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Abstract

Extant fold-switching proteins remodel their secondary structures and change their functions in 

response to cellular stimuli, regulating biological processes and affecting human health. Despite 

their biological importance, these proteins remain understudied. Predictive methods are needed 

to expedite the process of discovering and characterizing more of these shapeshifting proteins. 

Most previous approaches require a solved structure or all-atom simulations, greatly constraining 

their use. Here, we propose a high-throughput sequence-based method for predicting extant 

fold switchers that transition from α-helix in one conformation to β-strand in the other. This 

method leverages two previous observations: (1) α-helix <-> β-strand prediction discrepancies 

from JPred4 are a robust predictor of fold switching, and (2) the fold-switching regions (FSRs) 

of some extant fold switchers have different secondary structure propensities when expressed 

by themselves (isolated FSRs) than when expressed within the context of their parent protein 

(contextualized FSRs). Combining these two observations, we ran JPred4 on 99 fold-switching 

proteins and found strong correspondence between predicted and experimentally observed α-helix 

<-> β-strand discrepancies. To test the overall robustness of this finding, we randomly selected 

regions of proteins not expected to switch folds (single-fold proteins) and found significantly 

fewer predicted α-helix <-> β-strand discrepancies. Combining these discrepancies with the 

overall percentage of predicted secondary structure, we developed a classifier to identify extant 

fold switchers (Matthews Correlation Coefficient of 0.71). Although this classifier had a high false 

negative rate (7/17), its false positive rate was very low (2/136), suggesting that it can be used to 

predict a subset of extant fold switchers from a multitude of available genomic sequences.
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1. Introduction

Extant fold-switching proteins remodel their secondary structures and change their functions 

in response to cellular stimuli1. These environmentally responsive shapeshifters perform 

over 30 diverse functions, occur in all domains of life, and are associated with diseases such 

as cancer2, autoimmune disorders3, and malaria4. Furthermore, increasing evidence suggests 

that extant fold switchers regulate biological processes5 such as cyanobacterial circadian 

rhythms6 and transcription/translation of bacterial virulence genes7.

Compared with single-fold proteins, which maintain stable secondary and tertiary structures 

and typically perform one biological function, extant fold switchers are understudied. 

Specifically, out of the ~160,000 proteins with solved structures available in the Protein 

Data Bank (PDB8), fewer than 100 have been shown to switch folds. Increasing evidence 

suggests that fold switching is likely more widespread than currently appreciated1, but the 

current shortage of experimental examples makes it difficult to determine either the physical 

chemical properties or the functional scope of fold switchers. Thus, predictive tools are 

needed to identify more.

Recent computational studies suggest that fold switching is predictable, a prospect that—if 

realized—could greatly expand the small pool of experimentally determined fold switchers 

currently available. For example, naturally occurring extant fold switchers were predicted 

blindly by searching for differences between predicted and experimentally determined 

protein structures 1, 9. Furthermore, several fold-switching proteins have been designed 

computationally using the Rosetta software suite10, 11. Progress has also been made in 

predicting mutation-induced fold switching12, 13 as well as other conformational changes, 

such as rigid body motions14. Finally, a classifier for extant fold switchers was recently 

developed as a proof of concept that fold switching is predictable from protein sequence15. 

This classifier is based on confidences of all secondary structure predictions (helix, strand 

and coil), whereas the one we developed relies on discrepancies between predicted α-helices 

and β-strands.

Here we present a sequence-based method for predicting extant fold switchers. This method 

builds on our previous approach designed for evolved fold switchers, which are defined 

to have highly similar sequences but different folds12. By contrast, extant fold switchers 

have one sequence that can assume more than one stable secondary and tertiary structure 

configuration. Whereas the approach for extant fold switchers compared secondary structure 

predictions of two (or more) different proteins with slightly different sequences, the current 

method identifies extant fold switchers from the secondary structure predictions of different 

regions from a single amino acid sequence. The following hypothesis provides the basis 

for our method: the JPred4 secondary structure prediction of an isolated fold-switching 

region (FSR) sequence might differ from the JPred4 prediction of the same FSR within 

the context of its naturally occurring sequence (hereafter called a contextualized FSR). 

We developed this hypothesis using the previous observation1 that extant fold-switching 

proteins generally have: (1) regions that change secondary structure between the two forms 

(FSRs) and (2) regions that maintain the same secondary structure (structurally constant 

regions, or SCRs16). By definition, FSRs assume multiple stable secondary structures, 
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and several studies have suggested that at least one FSR conformation is stabilized 

by exogenous interactions17, 18. Together, these observations indicate that the dominant 

secondary structure of a given FSR might differ depending on the context of its sequence. 

Thus, we tested our approach on 99 extant fold switchers with the aim of developing a 

classifier that could distinguish extant fold switchers from single-folding proteins.

2. Methods

2.1. Selection of extant fold switchers

We selected 93 extant fold switchers from a previous dataset1. We excluded 2GED/1NRJB 

and 3VO9B/3VPAA because they had nearly identical structures but were misclassified 

due to missing crystal density. We also excluded 1MBYA/2N19A because they come from 

different organisms, their FSRs differ by 3 amino acids, and their resting states appear 

to assume different conformations. Thus, they appear to be evolved–rather than extant–

fold switchers. In addition to these 93 extant fold switchers, we included the bacterial 

cell-division protein MinE19, 20, SARS-CoV-2 ORF9b21, and the human apoptosis regulator 

BAX22, which have all been shown to switch folds, as well as 3 KaiB homologs presumed to 

switch folds since they come from cyanobacterial strains similar to S. elongatus.

2.2. JPred4 predictions of extant fold switchers

All amino acid sequences from 99 extant fold switchers with solved structures were 

downloaded from the Protein Data Bank (PDB) and saved as individual FASTA files. 

JPred4 predictions were run remotely using a publicly downloadable scheduler available 

on the JPred4 website (http://compbio.dundee.ac.uk/jpred/), and jnetpred predictions were 

used for all calculations. Jnetpred maximizes accuracy by combining sequence profiles from 

HMMer23 and PSI-BLAST24, and we found previously that it identifies fold switchers 

more robustly than other secondary structure predictors12. Each residue was assigned one 

of three secondary structures: “H” for helix, “E” for extended β-strand, and “C” for coil. 

Chain breaks were annotated “-”. PDB IDs and chains of each fold-switched pair, as well 

as their FSR boundaries, are reported in Table S1. FSR boundaries were initially chosen 

based on the regions reported previously (bold sequences in Table S2 of1). PimA, KaiB, and 

RfaH were shortened to yield secondary structure prediction discrepancies, and an additional 

11 residues were also added to the N-terminal end of PimA’s FSR. Such modifications 

seemed reasonable since JPred4 makes predictions based on a 20-residue window25 that 

it could use to associate an isolated fragment with its contextualized secondary structure 

prediction. Thus, modifying short stretches of N- and C-terminal sequence could decrease 

the association between isolated sequences and their contextualized predictions.

2.3. Observed secondary structure discrepancies

Secondary structure classifications of the 93 extant fold switchers were taken from1, and 

classifications of the three KaiB variants were presumed to be the same as S. elongatus 
KaiB. Classifications of MinE, ORF9b, and BAX were determined using DSSP26. To 

quantify secondary structure difference, FSR sequences were aligned with their parents 

using Biopython27 pairwise2.align.localxs with gap open/extension penalties of −1.0/−0.5. 

Secondary structure classifications in the same register as the aligned FSR sequences were 
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extracted from both experimentally determined structures. Helix <-> strand discrepancies 

between the classifications were summed residue-by-residue (1 for discrepancy, 0 for 

no discrepancy) and normalized by FSR length. Pearson correlations were calculated 

using the corcoef function from Numpy28, and linear fits were determined using Scipy29 

stats.linregress. Our benchmark set was selected by maximizing:

TP2
Total ,

where TP is the number of true positives and Total is the total number of proteins (true 

positives+false negatives. Since all 99 proteins switch folds, correct predictions were true 

positives and incorrect ones were false negatives.)

2.4. Single-fold proteins and fragments

Proteins expected not to switch folds and having fewer than 800 residues (the upper limit 

in JPred4), totaling 211, were taken from Table S3C of1. One segment was selected from a 

random region of each protein. Segment lengths were randomly selected from a distribution 

of FSR lengths ranging from 20–41, the range of lengths in our benchmark set. Random 

selections were performed using the random module of Python2.7. JPred4 was run on all 

422 sequences (211 full sequences + 211 segments) using its mass-submit scheduler (http://

www.compbio.dundee.ac.uk/jpred4/api.shtml#massSubmit).

2.5. Helix <-> strand discrepancies and distribution

Sequences of isolated FSRs were aligned with full-length proteins using the 

pairwise2.align.localxs function from Biopython27 with gap open/extension penalties of 

−1.0/−0.5. Secondary structure predictions were re-registered according to the resulting 

alignments and compared. Helix <-> strand discrepancies between the predictions were 

summed residue-by-residue (1 for discrepancy, 0 for no discrepancy) and normalized by 

FSR length. An overall view of our predictive method (sections 2.2–2.5) is shown in Scheme 

1.

2.6. Distributions and statistics

The distributions in Figures 1 and 3 were generated with Matplotlib30. Matthews Correlation 

Coefficients31 were calculated as follows:

TP × TN − FP × FN
TP + FP TP + FN TN + FP TN + FN ,

where TP = number of true positives, TN = number of true negatives, FP = number of false 

positives, and FN is the number of false negatives.

2.7. Chameleon sequences

All 8-residue chameleon sequences (stringent criterion) with non-homologous sequences 

from the ChSeq32 database were tested for fold switching. Since JPred4 cannot predict 

the secondary structures of sequences so short, we extracted 30-residue (mean FSR length 
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of 28 rounded to the nearest multiple of 5) fragments from their parents centered on the 

chameleon sequences (or as close as possible if the sequences were near termini). JPred4 

was then run on all fragments and whole sequences using the mass-submit scheduler. 

Predictions of whole sequences and fragments were compared as in 2.5.

3. Results

3.1. JPred4 predicts fold switchers that undergo α-helix <->β-strand transitions

We sought to determine whether JPred4 can identify fold-switching regions (FSRs) of extant 

fold switchers. To do this, JPred4 predictions of isolated FSR sequences and FSRs within 

their parent sequences (hereafter called contextualized FSRs, Methods) were compared for 

99 experimentally validated fold switchers. A moderate Pearson correlation (0.67) was 

observed between predicted and experimentally observed α-helix <->β-strand discrepancies 

(Figure S1), indicating that JPred4 can identify some fold switchers that undergo α-helix 

<->β-strand transitions. False positives with no observed α<->β transitions were eliminated 

by removing fragments with high levels of predicted coil (≥65%), improving the overall 

correlation substantially (0.82, Figure 1). Together, these results indicate that our method 

can effectively identify some fold switchers that undergo α-helix <->β-strand transitions, but 

not fold switchers that undergo other types of secondary structure transitions, such as shifts 

in β-sheet register.

3.2. Extant fold switchers with sizeable α-helix <-> β-sheet transitions

We selected a benchmark set of 17 fold switchers by determining the fraction of observed 

α<-> β discrepancies that maximized both the percentage and the total number of true 

positives (Methods, fraction = 0.18, Figure 1, Figure S2). Ten members of this set are 

highlighted briefly in Figure 2, and all are reported in Table S2:

• Selecase (“selective and specific caseinolytic metallopeptidase”; Figure 2A), 

produced by archaea and bacteria, and most studied from the archaeon 

Methanocaldococcus jannaschii, is an active metallopeptidase in its monomeric 

form. Upon forming structured higher order oligomers, namely dimers, 

tetramers, and octamers, Selecase is inactivated33. Its structures and activities 

are regulated by its concentration: mostly monomers at 0–0.3 mg/ml; dimers at 

0.3–2 mg/ml; tetramers at 2–6 mg/ml, and octamers at > 6 mg/ml.

• RfaH (Figure 2B) regulates the expression of virulence proteins from 

enterobacteria such as Escherichia coli34. It has two domains: an N-terminal 

NGN-binding domain (NTD) and a C-terminal domain (CTD) that switches 

folds. RfaH’s CTD folds into an α-helical bundle that forms a binding interface 

with the NTD, masking its RNA polymerase (RNAP) binding site. Upon binding 

both RNAP and a specific DNA consensus sequence, called ops, the CTD 

dissociates from the NTD, unmasking the NTD’s RNAP binding site. This 

binding event also triggers the CTD to reversibly refold into a β-barrel able 

to bind the integral S10 unit of the ribosome and foster efficient translation35. 

When expressed in isolation, RfaH’s CTD folds into a β-barrel with no trace of 

α-helical content (green structure)35.
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• PimA (Figure 2C) is a membrane-associated bacterial glycosyltransferase 

(phosphatidyl-myo-inositol mannosyltransferase) that initiates the biosynthesis 

of virulence factors produced by Mycobacterium tuberculosis. This enzyme has 

both a closed GDP-bound form and an open form with reshuffled secondary 

structure. PimA’s FSR is highly conserved in mycobacterial orthologs, and both 

crystallographic and near-UV CD evidence indicate that its open form could play 

an important role in membrane interactions36.

• KaiB (Figure 2D) is a major component of the cyanobacterial circadian 

clock of Synechococcus elongatus6. Unlike most other circadian clocks, which 

are driven by transcription-translation oscillation, the cyanobacterial circadian 

clock is maintained through a periodic phosphorylation cycle, known as a post­

translational oscillator (PTO)37. At night, KaiB’s active monomeric form helps 

to regulate the dephosphorylation of the PTO, while in the morning it primarily 

populates an inactive tetramer with a different fold, allowing phosphorylation of 

the PTO.

• Ovalbumin (Figure 2E) is a member of the serpin family (serine protease 

inhibitor; although ovalbumin is not known to have in situ inhibitory activity 

– it constitutes 60–65% of egg whites and appears to be a storage protein38) with 

a zymogenic form (i.e., an inactive precursor, as has plasmepsin). Specifically, 

inactive ovalbumin has a reactive center loop (RCL) that, when cleaved by a 

serine protease such as subtilisin, forms a β-strand inserted between two pairs 

of β-hairpins on its surface. Additionally, the α-helix formed by ovalbumin’s 

uncleaved RCL is regular and less flexible than the distorted helices of inhibitory 

serpins39.

• MinE (Figure 2F) is part of a three-component protein oscillator that helps to 

regulate bacterial cell division19. In its resting state, MinE forms a homodimer 

with six β-strands (3 from each monomer) and 4 α-helices (two from each 

monomer). When bound to MinD, another component of the oscillator, MinE’s 

two central β-strands are extruded from its dimer interface and refold into helices 

that bind MinD20, stimulating MinD’s ATPase activity and leading to membrane 

release.

• ORF9b (Figure 2G) is from the genome of the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2). Expressed in isolation, it forms a 

homodimer composed of β-sheets. When bound to human Tom70, however, 

it refolds into an α-helix with one of two possible cellular effects21: (1) 

modulating interferon and apoptosis signaling or (2) decreasing mitochondrial 

import efficiency, leading to mitophagy. JPred4 has been used previously to 

predict ORF9b’s fold switching40.

• The human amyloid-forming proteins α-Synuclein and amyloid β (Figures 2H 

& I, respectively), along with amylin (Table S2), are all believed to interact 

with membranes, where they form α-helices41–43. While the cognate functions 

of helical α-synuclein and amyloid β remain under investigation, amylin 

is an endocrine hormone (co-secreted with insulin) that regulates glycemic 
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metabolism42. All three peptides can also form fibrillar deposits associated with 

diseases such as Parkinson’s (α-Synuclein)44, type 2 diabetes (amylin)45, and 

Alzheimer’s (amyloid β)46.

• BAX is a human protein involved in mitochondrial apoptosis. It assumes an 

all α-helical fold in the cytosol, and membrane insertion of its C-terminal 

helix appears to foster its apoptotic function. Several lines of experimental 

evidence (e.g. mass spectrometry, electron microscopy, and circular dichroism 

spectroscopy) indicate that BAX refolds into β-sheet fibrils when bound to the 

humanin peptide22. Furthermore, light-scattering experiments demonstrate that 

its C-terminal helix propagates fibril formation22. This refolding is believed to 

sequester BAX, preventing it from initiating mitochondrial apopotosis.

3.3. JPred4 discriminates between FSRs and false positives with statistical significance

In all cases shown in Figure 2, along with 5/7 of the other proteins in our benchmark set 

(Table S2), we found that JPred4 predicted different secondary structures for isolated and 

contextualized FSR sequences. JPred4 secondary structure predictions tend to correspond 

reasonably well (<6% α-helix <-> β-strand discrepancies9) with at least one experimentally 

determined protein structure for all 14 proteins. In fact, in all 17 cases, α-helix and 

β-strand secondary structure elements correspond well between one prediction and one 

experimentally determined conformation (correct secondary structures in all of the right 

positions, though not necessarily the experimentally determined lengths). However, the 

alternative JPred4 predictions generally do not correspond well with the alternative 

secondary structure prediction, except for PimA and KaiB. Nevertheless, as in previous 

work12, we use discrepancies between predictions to infer fold switching; for our purposes 

the accuracies of the JPred4 predictions have no bearing on this inference.

3.3 JPred4 discriminates between FSRs and single-folding regions

To determine the significance of JPred4’s α-helix <-> β-strand prediction discrepancies 

for isolated and contextualized FSRs, we randomly selected fragments from a set of 211 

proteins expected not to switch folds (single-fold proteins). Upon eliminating all predictions 

with ≥65% coil, 136 predictions remained.

Predictions of single folders and fold switchers are compared in Figure 3. We noticed that 

11/17 of the fold-switching proteins in our benchmark set had predicted helix<->strand 

discrepancies ≥20%, while only 2/136 of single folders had helix<->strand discrepancies 

at the same threshold. One of these false positives comprised residues 12–48 from the 

glutathione S-transferase (GST) Omega 3 expressed by the silkworm Bombyx mori. Residue 

29 of this segment is an asparagine, which replaces a highly conserved cysteine in the other 

members of the Omega family47. This single amino acid change is partially responsible for 

Omega 3’s loss of GST activity: mutating asparagine 29 to a cysteine while also deleting 

its flexible C-terminal helix restores GST activity. Interestingly, running JPred4 on the 

same segment (residues 12–48) with just an N29C mutation gives the same secondary 

structure prediction as that of the whole protein (Table S3)47. Based on our previous work on 

sequence-similar fold switchers12, this result suggests that this protein segment might switch 

folds and thus might not be a false positive after all. The other false positive comprised 
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residues 93–142 of Bd3460, a self-protection protein from Bdellovibrio bacteriovorus that 

assumes an ankyrin-like fold48. No obvious reason for the fold switching misclassification 

was identified.

At a 20% threshold for predicted α-helix<->β-strand discrepancies, our method yielded 

11 true positives, 2 false positives, 134 true negatives, and 6 false negatives, resulting in 

a Matthews Correlation Coefficient of 0.71 (very low false positive rate; moderate false 

negative rate). In 4/6 false negatives, α-helix <->β-strand discrepancies were predicted, but 

they were not large enough to exceed the 20% threshold for the classifier. JPred4 may have 

misclassified the six false negatives for two reasons. Firstly, we suspect that the sequence 

profiles generated for FSRs and whole proteins were similar, leading to identical JPred 

predictions. Secondly, database population may have played a role in the misclassification. 

Specifically, sequences associated with one fold may have been more highly represented 

than sequences associated with the other.

3.4. JPred4 does not systematically classify chameleon sequences as fold switchers

To further test the robustness of our classifier, we ran our JPred4-based method on 45 

nonhomologous chameleon sequences from the ChSeq database32. Chameleon sequences 

are identical sequences that assume α-helices in some proteins and β-strands in others but 

are not associated with fold switching49. Of the 36 sequences with <65% coil predicted, 5 

were classified as putative fold switchers (Table S4). Thus, while our method sometimes 

misclassifies chameleon sequences as fold switchers, it is not a systematic defect.

4. Discussion

Fold switchers are exceptions to the observation that folded proteins assume one stable 

structure that performs one function. Nevertheless, increasing evidence suggests that these 

proteins may be more abundant in nature than previously thought1. Fold switching impacts 

protein function5 and is associated with multiple diseases2, 3, 50. Thus, it would be useful to 

have a bioinformatic algorithm that identifies more fold switchers from their sequences. This 

is especially true because, up to this point, all experimentally characterized fold switchers 

have been stumbled upon by chance1.

Here we present an approach for predicting extant fold switchers from their amino acid 

sequences alone. This method is based on previous experimental work suggesting that the 

fold-switching regions (FSRs) of proteins are context-dependent: that is, their conformations 

are determined by their environment17, 18. In light of this, we hypothesized that it might 

be possible to predict extant fold switchers by comparing the JPred4 secondary structure 

predictions of isolated FSRs with contextualized FSRs and searching for α-helix <-> β­

strand discrepancies. Indeed, significant discrepancies were found in 11/17 fold switchers 

used in this study. We used this finding to develop a classifier for extant fold switchers that 

yielded a Matthews Correlation Coefficient of 0.71. We suspect that JPred4 successfully 

identified extant fold switchers for the same reason it identified sequence-similar fold 

switchers12: different sequences (contextualized and isolated FSRs in this case) yielded 

different sequence profiles from PSI-BLAST searches. Future work revealing how these 
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different profiles lead to dramatically different secondary structure predictions would be 

useful.

Two additional results stand out in light of our previous method12, which predicts evolved 

fold switchers with highly similar sequences. First, the method presented here predicts 

fold switching in all four KaiB variants tested. This positive result is an improvement 

over our previous method for sequence-similar fold switchers, which failed to predict fold 

switching in all KaiB variants12. Secondly, our results strongly suggest that the fragment 

from Omega 3 is an FSR, even though it was in our set of proteins not expected to switch 

folds. Just one mutation (N29C) is sufficient to dramatically change the secondary structure 

predictions of this sequence, a previously identified characteristic of sequence-similar fold 

switchers (proteins with highly similar—but not identical—amino acid sequences and 

different folds12). Additionally, Omega 3’s GST topology47 has been known to switch folds 

in other proteins, namely KaiB51 and Chloride Intracellular Channel 1 (CLIC1)52. Still, 

further experimental work would be needed to determine whether Omega 3 switches folds.

Although we are optimistic that the approach presented here can be used to predict 

novel fold switchers, it has several limitations. Firstly, it can only identify fold switchers 

that undergo large α-helix <-> β-sheet transitions. To date, these proteins are rare and 

comprise only 17% of known fold switchers. Biologically important fold switchers like 

lymphotactin53, which maintains β-sheets that change their hydrogen bonding register, and 

most β-pore proteins54, which extend already existing β-sheet structures, will be missed. 

Secondly, it will not identify all fold switchers that undergo large α-helix <-> β-sheet 

transitions, as evidenced by the fact that only 11/17 of the fold switchers tested gave a 

robust enough signal to be classified positively. Thirdly, because the FSRs of undiscovered 

fold switchers are not known a priori, our method will likely need to test many putative 

FSRs (different sizes and different regions) within the same protein to determine whether 

or not it is a fold switcher. Although this approach is much less computationally intensive 

than all-atom simulations, it will still require substantial time and computational power to 

predict fold switching in thousands of genomic sequences. Furthermore, the more sequences 

probed, the more likely false positives will be hit. Additional work will be needed to 

more accurately distinguish between these false positives and true fold switchers. Finally, 

our training set was small, comprising the only 17 known fold switchers suitable for the 

predictive method presented here. Thus, it is likely that our statistics, especially for true 

positives and false negatives, are noisy. As more fold switchers are discovered, we are 

optimistic that it will be possible to develop methods that can predict more types of fold 

switchers with higher accuracy.

5. Conclusions

Our results suggest that the α-helix <-> β-strand transitions of some extant fold switchers 

can be predicted from their sequences alone using the homology-based secondary structure 

predictor JPred4. Although this method will not identify all extant fold switchers whose 

secondary structures transition from α-helix <-> β-strand, its low false positive (2/136) 

and moderate true positive (11/17) rates suggest that many positive predictions will likely 

correspond to true extant fold switchers. Thus, we are optimistic that this approach can be 
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used to predict a subset of extant fold switchers from the broad base of available genomic 

sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Helix <-> strand discrepancies predicted by JPred4 correspond to experimentally observed 

α-helix <->β-strand differences in fold-switching regions. Dotted line represents best linear 

fit of all datapoints (black and red circles; Pearson correlation: 0.82). Red circles correspond 

to benchmark set of 17 fold switchers. Only 16 can be observed because two KaiB variants 

(4KSO and 1WWJ) overlap exactly at (0.31, 0.26).
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Figure 2. 
JPred4 predicts different secondary structures for isolated and contextualized FSRs of 

extant fold switchers with substantive transitions between α-helix and β-strand. Each panel 

shows the experimentally determined secondary structures of both conformations of the fold 

switcher (purple and green) along with JPred4 secondary structure predictions of the whole 

sequence (black) and FSR (gray). Purple and green regions of protein structure correspond 

to FSR sequence shown in diagram; gray correspond to Structurally Constant Regions 

(SCRs). Predicted secondary structures that were at least 2 contiguous residues long are 
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shown. The KaiB variant (2QKE) represents all members of the KaiB family; the other 

3 (1WWJ, 4SKO, 1R5P) are not shown; amylin is also not shown due to lack of space. 

The differential secondary structure predictions for ORF9b were reported previously40. The 

green secondary structure diagram of BAX is shaded with lines to signify that its structure 

has not been solved, though other experimental evidence strongly suggests that it folds into a 

β-sheet. All three-dimensional protein structures were made using PyMOL.
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Figure 3. 
JPred4 discriminates between single folders and fold switchers. Single folders/fold switchers 

are blue circles/red triangles. The dashed line represents the threshold for classifying fold 

switchers by fraction of predicted secondary structure/fraction of α-helix <-> β-strand 

discrepancies (0.2). Datapoints at or above this threshold are predicted to switch folds. Only 

16/17 fold switchers can be seen because two KaiB variants have identical coordinates 

(0.37,0.26).
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Scheme 1. 
Summary of predictive approach.
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