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Abstract

Metabolites, the biochemical products of the cellular process, can be used to measure alterations 

in biochemical pathways related to the pathogenesis of Alzheimer’s disease (AD). However, 

the relationships between systemic abnormalities in metabolism and the pathogenesis of AD 

are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and 

their potential upstream genetic and transcriptional regulators through an integrative systems 

biology framework for analyzing genetic, transcriptomic, metabolomic and proteomic data in AD. 

Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and 

medium/long-chain acylcarnitines are most associated with AD clinical outcomes including 

episodic memory scores and disease severity. Integration of the gene expression data in both the 

blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer’s 

Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of 

acylcarnitines and amino acids in AD. Gene co-expresion network analysis of the AMP-AD 

brain RNA-seq data suggests the CPT1A and ABCA1 centered subnetworks are associated with 

neuronal system and immune response, respectively. Increased ABCA1 gene expression and 

adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines 

and amines in AD in the ADNI. In summary, our integrated analysis of large scale multi-omics 

data in AD systematically identifies novel metabolites and their potential regulators in AD and the 

findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD 

but also identifying novel molecular mechanisms of AD pathogenesis.

Keywords
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NARRATIVE

1.1. Contextual background

Alzheimer’s Disease (AD) is the most common type of dementia, presently affecting 

more than 6 million Americans, and the number of AD patients in the US is expected 

to increase dramatically each year [1, 2]. In the past several decades, many studies have 

been carried out to investigate CSF biomarkers (Tau and Abeta) [3, 4], neuroimaging 

measurements of hippocampal/cortical atrophy and amyloid-beta deposition in the brain 

[5], mitochondrial disturbance [6] and microglial dysfunction and immune response in 

AD [7] to better understand metabolic alterations in the early stage of AD. Metabolites, 

which are the biochemical products of cellular processes, can be used as a readout for 

alterations in biochemical pathways related to the pathogenesis of AD. Despite significant 

advances in the field, the metabolic basis of AD is, however, still poorly understood, and the 

relationships between systemic abnormalities in metabolism and AD pathogenesis remain 

elusive. Similarly, we are still seeking biological processes and genetic mechanisms that 

might underlie metabolic involvement in AD progression.

The concentration of specific types of metabolites in blood, cells, tissues, and cerebrospinal 

fluid are influenced by disease pathogenesis [8, 9]. Changes in metabolites have also 

been linked to genetic variations [10], immune response [11], microbiome [12], and 

lifestyle and diet [13]. Recent studies revealed that plasma phospholipids were associated 

with cognitive decline in mild cognitive impairment (MCI) and AD patients [14], and 

altered sphingomyelin and ceramide levels were observed in the early stage of AD 

[15]. Furthermore, while glucosylceramides, lysophosphatidylcholines, and unsaturated 

triacylglycerides levels are significantly associated with cerebrospinal fluid (CSF), Abeta 

level a monounsaturated sphingomyelins and ceramide levels are positively correlated with 

CSF total tau and brain atrophy [16, 17]. Acylcarnitines and several amines have been 

associated with brain volume changes and cognitive impairment in symptomatic stages of 

AD, while a specific set of sphingomyelins and phosphatidylcholines have been associated 

with CSF amyloid-beta level in preclinical AD stages [18]. A more recent study revealed 

that 26 metabolites, including sphingolipids, were highly correlated with hippocampal 

atrophy, AD-pathology related biomarkers as well as memory scores in the brain and blood 

in preclinical AD [19].

This study aims to address two critical questions in the metabolomic analysis of AD: 

(1) “Are metabolite co-expression networks and upstream genetic regulators predictive of 

disease progression and survival?”, (2) “What are the genetic mechanism and upstream 

regulators of the changes in acylcarnitines and amino acids during AD progression?”. 

We hypothesized specific metabolites are significantly associated with AD-related clinical 

outcomes, and key genetic drivers play a significant role in regulating metabolites in AD. 

Towards this end, we systematically interrogated metabolomic, genetic, transcriptomic, 

proteomic, and clinical data from the matched subjects in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the metabolomics data generated by the Alzheimer 

Disease Metabolomics Consortium to identify 1) specific metabolites highly associated with 
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AD pathology and cognitive phenotypes, 2) key biological processes underlying changes in 

metabolites in blood.

1.2. Study Conclusions, Future Directions and Limitations

Our results indicate that the balance between essential amino acids/BCAAs and short-chain 

acylcarnitine homeostasis is disturbed in AD, with medium/long-chain acylcarnitines levels 

being also significantly different in AD versus control but in the opposite direction. We 

identified two important genes (ABCA1 and CPT1A) and two proteins (Adiponectin and 

NGAL) involved in the regulation of acylcarnitines and amines. Increased ABCA1 gene 

expression and adiponectin protein (a regulator of ABCA1) corresponded to decreased 

short-chain acylcarnitines and amines in AD. In addition, CPT1A and ABCA1 genes 

were differently expressed in the brains of AD patients compared to controls, and their 

subnetworks were enriched for AD, aging, and neuronal system-related gene signatures/

pathways. The proposed framework opens up a new avenue for identifying not only 

dysregulated acylcarnitine and amine metabolisms in AD, but also genetic mechanisms 

and biological processes underlying these metabolic changes. We acknowledge that our 

proposed acylcarnitines/amines hypothesis and the more generic disease-related metabolic 

perturbation hypothesis derived from integrative analysis of genetic, transcriptomic, 

proteomic, and metabolomic data are based on a correlation analysis of observed variables. 

But the advanced network biology approach utilized here has the potential to identify key 

genes and cellular/molecular pathways that may drive disease-associated perturbations in 

acylcarnitines, amino acids, and other metabolites. As an example, based on observations 

for our large-scale integrative analyses, we posit that low levels of the short-chain 

acylcarnitines/amines and high levels of medium/long-chain acylcarnitines could be highly 

predictive diagnostic biomarkers for an early stage of AD. Moving forward, we anticipate 

that machine learning techniques such as random forest and support vector machine (SVM) 

can be employed to predict disease progression (especially progression towards early AD) 

using these metabolites [19–21].

However, existing metabolomic and other Omics data represent only a snapshot in time 

of molecular states of particular patient subpopulations; therefore, network models based 

on such data should be considered as the initial phase of fully-fledged models, which will 

be developed from matched, longitudinal multi-Omics data from relatively large patient 

populations using more advanced network biology approaches such as causal network 

inference. To further infer causal relationships among a large collection of dissimilar 

variables at different -omics layers, we can conduct Bayesian probabilistic causal network 

(BN) analysis [22–25] as we and others have previously done in AD [26–28] and other 

complex traits [29, 30]. Moreover, the static state BN analysis can be expanded to 

model dynamic and time-dependent regulation changes in a longitudinal or time-series 

dataset. For example, a dynamic BN (DBN) framework had been employed to model 

the dynamic causal network of blood gene expression in response to food intake over 

multiple time points, where intra-time-slice BN structure from a large data set generated 

at static states was combined with inter-time-slice structure inferred from the time series 

data [31]. The data-driven causal networks will provide a systems-wide context for 

understanding the mechanisms of known regulators and discovering novel key causal 
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regulators among mRNA, protein, and metabolite levels. As transcription regulates the 

abundance of metabolites [32, 33], metabolites also transfer the information back to the 

transcription network directly or indirectly interacting with a transcription factor [34–36].

There are several limitations in our study. First, even though ADNI is one of the best and 

largest cohorts with matched multi-omics and metabolomics data in AD, we have only 

a moderate number of metabolites, and we still do not have longitudinal metabolite data 

to monitor metabolite changes during the course of each individual’s disease progression. 

The other significant limitation is that the transcriptomic and metabolomic data were from 

the blood. The metabolites in the blood are circulating metabolites and gene expression 

represents blood cell transcriptomics, and thus, they represent substantially differrent 

compartments of the body. Such difference limits the findings from our analysis. Another 

limitation of this study is the lack of an independent cohort to replicate our key findings. 

Further studies are also needed to validate ABCA1 and CPT1A as potential upstream 

regulators of acylcarnitines in AD.

One of the major challenges in identifying AD-specific metabolites is that neurodegenerative 

diseases such as AD, Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) 

have comorbidity. Interestingly, some altered metabolic signatures are common in AD, 

PD, and ALS [37, 38]. ABC transporters carrying multiple substances through the blood-

brain barrier are expressed in all cell types in the brain and are significantly associated 

with several neurodegenerative diseases [38–40]. Medium/long-chain acylcarnitines, 

phosphatidylcholine, and lysophosphatidylcholine levels increase in the urine of PD patients 

[41–43] while plasma levels of acylcarnitine, phosphatidylcholine (PC), and sphingomyelin 

in AD and MCI patients decreased when compared with healthy individuals [44].

2. CONSOLIDATED RESULTS AND STUDY DESIGN

In this study, we systematically interrogated metabolomic, genetic, transcriptomic, 

proteomic, and clinical data from the matched subjects in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) to identify key drivers and metabolic pathways associated 

with changes in metabolites with disease severity. We show acylcarnitines and amines 

are highly correlated with AD clinical outcomes and further reveal key biological drivers 

and pathways that are involved in metabolomic changes in MCI and AD. One hundred 

forty metabolites in fasting serum samples from the ADNI (362 controls, 94 with 

significant memory concerns, 764 with mild cognitive impairment, and 298 with AD), 

were analyzed using the AbsoluteIDQ-p180 kit. The data were adjusted for age, gender, 

body mass index (BMI), education, cohort, and medication. A metabolite co-expression 

network was constructed using Multiscale Embedded Gene co-Expression Network Analysis 

(MEGENA). Co-expressed metabolite modules were then prioritized by the strength of 

association with clinical/cognitive and pathological traits. Correlation analysis of the co-

expressed metabolite modules and the matched gene/protein expression data was performed. 

The ROS/MAP cohort was used as a replication study of the co-expression network. Six 

brain transcriptomic datasets from the Mount Sinai Brain Bank, ROS/MAP, and Mayo clinic 

cohorts were utilized to build up gene-centered correlation networks to elucidate functions 

of upstream regulators of candidate metabolites. Modules comprised of short-chain 
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acylcarnitines/amino acids, and medium/long-chain acylcarnitines were most associated 

with worse AD clinical outcomes, including episodic memory scores and disease severity. 

Short-chain acylcarnitines (especially C3), BCAAs (isoleucine and valine) and other amino 

acids (tryptophan and tyrosine), as well as medium/long-chain acylcarnitines (C12, C14:1/

C14:2, C16:1 and C18), are significantly correlated with AD severity and cognitive traits. 

CPT1A gene expression was highly correlated with an increased level of the medium/

long-chain acylcarnitines. Increased ABCA1 gene expression and adiponectin (a regulator 

of ABCA1) protein expression corresponded to decreased short-chain acylcarnitines and 

amines in AD. In addition, CPT1A and ABCA1 were differently expressed in the brains 

of AD patients compared to controls, and their subnetworks were enriched for AD, 

aging, and neuronal system-related gene signatures/pathways. The integration of genetic 

and transcriptomic data with metabolomic networks, highlights novel pathways and driver 

molecules that potentially contribute to disease pathogenesis. For example, the interaction 

between the acylcarnitines and amino acids with proteins such as Adiponectin and NGAL 

indicates a novel framework of cellular mechanism. In addition, we developed the trajectory 

inference analysis and Granger causality test on bulk tissue metabolomic data in ADNI 

using Slingshot [45] to identify metabolite changes along the pseudo time. Preliminary data 

shows that the expression level of the module of short-chain acylcarnitines and amines 

decreases over time while that of the module of medium/long-chain acylcarnitines increases 

over time. Our multiscale metabolite co-expression network of ROS/MAP brain data also 

revealed that the modules of amines and short-chain acylcarnitine are significantly correlated 

with neuritic plaque burden in midfrontal cortex, and significantly overlap with the top 

modules in ADNI. The key strength of our findings in terms of the modeling is that the 

identification of the biological drivers/pathways highly correlated with the co-expressed 

metabolites in AD can be used as predictors during disease progression and survival. 

Integrated analysis of genetic, transcriptomic, proteomic, and metabolomic data pave the 

way for the development of sensitive and specific diagnostic biomarkers either alone or in 

combination in the early stage of Alzheimer’s Disease.

Our findings clearly indicate that (1) BCAAs and Acylcarnitines are increasingly utilized in 

AD progression and (2) fatty acid β-oxidation is dysregulated and/or mitochondria are in 

dysfunction in AD, (3) Acylcarnitines can be predictive of AD phenotype conversion from 

MCI compared with MCI stable phenotype. Therefore, the results from our correlative study 

are consistent with the connection between mitochondrial dysfunction and AD pathogenesis 

but provide more insights into the underlying mechanisms for diabetes as a risk factor 

for AD. Since previous studies showed increased utilization of branched amino acids is 

associated with type 2 diabetes and mitochondrial dysfunction is common in diabetes [46, 

47], the association of branched-chain amino acids with AD revealed by this study opposite 

to this notion. Besides the opposite connection between obesity and Type 2 diabetes, 

elevated medium/long-chain acylcarnitines in plasma are associated with the disruption of 

β-oxidation in depression [48, 49].
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3. DETAILED METHODS AND RESULTS

3.1 Methods

Study Participants

Alzheimer’s Disease Neuroimaging Initiative (ADNI): Metabolites in fasting serum 

samples were obtained from the Alzheimer’s Disease Neuroimaging Initiative Phase 1 

(ADNI-1) and its subsequent extensions (ADNI-GO/2) for this study (adni.loni.usc.edu). 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD., and participants were recruited from more than 50 sites across 

the United States and Canada. The ADNI dataset includes serial MRI and PET scans, 

longitudinal CSF markers, neuropsychological test scores, and clinical assessments. ADNI 

cohort includes cognitively normal older individuals (CN), significant memory concerns 

(SMC), mild cognitive impairment (MCI) and AD aged 55–90 (http://www.adni-info.org/). 

The ADNI dataset includes structural MRI and PET scans, longitudinal CSF markers, and 

performance on neuropsychological and clinical assessments. Also, ADNI samples have 

APOE and genome-wide genotyping data, transcriptomics, and whole-genome sequencing 

data.

Quantitative metabolomics was performed by Alzheimer’s Disease Metabolomics 

Consortium (https://sites.duke.edu/adnimetab/) using ADNI samples and the Biocrates 

AbsoluteIDQ p180 (Biocrates Life Sciences AG, Innsbruck, Austria) platform. 

Quantification of serum metabolites including amino acids, acylcarnitines, sphingomyelins 

(SMs), phosphatidylcholines (PCs), hexoses (h1s), and biogenic amines was done 

using methods published previously [18, 50, 51]. Flow injection analysis-tandem mass 

spectrometry (FIA-MS/MS) was used to analyze the acylcarnitines, lipids, and h1s Liquid 

chromatography-tandem mass spectrometry (HPLC-MS/MS) using an AB SCIEX 4000 

QTrap mass spectrometer (AB SCIEX, Darmstadt, Germany) with electrospray ionization 

was used to analyze the amino acids and biogenic amines. The concentration of each 

metabolite was measured in μM [18]. Blood metabolites were adjusted for age, gender, body 

mass index (BMI), education, cohort, and medication information.

We analyzed metabolic profiles from 1,518 individuals, including 362 CN older individuals, 

94 individuals with SMC, 270 individuals diagnosed with EMCI, 494 individuals 

with LMCI, and 298 individuals diagnosed with AD. Supplemental Table S1 includes 

demographic and clinical characteristics of the ADNI participants.

The Religious Orders Study (ROS) and Rush Memory and Aging Project 
(MAP): Description of ROSMAP has been previously reported [52]. Metabolomics data 

from brain ROS/MAP Dataset was used as a replication dataset to test whether metabolite 

modules are conserved between the blood and the brain (Synapse:syn10235596). Data were 

obtained with the same Biocrates AbsoluteIDQ p180 kit used in the ADNI study. Brain 

metabolites (N=163) were adjusted for age, gender, body mass index (BMI), and education. 

We identified co-expressed metabolite modules from 50 individuals with no cognitive 

impairment (NCI), 30 individuals with mild cognitive impairment (MCI), 25 individuals 
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diagnosed with AD. Fisher’s exact test (FET) was utilized to test if the co-expressed 

modules in the blood significantly overlap those from the brain.

Construction of multiscale metabolite co-expression network—We constructed 

a multiscale metabolite co-expression network (MMCEN) using the quality-controlled 

and normalized metabolomic data from the blood samples collected from the ADNI 

participants (N=1,518). The Biocrates AbsoluteIDQ p180 platform, which measures amino 

acids, acylcarnitines, sphingomyelins (SMs), phosphatidylcholines (PCs), hexoses (h1s), and 

biogenic amines, was used to generate the metabolite data [53]. In total, 140 metabolites 

were used in the metabolite network analysis. The metabolite expression data from 1,518 

individuals were adjusted for age, gender, body mass index (BMI), education, and cohort 

(ADNI1 and ADNIGO/2).

A metabolite co-expression network for the ADNI blood expression data was constructed 

using Multiscale Embedded Gene co-Expression Network Analysis (MEGENA) [54]. 

MEGENA first constructed a Planar Filtered Network (PFN) from significantly correlated 

metabolite pairs of the resulted PFN then went through a multiscale clustering analysis to 

identify co-expressed modules using different scales of compactness of modular structures 

controlled by a resolution parameter. The metabolite modules were then compared with 

random PFN modules generated by shuffling the link weights of the parent cluster to 

calculate the statistical significance of each module. A multiscale hub analysis was then 

performed to identify highly connected hub nodes (metabolites) for each significant module. 

The modules with less than 10 metabolites were excluded from further downstream 

analyses. Finally, principal component (PC) analysis was performed on each module 

to obtain the principal component vectors (eigen-metabolites) for subsequent correlation 

analysis of modules and various cognitive, clinical and neuropathological traits.

Cognitive and neuropathological traits—AD-pathology related traits including 

Clinical Dementia Rating Sum of Boxes (CDR-SB), cerebrospinal fluid tau, phospho-tau 

(p-tau) and amyloid-beta levels, Fluorodeoxyglucose (18F) (FDG)-PET, Florbetapir (AV-45) 

PET, clinical and cognitive performance data, were downloaded from the ADNI1 and 

ADNIGO/2 database (http://adni.loni.usc.edu). CSF measurements and quality control data 

were obtained from the LONI website as “UPENN CSF Biomarkers Elecsys.” The complete 

descriptions of the collection and process protocols can be found at www.adni-info.org. 

Alzheimer’s Disease Assessment Scale (ADAS-Cog), Mini–Mental State Examination 

(MMSE), Rey Auditory Verbal Learning Test (RAVLT), and Montreal Cognitive Assessment 

(MoCA) scores and self (PT)- and informant (SP)- everyday cognition (ECog) memory 

scores which include language, visuospatial, organization of items and divided attention 

were downloaded as representations of cognitive test scores [55–57]. Rey Auditory Verbal 

Learning Test (RAVLT) score, the assessment of episodic memory, consists of 5 learning 

trials of 15 words, immediate recall, and 30-minute delayed recall, as well as an interference 

list and recognition test. MMSE and MOCA measures memory, recall, and attention [58]. 

The other important memory score is ADAS-Cog, which is similar to RAVLT and measures 

the episodic memory using ten unrelated words. For all score types, those scores determined 

baseline was chosen for our analyses. Since not all participants in ADNI have cognitive, 
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clinical, and pathology recorded scores, Supplemental Table S2 summarizes how many 

participants were included for each correlation-based analysis.

Correlation analysis of the metabolite modules and neuropathological traits—
To determine the predictive power of the co-expressed metabolite modules of the MMCEN, 

we evaluated correlations of the metabolite modules with clinical/cognitive CSF (tau and 

Aβ) and imaging (FDG and AV45 PET) biomarker variables. We ranked order co-expressed 

metabolite modules based on the overall strength of such correlations. Since each module 

includes at least ten metabolites, we reduced the dimensionality of the data by computing 

the first principal component (PC) from the metabolites in each module and then computed 

Spearman’s correlation coefficient rij between each clinical/cognitive/CSF trait (i) and the 

first PC of each metabolite module (j). P-value (Pij) of the correlation coefficient rij was 

computed via the asymptotic t approximation. Significant correlations were defined as 

those with multiple testing adjusted P value less than 0.05 (adjusted by the i*j number of 

correlations).

The aforementioned correlations between a metabolite module (j) and clinical/cognitive/

pathological traits were then combined into a composite importance score by Sj = 1
n ∑i rij , 

where n denotes the total number of traits. The importance score essentially computes the 

mean of the absolute value of the correlation coefficients across traits for each metabolite 

module. We have previously used this type of composite score to rank order the importance 

of key driver genes identified in gene networks across multiple brain regions [26]. The 

metabolite modules were then ranked by their composite importance scores. All available 

clinical/cognitive/AD-pathological traits were used for the correlation analysis.

Identification of genes correlated with metabolite co-expression network—
Microarray-based RNA gene expression data from blood samples of 745 ADNI participants 

was downloaded from the ADNI LONI website (http://adni.loni.usc.edu) [59]. We only 

included the individuals with both metabolomic and transcriptomic data (N=417; CN=121, 

EMCI=183, LMCI=76, AD=37). Probe sets of the Affymetrix Human Genome U219 

platform (Affymetrix, Santa Clara, CA) were excluded from the data if they did not match 

any gene or matched multiple genes. All gene expression data were adjusted for RIN, batch 

effect, and sex. For each gene with multiple probes, the probe with the most variation across 

all the samples was selected as the representative of the gene. In total, 17,848 genes were 

included in the correlation analysis of the gene expression data and the metabolite modules 

using both Pearson and Spearman correlation analyses. Significance levels were adjusted by 

multiple testing. Adjusted p <0.05 was considered statistically significant for all the analyses 

carried out in this study.

Construction of CPT1A and ABCA1 centered co-expression gene network in 
AD—Six RNA-seq datasets from six different brain regions in three human postmortem 

brain cohorts, including the Mount Sinai Brain Bank AD cohort (MSBB) (4 cortical regions) 

[60], the Religious Order Study (ROS) and the Rush Memory and Aging Project (MAP) 

(ROSMAP) cohort (the dorsolateral prefrontal cortex (DLPFC)) [61, 62] and the Mayo 

Horgusluoglu et al. Page 9

Alzheimers Dement. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/


Clinic cohort (the temporal cortex (TCX)) [63] were used for constructing CPT1A and 

ABCA1 centered co-expression gene networks.

The MSBB AD cohort contained brain specimens obtained from the Mount Sinai/JJ 

Peters VA Medical Center Brain Bank, which holds over 1,700 samples. This cohort 

was assembled after applying stringent inclusion/exclusion criteria and represents the full 

spectrum of disease severity ranging from cognitively normal to severe dementia. RNA-

sequencing gene expression profiles were generated across four cortex brain regions (the 

frontal pole, the superior temporal gyrus, the parahippocampal gyrus, the inferior temporal 

gyrus) from about 360 brains [60]. Besides, microarray gene expression data were also 

generated from a smaller set of brains for 19 different cortical regions, including the 

hippocampus of 55 brains, which was used here [64]. The ROSMAP dataset included 

two prospective cohort studies of aging as the Religious Order Study (ROS) and the 

Rush Memory and Aging Project (MAP) [52, 65]. About 60% of the subjects had a 

pathologic diagnosis of AD at autopsy. ROSMAP has postmortem RNA-sequencing data 

generated from the DLPFC of over 600 brains [65]. The preprocessed expression data for the 

MSBB AD RNA-seq and ROSMAP RNA-seq cohorts were downloaded from the AMP-AD 

knowledge portal at Synapse [66]. The Mayo RNAseq Study includes whole transcriptome 

data for 274 temporal cortex (TCX) samples from North American Caucasian subjects 

with a neuropathological diagnosis of AD, progressive supranuclear palsy (PSP), pathologic 

aging (PA) or elderly controls (CON) without neurodegenerative diseases. For each dataset, 

we calculated correlation coefficients between each candidate gene (CPT1A or ABCA1) and 

the rest genes. We only focused on the genes present in all the six gene expression datasets. 

Finally, the genes showing significant correlations with CPT1A and ABCA1 (FDR-corrected 

p values ≤ 0.05) in all the six datasets with consistent correlation direction were used to 

define the CPT1A-centered and ABCA1-centered correlation networks, respectively.

Identification of proteins correlated with metabolite co-expression network
—The proteomic data of 146 proteins in the RBM Human DiscoveryMAP panel from 

566 participants at the baseline visit from the ADNI-1 dataset were downloaded from 

the ADNI official website (http://adni.loni.usc.edu). Sample selection criteria and quality 

control steps were explained previously [67]. The data were adjusted for age and sex. 

Four hundred ninety-eight (498) individuals (CN=51, MCI=343, and AD=104) with both 

blood metabolomic and proteomic data were used for this analysis. In the module-protein 

correlation analysis, the first PC of each metabolite module was used for computing 

correlation with each protein. Both the Pearson and Spearman correlation analyses were 

performed, and significance levels were corrected for multiple testing. An adjusted p-value 

<0.05 was considered statistically significant.

Mendelian Randomization Analysis—Summary-data-based Mendelian Randomization 

(SMR) [68, 69] and Heterogeneity In Dependent Instruments (HEIDI) tests were conducted 

to explore likely causal paths that link gene expression to metabolite concentrations. We 

integrated summary statistics from our metabolites GWAS and GTEx v7 eQTL summary 

data [70], GTEx-brain eQTL summary data [71], Cardiogenics study [72, 73], eQTLGen 

Consortium [74] and eQTL ADNI blood.
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Input/output of each experimental steps and study workflow can be found in Supplementary 

Figure S1.

Major Computational Tools Analyzing and Integrating Metabolomics and 
Other Types of Omics Data—This study utilized several major computational tools, 

including data preprocessing and imputation, Mendelian Randomization, and metabolite co-

expression network analysis. The metabolomics data was preprocessed to limit the potential 

for false-positive findings. To this end, missing values were imputed using minimum value 

imputation (half of the plate-specific limit of detection), single measurement outliers were 

winsorized to 3 standard deviations from the global mean, and multi-variate sample outliers 

were removed using Mahalanobis distance. The imputation had no significant influence on 

metabolite associations with AD biomarker profiles [75]. We used SMR [76] for Mendelian 

Randomization to investigate pleiotropic relationships between the expression level of a 

gene and disease risk. This method effectively tests whether the effect size of an SNP on 

a phenotype is mediated by gene expression and uses a heterogeneity test (HEIDI test) 

to distinguish pleiotropy from the linkage. However, it is important to note that statistical 

analyses such as HEIDI or COLOC [77] are not capable of providing perfect separation of 

pleiotropy and linkage [68], are dependent on the tissue-specific effect of eQTLs, and to date 

predominantly utilize cis-eQTLs and exclude trans-eQTLs. The proposed metabolite co-

expression network analysis aims to systematically identify co-expression and co-regulation 

relationships among metabolites. The high complexity of co-expression and co-regulation 

structures requires effective analytic algorithms to uncover the natural network organization 

of metabolite-metabolite interaction, such as modularity and hierarchy among the modules. 

MEGENA can identify biologically more meaningful and relevant co-expressed metabolite 

clusters than previously established network clustering methods such as eigenvector spectral 

clustering and WGCNA [54]. However, some true correlations may be missed in an 

MEGENA derived network due to the application of a planarity constraint. In addition, 

the co-expression network analysis doesn’t explicitly define causal relationships though hub 

nodes are more likely to be key regulators.

3.2 Results

3.2.1 A multiscale metabolite co-expression network (MMCEN) revealed that 
Acylcarnitines and Amines are highly associated with AD worse outcomes in 
blood—By combining two ADNI cohorts (ADNI1 and ADNIGO/2) (Supplemental Table 

S1) in this study provides further evidence that short-chain acylcarnitines (especially C3), 

BCAAs (isoleucine and valine) and other amino acids (tryptophan and tyrosine), as well 

as medium/long-chain acylcarnitines (C12, C14:1/C14:2, C16:1 and C18), are significantly 

correlated with AD severity and cognitive traits (Supplemental Table S2). First, we identified 

co-expressed metabolites as modules through the multiscale embedded gene co-expression 

network analysis (MEGENA) [54] of the metabolomic data in the ADNI, and eleven co-

expressed metabolite modules were identified (Figure 1A; Supplementary Table S3). Note 

that the metabolomic data were corrected for age and other covariates (Methods) and thus 

the results from the subsequent analyses of the data are independent of age. Multiscale in 

MEGENA means multiple levels of clustering compactness used for identifying clusters 

or modules with a hierarchical structure. Metabolite modules are then characterized and 
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prioritized by association with AD through correlation analysis of the first principle 

component of each metabolite module and various clinical/cognitive/AD-pathology traits 

(Figure 1B–C). The top-ranked metabolite modules include short-chain acylcarnitines (C0, 

C3, and C5) and amino acids (histidine, lysine, tryptophan, asparagine, isoleucine, tyrosine, 

alanine, arginine, proline, valine, tyrosine, sarcosine, serotonin sarcosine, serotonin) as well 

as medium/long-chain acylcarnitines (C5.DC..C6.OH., C6..C4.1.DC., C7.DC, C8, C9, C10, 

C10.2, C12, C14.1, C14.1.OH, C16, C16.1, C18, C18.1) (Supplementary Table S4). To 

better understand which metabolites significantly changed during disease progression (CN 

→ SMC → EMCI → LMCI →AD), univariate analysis of variance was performed on 

individual metabolites using SPSS 23.0. Propionylcarnitine (C3), valerylcarnitine (C5), 

histidine (His), lysine (Lys), tryptophan (Trp), valine (Val), sarcosine in the top module 

M8 showed the most significant decrease during the course of disease progression, which 

was also confirmed by the down-regulation in the MCI and AD groups (p-value < 0.05). 

On the contrary, five important medium/long-chain acylcarnitines as C12, C14.1, C14.2, 

C16.1, and C18 in the module M6 significantly increased in the blood during the course 

of disease progression (C12: Dodecanoylcarnitine; C14.1: Tetradecenoylcarnitine; C14.2: 

Tetradecenoylcarnitine; C16.1: Hexadecenoylcarnitine; C18.1: Octadecenoylcarnitine). 

Interestingly, the C18 level significantly increased in the LMCI group compared with CN.

In addition, we compared the module and metabolite expression levels in the MCI-to-AD 

converters with those in the MCI non-converters. The module M6 includes medium/long-

chain acylcarnitines, which significantly increased in the MCI-to-AD converters compared 

with MCI stable individuals over two years (p=0.016) (Figure 2), suggesting medium/long 

chain acylcarnitines as risk factors for AD. We also developed a multiple logistic regression 

model to predict MCI to AD pheno-conversion status (0=non-converter, 1=converter) using 

multiple predictors including network modules, metabolites, clinical traits, and imaging 

features based on the ADNI cohort. To validate our model, we used 10-fold cross-validation 

on the 368 participants (converters=104, non-converters=264) with all the predictors 

available and determined the mean precision, recall, and accuracy across all the runs. 

Prediction yielded a continuous value from 0 to 1, converted to a binary prediction of 

conversion status using a cutoff value of 0.35. Our logistic model used the following 

variables to predict MCI conversion status: M6, M10, M11, M12, M21, education, ADAS13 

(baseline), MMSE (baseline), RAVLT (baseline), Hippocampal volume (baseline), C3, C18, 

C14.1, and C14.2. We achieved an average accuracy of 76.88% (std=7.53%) in 10-fold 

cross-validation. To predict continuous hippocampal and whole brain volumes at two years 

(24 months) post-baseline measurement, we developed a generalized linear model using the 

same predictors for MCI conversion status and intracranial volume (ICV) at baseline as 

an additional covariate. Model accuracy from 10-fold cross-validation was determined by 

assessing the Pearson correlation between predicted and observed hippocampal and whole 

brain volumes for all participants. We achieved a Pearson correlation R2 of 0.938 (p-value= 

2.15 × 10−223) for the hippocampal volume and 0.694 (p-value=4.46 × 10−96) for the whole 

brain volume at 24 months.

3.2.2 Acylcarnitines and Amines are significantly associated with AD-
pathology in brain—To examine the concordance between blood and brain metabolites 
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in AD, we constructed the multiscale embedded gene co-expression network analysis 

using The ROSMAP brain metabolite data (CN=50, MCI=30, and AD=25) and then rank-

ordered metabolite modules by the strength of correlation with AD endophenotypes such 

as memory scores and neurotic plaque burden. The top three modules (M10, M3, and 

M17) (Supplementary Table S5) contain short-chain acylcarnitines and Amines, and are 

significantly correlated with neuritic plaque burden in midfrontal cortex (FDR corrected 

p-value = 0.03) (Supplementary Table S6). Interestingly, the top metabolite module in the 

blood metabolite network significantly overlaps the top one in the brain metabolite network, 

and both modules contain short-chain acylcarnitines and Amines (representation factor: 3.7 

p < 2.8×10−6). Therefore, the analysis shows that the metabolomic changes in the blood and 

the brain could be early biomarkers of AD.

3.2.3 Co-Expression Metabolite Transcriptome Network Analysis establishes 
a link between metabolites and a blood transcriptional network associated 
with AD—We then integrated the metabolomic and transcriptomic data from the blood of 

ADNI participants at the baseline visit to identify potential genes associated with the eleven 

metabolite modules. Based on the data from the participants with both transcriptomic and 

metabolomic data (CN=121, MCI=259, AD=37), we identified ten genes highly correlated 

with the top three modules containing short-chain acylcarnitines and amino acids (M8 and 

M3) as well as medium/long-chain acylcarnitines (M6) (Table 1). After our novel finding 

in the blood data, we further examined the expression levels of those eight genes in the 

brains of the subjects with or without AD using the MSBB (4 cortex regions) [60] and 

Mayo Clinic (DOI:10.7303/syn5550404) cohorts. Two of the eight genes (CPT1A and 

ABCA1) are differentially expressed between AD and control in the parahippocampus gyrus 

(PHG) from the MSBB AD cohort and the temporal cortex (TCX) from the Mayo Clinic 

cohort with FDR corrected p-values = 3.06×10−4 and 1.35×10−4, respectively (Table 2). Our 

correlation analysis shows that CPT1A is significantly associated with a medium/long-chain 

acylcarnitine enriched module. C12, C14.1, C14.2, C16, and C18 acylcarnitines levels 

increase in MCI and AD group compared with cognitively healthy individuals. In addition, 

CPT1A is differentially expressed in the PHG and the TCX of the AD subjects compared 

with the normal control. CPT1A-dependent regulation of acylcarnitines transfer may control 

the levels of C12, C14.1, C14.2, and C16 as well as C18 in the plasma during disease 

progression. As the accumulation of medium/long-chain fatty acylcarnitines is associated 

with AD development and progression, fatty acid transport into mitochondria becomes 

critical. Since fatty acid transport through CPT1A is the limiting step of this transport 

process, the connection of CPT1A gene/protein expression with AD becomes obvious. This 

finding suggests that CPT1A may serve as a drug target for the accumulation of fatty 

acylcarnitines and thus for AD.

Carnitine is essential for the transport of the long-chain acyl-CoAs into mitochondria, 

which are converted to acylcarnitines by carnitine palmitoyltransferase 1 (CPT1) [78, 79]. 

There are three forms of CPT enzyme including CPT1A, CPT1B, and CPT1C [80]. CPT1 

activity has been implicated in several neurodegenerative diseases as a relationship with 

the alteration of insulin equilibrium in the brain [81]. The regulation of CPT1 affects 

the limited levels of long-chain acylcarnitines as C16-, C18-, and C18:1-CN levels that 
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lead to the increase of free-CN:C16-CN in the plasma [82]. Increased plasma levels 

of C14:1-CN and C16-OH–CN have bene identified as a product of very-long-chain 

acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, respectively 

during β-oxidation in obesity and Type 2 diabetes [82]. Similarly, we identified CPT1A is 

significantly associated with a module comprised of medium/long-chain acylcarnitines. C12, 

C14.1, C14.2, C16, and C18 acylcarnitine levels increase in MCI and AD group compared 

with cognitively healthy individuals. Furthermore, CPT1A was differentially expressed in 

the hippocampus and the temporal cortex of the AD subjects compared with the normal 

control. We may conclude that CPT1A-dependent regulation of acylcarnitine transfer may 

control the levels of C12, C14.1, C14.2, and C16 as well as C18 in the plasma during disease 

progression. Acylcarnitine levels with mitochondrial fatty acid β-oxidation significantly 

increases in patients with major depression because of the metabolic dysfunction [49], 

and the association of medium/long-chain acylcarnitines with AD revealed by this study 

shows the same of this notion. Anti-depressants that decrease acylcarnitine levels in major 

depression patients might be considered for a potential treatment for AD patients.

We also show that ABCA1 gene expression is negatively correlated with the module M8 

comprised of short-chain acylcarnitines and amino acids. While the levels of the metabolites 

in M8 significantly decrease in AD, ABCA1 expression in the blood increases in the AD 

group compared with the other groups. ABCA1 belongs to the superfamily of ATP-binding 

cassette proteins and plays a vital role in stimulating the efflux of cellular cholesterol 

from macrophages to Apolipoprotein A-1 (ApoA-1) and HDL, respectively [83–86]. It 

has been shown that the ABCA1 gene expression increased in the CA1 region of the 

hippocampus in AD compared with healthy control [87]. ABCA1, which is highly expressed 

in the brain, plays an essential role in the lipidation of AD risk gene Apolipoprotein 

E (ApoE) and enables clearance of amyloid-beta accumulation [88, 89]. Our ABCA1 
centered consensus co-expression network demonstrates a strong interaction between 

ABCA1 and APOE in the brain. Since the module M7 consisting of glycerophospholipids 

(mostly Lysophosphatidylcholines) is highly correlated with the reduction of the short-chain 

acylcarnitine and amino acid modules (M8 and M3) and ABCA1 level, our finding may 

suggest that ABCA1 blood expression level increases as a compensation to the reduction of 

the glycerophospholipids.

In addition to our finding of the increased level of long-chain acylcarnitines in MCI and AD, 

we detected a significant decrease in the metabolite module containing C3 and amino acids 

in the MCI and AD groups. Acylcarnitines are produced explicitly in mitochondria using 

different substrates. Acylcarnitines containing eight or more carbon atoms are generated 

from the fatty acid β-oxidation; short-chain acylcarnitines (i.e., C3 to C6) are yielded from 

further β-oxidation as well as oxidation of amino acids; and C2 acylcarnitine is from all 

the energy substrates including fatty acids, amino acids, and glucose. Among short-chain 

acylcarnitines, odd-numbered acylcarnitines (i.e., C3 and C5) are specifically generated 

from BCAAs, suggesting BCAA/short-chain acylcarnitines are linked biochemically and 

functionally [82, 90]. Decreased levels of C3 in MCI compared with healthy individuals [91] 

and a distinguished level of C3 metabolite identified in the inferior temporal gyrus in the AD 

brain were reported previously [19]. We show that ABCA1 gene expression is negatively 

correlated with the short-chain acylcarnitine and amino acid module (M8) and differentially 
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expressed in AD versus CN. We further reveal that the Adiponectin level, which controls 

ABCA1 expression through liver X receptor alpha (LXRα) in macrophages in the liver [92], 

is highly correlated with the short-chain acylcarnitines and branched-chain amino acids. 

Since RXRA mRNA level is highly correlated with that of ABCA1 in the brain, changes 

in the mRNA level of RXR/LXR (transcription factors) might upregulate ABCA1 in AD. 

ABCA1 overexpressed AD mice might be used to validate this hypothesis.

Summary-data-based Mendelian Randomization (SMR) and Heterogeneity In Dependent 

Instruments (HEIDI) tests were conducted [68, 69] to explore likely causal paths that link 

ABCA1/CPT1A gene expression to metabolite (C3, C5, His, Lys, Trp, Val, Sarcosine, C12; 

C14.1; C14.2; C16.1; C18.1) concentrations. To accomplish this, we integrated summary 

statistics from our metabolites GWAS and GTEx v7 eQTL summary data [70], GTEx-brain 

eQTL summary data [71], Cardiogenics study [72, 73], eQTLGen Consortium [74] and 

eQTL ADNI blood. cis-eQTLs were significantly associated with ABCA1 and CPT1A 
expression in human monocytes and macrophages in Cardiogenics study (NSNP_ABCA1= 

19, NSNP_CPT1A = 1991), human Brain in GTEx v7 eQTL study NSNP_ABCA1= 49, 

NSNP_CPT1A = 1, and the ADNI blood (NSNP_ABCA1= 23, NSNP_CPT1A = 17). 

However, SMR/HEIDI analysis did not identify a causal path between ABCA1 and CPT1A 
gene expression and metabolite concentrations. In the blood, MRPL47 was identified as the 

most likely gene whose expression levels were associated with C3 and histidine metabolite 

levels because of causality/pleiotropy at the same underlying causal variant (rs10513761) 

while SLC22A5 was highly associated with C14.1, C14.2, and C18.2 metabolite levels 

because of causality/pleiotropy at the same underlying causal variant (rs2631360) (SMR-

multi corrected p-value < 0.05; Supplementary Table S7).

It is important to note that the presumptive mechanism proposed by this study is essentially 

based on a set of ‘correlations’, which may or may not indicate causative linkages among 

the observed variables. Further animal model studies would help to understand the causative 

linkage between genes/proteins and metabolites. For example, ABCA1 is not only a key 

factor for ApoE particle lipidation in the brain, as discussed above, but also plays a crucial 

role in cholesterol and phospholipid homeostasis in the whole body. Therefore, it is expected 

that ABCA1 has many functions involving the cellular membrane and subcellular organelles. 

The association of ABCA1 with PC and lysoPC species revealed in the study clearly 

indicates such a connection. Further investigation is needed to determine whether alterations 

in phospholipid homeostasis induced by ABCA1 expression and Adiponectin lead to 

changes in general mitochondrial function, which subsequently affect energy metabolism 

and substrate utilization. The importance of ABCA1 beyond the lipidation of ApoE particles 

in the brain and association with AD pathogenesis should be recognized using the transgenic 

ABCA1 mice model. We could measure the levels of acylcarnitines, BCAA as well 

as phosphatidylcholine and cholesterol efflux from ABCA1 expressing cells and APOE 

lipidation ex vivo. Since ABCA1 is upregulated in AD brains, compared with control, the 

measurement of metabolites and their upstream regulators in ABCA1 overexpressed mice 

would help us identify the mechanism between ABCA1 and short-chain acylcarnitines and 

lysophosphatidylcholine.
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There are some tool compounds available to explore ABCA1 and CPT1A involved 

pathways. Multiple HDL apolipoproteins, including apolipoproteins A-I and A-II, interact 

with ABCA1 and activate multiple signaling pathways such as Janus kinase 2/signal 

transducer and activator of transcription 3 (JAK2/STAT3), protein kinase A, Rho family 

G protein CDC42, and protein kinase C [93]. The activation of protein kinase A and Rho 

family G protein CDC42 involve in the regulation of ABCA1-mediated lipid efflux, and 

JAK2/STAT3 regulates both ABCA1-mediated lipid efflux and anti-inflammation [93]. Liver 

X receptors (LXR) and Retinoic X Receptors (RXR) are the other regulators of ABCA1 
transcription [94]. Bexarotene, an FDA-approved RXR agonist, decreases amyloid-beta 

plaque accumulation and cognitive impairment, and increases amyloid-beta clearance in 

mice [95–98]. On the other hand, Etomoxir, an inhibitor of CPT1A, is a small molecule 

that prevents fatty acid oxidation, and induces oxidative stress [99]. Etomoxir inhibits the 

formation of acyl-carnitine and the transport of fatty acyl-CoA into the mitochondria and is 

an efficient CPT1A blocker to treat anhedonia and inflammation in depression [100]. The 

effectiveness of these compounds for treating AD need be further investigated.

Besides animal models, induced pluripotent stem cells (iPSCs) provides an excellent 

opportunity to identify fatty acid metabolism associated genes and their upstream regulators 

during the beta-oxidation in AD [101, 102]. Since long-chain fatty acids could not diffuse 

the mitochondrial inner membrane without the carnitine palmitoyltransferase (CPT) 1, 

translocase, and CPT2 during fatty acid breakdown [103], we could use the fatty acid 

oxidation-related metabolites to the induction of iPSCs to better understand how the reaction 

mediated by CPT1A and CACT (Carnitine/Acylcarnitine Translocase) is disturbed during 

the disease progression. iPSC-based model systems and CRISPR/CAS9 gene editing of 

iPSCs [102] will be critical in understanding the roles of CPT1A and ABCA1 as well 

as their variations/mutations may modify AD risk. We could investigate the essential 

metabolites and factors required for the formation of pathology using a human brain tissue 

model from iPSC cells [102, 104]. While iPSCs are stripped of their aging brain epigenome, 

there are strong polygenic risk associations with AD and related dementia traits [105–107]. 

The polygenic risk approach using the novel AD candidate genes identified here will help us 

define the experimental models and systems to test the associated metabolites.

3.2.4 ABCA1 and CPT1A centered gene co-expression subnetworks are 
enriched for AD signatures—To understand the functional contexts in which CPT1A 
and ABCA1 operate in AD, we construct CPT1A and ABCA1 centered gene co-expression 

networks using six gene expression datasets from six different brain regions in three AD 

cohorts of human postmortem brains, including the Mount Sinai Brain Bank (MSBB) AD 

cohort (4 cortical regions) [60], the ROSMAP RNA-seq (DLPFC) [61, 62] and the Mayo 

Clinic cohort (TCX) [63] (Supplemental Table S8). CPT1A is positively correlated with 765 

genes and negatively correlated with 621 genes (Figure 3A–C; Supplementary Table S9), 

while ABCA1 is positively correlated with 675 genes and negatively correlated with 806 

genes) (Figure 4A–C; Supplementary Table S10) in all six datasets (FDR corrected p-value 

< 10−6). The CPT1A-centered subnetwork is enriched for AD signatures and neuronal 

system-related pathways such as synapse, synapse part, neuron part, metabolic process, 

synaptic signaling, neurogenesis and immune system (Figure 3B–D; Supplementary Table 
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S11–S12). The ABCA1 centered subnetwork is enriched for known AD gene signatures 

and pathways such as immune system, neuron part, tyrosine kinase signaling, metabolic 

syndrome, synaptic signaling, and metabolic process (Figure 4B–D; Supplementary Table 

S13–S14).

Co-Expression Metabolite Protein Network Analysis establishes a link between 
metabolites and protein network associated with AD: Since ABCA1 plays an important 

role in cholesterol and phospholipid transport and ABCA1 gene expression is controlled by 

Adiponectin, an adipocyte-specific protein [92, 108, 109], we hypothesize that Adiponectin 

is highly correlated with the level of module M8 (short-chain acylcarnitine and amino 

acids). In ADNI-1, 496 individuals (CN=49, MCI=343, AD=104) had both metabolomic 

and proteomic data (N=146 proteins). Our correlation analysis reveals that Adiponectin 

is significantly correlated with the modules M8 and M3 with corrected p-value = 0.012 

and 0.013, respectively. Moreover, we identify several key proteins that are highly 

correlated with medium/long-chain acylcarnitines (FDR < 0.05) (Table 3). However, 

Neutrophil Gelatinase Associated Lipocalin (NGAL), Hepatocyte Growth Factor (HGF), 

Thrombomodulin, Leptin, Myoglobin, Ferritin, and AXL Receptor Tyrosine Kinase (AXL) 

are among the proteins highly correlated with medium/long-chain acylcarnitine module 

(M6). Since Adiponectin has been shown to play an essential role in the regulation 

of ABCA1 expression [92] and be correlated with AD [110], we test if ABCA1 gene 

expression and Adiponectin levels changed similarly across diagnosis groups. Opposite 

to the decrease of the short-chain acylcarnitines and amino acids in M8 in the AD 

group (Figure 5A), ABCA1 mRNA expression and adiponectin levels increase in the AD 

patients compared with cognitively normal individuals (Figure 5B–C). Our finding suggests 

interactions among ABCA1, Adiponectin, short-chain acylcarnitines and amino acids in 

AD. NGAL is the other interesting finding highly correlated with our medium/long-chain 

acylcarnitine module (M6). Both the metabolites in M6 (Figure 6A) and NGAL (Figure 6B) 

increase in AD, comparing the cognitively normal group (p-value < 0.05).

Adiponectin is released from the adipose tissue as a hormone and is associated with many 

cardiovascular and neurodegenerative diseases [111]. Adiponectin has a protective effect 

on oxidative stress due to amyloid-beta accumulation in the brain [112]. Adiponectin is 

a key hormone in the regulation of energy metabolism and fatty acid homeostasis and 

plays a key role in the development of diabetes/obesity and the modulation of brain 

insulin balance and amyloid-beta in the early stage of AD [111, 113]. The connection of 

short-chain acylcarnitines with this gene and other related ones is obvious. Modulating 

adiponectin expression to reduce short-chain acylcarnitine production and accumulation 

could be important in both diabetes and AD. Adiponectin, as a potential drug target for 

the treatment of diabetes, has been well recognized. Thus, Adiponectin, which serves as 

a potential candidate for the treatment of AD, could also be considered. Our integrative 

analysis of metabolomic, transcriptomic, and proteomic data revealed decreased short-chain 

acylcarnitines and amino acids and increased ABCA1 mRNA and Adiponectin protein levels 

in AD comparing cognitively healthy group. This novel result may suggest that the increase 

of circulating adiponectin levels and ABCA1 expression could be a compensatory effect 
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against neurodegeneration. ABCA1 overexpressed mice model would help us to understand 

the upstream regulators and biological processes better.

Conclusion—This report represents emerging novel evidence of metabolic network 

failures related to AD pathology. A new perspective for prevention and treatment of AD 

involves key genetic drivers and pathways underlying metabolomic changes in the blood 

by integrating metabolomic, genetic, transcriptomic, and proteomic data in AD. This effort 

aims to reassess the role of acylcarnitines and amines, and their potential upstream genetic 

and transcriptional regulators through this highly integrative analysis of multi-omics data in 

AD, which paves the way for identifying novel biomarkers as well as therapeutic targets 

for AD. Detection of changes of small molecule metabolites in blood, cells, tissues, and 

cerebrospinal fluid at the early stage of AD is challenging but would help us to understand 

the metabolic mechanisms underlying AD. Metabolite-based biomarker studies enable us to 

interpret the elusive pathophysiology of neurodegenerative diseases. AD is a heterogeneous 

disorder associated with multiple clinical and pathological phenotypes as well as many 

genetic risk factors. Unraveling the heterogeneity of AD will pave the way for not only 

understanding the mechanisms of AD but also developing novel therapeutics. For this 

consideration, a future direction is to identify AD subtypes using metabolomic data.

In conclusion, the identification of acylcarnitines enriched modules and their potential 

upstream genetic and transcriptional regulators through this highly integrative analysis 

of multi-omics data in AD paves the way for identifying novel biomarkers as well as 

therapeutic targets for AD. Our novel findings may suggest that an increase of circulating 

adiponectin and metabolite dependent ABCA1 mRNA expression could be a compensatory 

effect against neurodegeneration.
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Figure 1. Multiscale metabolite co-expression network analysis of the blood metabolomic data in 
the ADNI.
(A) The global metabolite co-expression network. Two parent modules M3 and M5 are not 

shown here. (B) Rank-ordered metabolite modules by the extent of association to the clinical 

outcomes. (C) Heatmap of the correlations between clinical/cognitive AD-pathology related 

traits and metabolite modules. Cognitive and pathological traits are shown on the right axis 

while the metabolite modules are shown at the bottom axis. The intensity of the color in 

each cell indicates the magnitude of the Spearman’s rank correlation coefficient between 
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the corresponding row and column variables, for those correlations with adjusted p values 

<0.05. Red and blue colors indicate positive and negative correlations, respectively.
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Figure 2. 
The expression level of the module M6 (i.e., module eigen-metabolite represented by the 

first PC of the module) significantly increases in the subjects with conversion from MCI to 

AD (termed MCI converters) compared with those MCI subjects without conversion (termed 

MCI stable group) in two years.
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Figure 3. CPT1A centered co-expression networks.
(A) The genes positively correlated with CPT1A (FDR < 10−6). (B) MSigDB GO and 

canonical pathways enriched in the CPT1A centered subnetwork shown in (A). (C) The 

genes negatively correlated with CPT1A (FDR < 10−6). (D) MSigDB GO and canonical 

pathways enriched in the CPT1A centered subnetwork shown in (C). The blue bars represent 

the –log10 values of the adjusted p-values.
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Figure 4. ABCA1 centered co-expression networks.
(A) The genes positively correlated with ABCA1 (FDR < 10−6). (B) MSigDB GO and 

canonical pathways enriched in the ABCA1 centered subnetwork shown in (A). (C) The 

genes negatively correlated with ABCA1 (FDR < 10−6). (D) MSigDB GO and canonical 

pathways enriched in the ABCA1 centered subnetwork shown in (C). The blue bars 

represent the –log10 values of the adjusted p-values.
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Figure 5. Integrative analysis of metabolites, genes and proteins.
(A) The expression level of the module M8 (i.e., the eigen-metabolite represented by the 

first PC of the module), which contains short-chain acylcarnitine and amino acid, varies 

significantly across five diagnosis groups (p-value < 0.05). (B) ABCA1 mRNA level in the 

blood is significantly different across four diagnosis groups. (C) Adiponectin protein level in 

the blood is significantly different across AD, LMCI and control.
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Figure 6. Medium/long chain acylcarnitines are significantly associated with NGAL protein level 
in AD.
(A) Medium/long-chain acylcarnitines module (M6) expression level increases during the 

disease progression from control to LMCI and to AD. (B) NGAL protein level in blood is 

significantly different across diagnosis groups (p-value < 0.05).
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Table 1.

Pearson correlation analysis of the top three modules (including acylcarnitines and amino acids) and the blood 

gene expression data in ADNI. The module M6 includes medium/long-chain acylcarnitines while the modules 

M8 and M3 include short-chain acylcarnitines and amino acids, respectively.

Gene Expression (N=17849) Top Metabolite Modules Rho value p-value p.adj

CPT1A
(Carnitine Palmitoyltransferase 1A ) M6 0.317 3.50×10−11 1.87×10−6

SLC25A20
(Carnitine/Acylcarnitine Translocase) M6 0.261 6.60×10−8 1.8×10−3

ABCA1
(ATP Binding Cassette Subfamily A Member 1) M8 −0.236 1.10×10−6 0.02

MRPL47 M3 0.233 1.50×10−6 0.02

ABCA1 M3 −0.23 2.10×10−6 0.02

ABCG1 M3 −0.222 4.90×10−6 0.038

PDK4 M6 0.222 4.60×10−6 0.038

UCHL3 M3 0.22 5.80×10−6 0.039

CCT2 M3 0.215 9.10×10−6 0.049

ABCG1 M8 −0.216 8.80×10−6 0.049
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Table 2.

Differentially expressed genes in the human brain from the MSBB cohort. logFC= fold change; Padj = FDR 

adjusted p-value; AD = Alzheimer’s Disease; CN = Cognitively Normal.

Gene logFC p-value Padj Contrast Region

CPT1A 0.27 9.09×10−6 1.61×10−4 AD vs CN PHG

ABCA1 0.41 2.56×10−6 7.53×10−5 AD vs CN PHG

CPT1A 0.39 1.15×10−5 3.06×10−4 AD vs CN TCX

ABCA1 0.56 3×10−6 1.35×10−4 AD vs CN TCX
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Table 3:

The top 10 proteins most correlated with the top AD associated metabolite modules which include 

acylcarnitines and amino acids.

Protein Top Modules Rho value P-value P.adj

Adiponectin..ug.mL. M3 −0.168 0.00017 0.01241

Adiponectin..ug.mL. M8 −0.165 0.00022 0.012653

Hepatocyte Growth Factor..HGF…ng.mL. M6 0.225 4.20×10−7 0.000173

Neutrophil.Gelatinase.Associated.Lipocal..ng.ml. M6 0.22 7.90×10 −7 0.000173

Thrombomodulin..TM…ng.ml. M6 0.188 2.60×10−5 0.003614

Myoglobin..ng.mL. M6 0.185 3.30×10−5 0.003614

Chemokine.CC.4..HCC.4…ng.mL. M6 0.17 0.00014 0.012264

FASLG.Receptor..FAS…ng.mL. M6 0.163 0.00026 0.012653

Myeloid.Progenitor.Inhibitory.Factor.1….ng.mL. M6 0.163 0.00026 0.012653

Cystatin.C..ng.ml. M6 0.162 0.00029 0.012702

CD.40.antigen..CD40…ng.mL. M6 0.159 0.00039 0.015529

Beta.2.Microglobulin..B2M…ug.mL. M6 0.154 0.00059 0.019436

Thymus.Expressed.Chemokine..TECK…ng.mL. M6 0.153 0.00063 0.019436

Ferritin..FRTN…ng.mL. M6 0.152 0.00067 0.019436

AXL.Receptor.Tyrosine.Kinase..AXL…ng.mL. M6 0.151 0.00071 0.019436

Vascular.Cell.Adhesion.Molecule.1..VCAM…ng.mL. M6 0.152 0.00071 0.019436

Brain.Natriuretic.Peptide…BNP…pg.ml. M6 0.147 0.0011 0.028341

Pancreatic.Polypeptide..PPP…pg.ml. M6 0.141 0.0016 0.038933

B.Lymphocyte.Chemoattractant..BLC…pg.ml. M6 0.14 0.0018 0.041495
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