delayed Recall scores. Interestingly, four MCI individuals
reverted to normal cognitive status (three showed the NC imaging phenotype) and 33 converted
to a diagnosis of AD (23 showed the AD phenotype). Those who declined in MMSE score
over one year were significantly more likely to show the AD phenotype, the conversion rate
among MCI subjects with the AD phenotype was 32% relative to only 11% for those with the
NC phenotype. This contrasts with a recent report that indicated that whole brain, ventricular,
entorhinal and hippocampal volumes did not provide additional predictive information of
clinical decline beyond that attainable with clinical measures [34], and shows the value of
examining individually specific brain regions beyond the mesial temporal lobe.

12. Summary
In summary, the literature supports the strong potential of structural MRI profiles, even within
cros-ssectional designs, as a promising method for the discrimination of AD from normal
controls and in the prediction of MCI progression and conversion to AD. Findings suggest that
measures of structural change in mesial and lateral temporal, cingulate, parietal and midfrontal
areas may facilitate the assessment of a treatment’s ability to halt the progressive structural
loss that accompanies clinical decline in MCI. Of course, there remains significant potential
to improve the performance of prediction. For example, using follow-up data from ADNI’s
large MCI cohort to identify structural patterns associated with MCI individuals who convert
to AD relative to those who do not [62] may better identify the structural changes that are
predictive of disease progression. In addition, the incorporation of measures from other
neuroimaging modalities, clinical assessments, and neuromedical biomarkers, as being
assessed in current work (e.g. [63,74]), may also help to refine the regional profile of individuals
at risk for progression.
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Fig. 1.
Group differences in average thickness (mm) for left hemisphere. Top row: SMCI vs. NC;
Bottom row: MMCI vs. NC. LEFT mesial views, RIGHT lateral views. The scale ranges from
<−0.3 (yellow) to > + 0.3 (cyan) mm thickness. Areas on the red-yellow spectrum indicate
regions of thinning with disease: approximate color scale in mm is −0.05 to −0.15 dark red,
−0.20 bright red, −0.25 orange, and < −0.30 yellow. Any differences smaller than +/− 0.05 mm
are gray.

Fennema-Notestine et al. Page 13

Behav Neurol. Author manuscript; available in PMC 2010 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Estimated marginal mean volume (mm3) for Hippocampus and Entorhinal Cortex thickness
(mm) by group accounting for sex and age effects. Error bars = std error of the mean. Solid
bar = Left Hemisphere; outlined open bar = Right Hemisphere.

Fennema-Notestine et al. Page 14

Behav Neurol. Author manuscript; available in PMC 2010 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Group differences in average thickness (mm) for left hemisphere. All comparisons are relative
to NC cohort. Top row: AD vs. NC; Middle: MCI subjects showing AD atrophy pattern vs.
NC; Bottom: MCI subjects without AD atrophy pattern vs. NC. LEFT mesial views, RIGHT
lateral views. The scale ranges from <−0.3 (yellow) to > + 0.3 (cyan) mm thickness. Areas on
the red-yellow spectrum indicate regions of thinning with disease.
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